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ABSTRACT
Federated learning (FL) is an emerging, privacy-preserving machine
learning paradigm, drawing tremendous attention in both academia
and industry. A unique characteristic of FL is heterogeneity, which
resides in the various hardware specifications and dynamic states
across the participating devices. Theoretically, heterogeneity can
exert a huge influence on the FL training process, e.g., causing a
device unavailable for training or unable to upload its model up-
dates. Unfortunately, these impacts have never been systematically
studied and quantified in existing FL literature.

In this paper, we carry out the first empirical study to charac-
terize the impacts of heterogeneity in FL. We collect large-scale
data from 136k smartphones that can faithfully reflect heterogene-
ity in real-world settings. We also build a heterogeneity-aware FL
platform that complies with the standard FL protocol but with het-
erogeneity in consideration. Based on the data and the platform,
we conduct extensive experiments to compare the performance
of state-of-the-art FL algorithms under heterogeneity-aware and
heterogeneity-unaware settings. Results show that heterogeneity
causes non-trivial performance degradation in FL, including up
to 9.2% accuracy drop, 2.32× lengthened training time, and under-
mined fairness. Furthermore, we analyze potential impact factors
and find that device failure and participant bias are two potential
factors for performance degradation. Our study provides insightful
implications for FL practitioners. On the one hand, our findings sug-
gest that FL algorithm designers consider necessary heterogeneity
during the evaluation. On the other hand, our findings urge system
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providers to design specific mechanisms to mitigate the impacts of
heterogeneity.
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1 INTRODUCTION
In the past few years, we have witnessed the increase of machine
learning (ML) applications deployed on mobile devices [11, 13, 49,
50, 52]. These applications usually need to collect personal user
data to train ML models. However, due to the increasing concerns
of user privacy, e.g., the recent released GDPR [47] and CCPA [45],
personal data cannot be arbitrarily collected and used without per-
mission granted [33]. Therefore, various privacy-preserving ML
techniques have been proposed [2, 12, 30], where the emerging
federated learning (FL) has drawn tremendous attentions [27, 28].
The key idea of FL is to employ a set of personal mobile devices, e.g.,
smartphones, to train an ML model collaboratively under the or-
chestration of a central parameter server. Since the training process
of FL takes place on mobile devices (i.e., on-device training) without
uploading user personal data outside devices, it is considered to be
quite promising for preserving user privacy in ML applications.

Recently, various emerging FL algorithms have been proposed,
e.g., FedAvg [30], Structured Updates [24], and q-FedAvg [29]. To
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evaluate these algorithms, existing FL studies typically take a simu-
lation approach [3, 10, 29, 30] given the high cost of real deployment.
However, they have no data to describe how devices participate
in FL1. As a result, they usually have an overly ideal assumption,
i.e., all the devices are always available for training and equipped
with homogeneous hardware specifications (e.g., the same CPU and
RAM capacity) [3, 20, 24, 29, 30, 34].

However, these assumptions could be too ideal for FL deploy-
ment in practice. More specifically, FL usually requires a substantial
number of devices to collaboratively accomplish a learning task,
which poses a unique challenge, namely heterogeneity [27]. In
practice, the heterogeneity can be attributed to two major aspects:
(1) One is from hardware specifications of devices (called hardware
heterogeneity), e.g., different CPU, RAM, and battery life. (2) Addi-
tionally, the state and running environment of participating devices
can be various and dynamic (called state heterogeneity), e.g., CPU
busy/free, stable/unreliable network connections to the server, etc.

Intuitively, heterogeneity can impact FL in terms of accuracy and
training time. For instance, it is not surprising when a device fails
to upload its local model updates to the server (called device failure),
which can definitely affect the training time to obtain a converged
global model. Furthermore, devices that seldom participate in an FL
task due to abnormal states, e.g., CPU busy, can be underrepresented
by the global model.

Although some recent studies [9, 25, 28, 37] have realized the
heterogeneity in FL, its impacts have never been comprehensively
quantified over large-scale real-world data. In this paper, we present
the first empirical study to demystify the impacts of heterogeneity
in FL tasks. To this end, we develop a holistic platform that complies
with the standard and widely-adopted FL protocol [5, 17, 53], but
for the first time, facilitates reproducing existing FL algorithms
under heterogeneity-aware settings, i.e., devices have dynamic states
and various hardware capacities. Undoubtedly, conducting such a
study requires the data that can faithfully reflect the heterogeneity
in real-world settings. Therefore, we collect the device hardware
specifications and regular state changes (including the states related
to device check-in and drop-out) of 136k smartphones in one week
through a commodity input method app (IMA). We then plug the
data into our heterogeneity-aware platform to simulate the device
state dynamics and hardware capacity.

Based on the data and platform, we conduct extensive measure-
ment experiments to compare the state-of-the-art FL algorithms’
performance, including model accuracy and training time under
heterogeneity-aware and heterogeneity-unaware settings. We se-
lect four typical FL tasks: two image classification tasks and two
natural language processing tasks. For every single task, we employ
a benchmark dataset for model training. Three of the benchmark
datasets [14, 35, 40] have been widely used in existing FL-related
studies [8, 24, 28–30], and the last one is a real-world text input
dataset collected from the aforementioned IMA.
• Findings. Heterogeneity leads to non-trivial impacts on the per-
formance of FL algorithms, including accuracy drop, increased train-
ing time, and undermined fairness. For the basic algorithm (§4.1),
i.e., FedAvg [30], when heterogeneity is considered, its performance
is compromised in terms of 3.1% accuracy drop (up to 9.2%) and

1Although Google has built a practical FL system [5], its detailed data are not disclosed.

1.74× training time (up to 2.32×) on average. For other advanced
algorithms (§4.2), i.e., gradient compression algorithms, including
Structured Updates [24], Gradient Dropping [1], and SignSGD [4],
and advanced aggregation algorithms, i.e., q-FedAvg [29] and Fed-
Prox [28], optimizations are not always effective as reported. For
example, heterogeneity hinders q-FedAvg from addressing the fair-
ness issues in FL. We also find that current gradient compression al-
gorithms can hardly speed up FL convergence under heterogeneity-
aware settings. In the worst case, the training time is lengthened by
3.5×. These findings indicate that heterogeneity cannot be simply
ignored when designing FL algorithms.
• Analysis of Potential Impact Factors. We first break down
the heterogeneity to analyze the individual impacts of state het-
erogeneity and hardware heterogeneity, respectively (§5.1). We
find that both types of heterogeneity can slow down the learning
process, while state heterogeneity is often more responsible for
the accuracy degradation. Then we zoom into our experiments
and find out two major factors that are particularly obvious under
heterogeneity-aware settings. (1) Device failure (§5.2): On average,
11.6% of selected devices fail to upload their model updates per
round due to unreliable network, excessive training time, and drop-
out caused by user interruption. This failure slows down the model
convergence and wastes valuable hardware resources. (2) Partici-
pant bias (§5.3): Devices attend FL process in a biased manner. For
instance, we find that more than 30% of devices never participate
in the learning process when the model converges and the global
model is dominated by active devices (top 30% devices contribute
to 81% total computation). State heterogeneity is the major cause
for the participant bias.

Our extensive experiments provide several insightful implica-
tions as summarized in §6. For instance, FL algorithm designers
should consider necessary heterogeneity in the evaluation envi-
ronment of FL, while FL system providers should design specific
mechanisms to mitigate the impacts of heterogeneity. In summary,
the major contributions of this paper are as follows:
• We build a heterogeneity-aware FL platform with a large-scale
dataset collected from 136k smartphones, which can help sim-
ulate the state and hardware heterogeneity for exploring FL in
real-world practice2.

• We conduct extensivemeasurement experiments to demystify the
non-trivial impacts of heterogeneity in existing FL algorithms.

• We make an in-depth analysis of possible factors for impacts
introduced by heterogeneity. Our results can provide insightful
and actionable implications for the research community.

2 BACKGROUND AND RELATEDWORK
FL is an emerging privacy-preserving learning paradigm. Among
different FL scenarios [21], we focus on a widely studied one, i.e.,
cross-device FL, which utilizes a federation of client devices3, coordi-
nated by a central server, to train a global ML model. A typical FL
workflow [5] consists of many rounds, where each round can be
divided into three phases: (1) the central server first selects devices
to participate in the FL; (2) each selected device retrieves the latest

2We have released our dataset and source code at https://github.com/PKU-Chengxu/
FLASH to facilitate future FL research.
3In the rest of this paper, we use device to refer to client device.

https://github.com/PKU-Chengxu/FLASH
https://github.com/PKU-Chengxu/FLASH
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Figure 1: Overview of our methodology.

global model from the server as the local model, re-trains the local
model with local data, and uploads the updated weights/gradients
of the local model to the server; (3) the server finally aggregates
the updates from devices and obtains a new global model.

In practice, FL is typically implemented based on state-of-the-
art FL algorithms, such as FedAvg [30]. In FedAvg, devices perform
multiple local training epochs, where per round a device updates the
weights of its local model using its local data. Then the central server
averages the updated weights of local models as the new weights
of the global model. FedAvg is a representative FL algorithm that
has been widely used in existing FL-related studies [20, 24, 29, 34]
and also deployed in the industry, e.g., in Google’s production FL
system [9]. Therefore, we use FedAvg as the basic FL algorithm to
study heterogeneity’s impacts (§4.1).

In addition, many advanced algorithms have been proposed to
optimize FL, including reducing the communication cost between
the central server and devices [7, 10, 24, 41, 43, 55], enhancing
privacy guarantee [3, 6, 31, 32, 36], ensuring fairness across de-
vices [20, 29, 34], minimizing on-device energy cost [26], etc. How-
ever, most of them have not been well evaluated in a heterogeneity-
aware environment, making their benefits unclear in real-world
deployment. Therefore, we make the first attempt to study how
heterogeneity impacts the effectiveness of these advanced FL algo-
rithms (§4.2).

Heterogeneity is considered as one of the core challenges in
FL [27]. Some existing work [9, 25, 28, 37] has studied the het-
erogeneity in FL but not in a comprehensive way. In particular,
they ignore state heterogeneity and randomly set training time to
simulate hardware heterogeneity, leaving communication capaci-
ties unconsidered. For example, FedProx [28] handles the hardware
heterogeneity by allowing each participating device to perform a
variable amount of work, but the hardware capability of each device
is randomly set and state changes of devices remain unconsidered.
FedCS [37] accelerates FL by managing devices based on their re-
source conditions and allowing the server to aggregate as many
device updates as possible, but it assumes that the network is stable
and not congested, and randomly sets the training time from 5 to
500 seconds. Chai et al. [9] have studied the impacts of hardware
heterogeneity by allocating varied CPU resources when simulating
FL, but they leave state heterogeneity unconsidered. Our study
differs from existing work in two aspects: (1) we comprehensively
consider hardware heterogeneity and state heterogeneity in the

experimental environment powered by real-world data, and (2) we
build an FL scenario with a much larger device population (up to
136k).

3 THE MEASUREMENT APPROACH
3.1 Approach Overview
Figure 1 illustrates the overall workflow of our measurement ap-
proach. It starts from a benchmark dataset that is typically parti-
tioned into thousands or millions of devices holding their own local
data for training ( 1 ). For a fair comparison, we always use the
same partition strategy in the heterogeneity-aware settings and
heterogeneity-unaware settings, i.e., the local training data on a
given device are the same.

For heterogeneity-aware settings, we randomly assign a state
trace ( 2 ) and a hardware capacity ( 3 ) to each device. A state
trace determines whether a device is available for local training at
any simulation timestamp, while the hardware capacity specifies
the training speed and communication bandwidth. Both datasets
are collected from large-scale real-world mobile devices through
an IMA app (details in §3.2). As a result, we get a heterogeneous
device set with different local training data, hardware capacities,
and state change dynamics.

For heterogeneity-unaware settings, we assign each device with
an “ideal” state trace, i.e., the device always stays available for local
training and never drops out ( 4 ), and a uniform hardware capacity
as the mid-end device in our IMA dataset (Redmi Note 8) ( 5 ). As
a result, we get a homogeneous device set with the same hardware
capacity and state change dynamics, as existing FL platforms do.

We next deploy the two device sets to our FL simulation platform
and execute the FL task (e.g., image classification) under the same
configurations ( 6 and 7 ). The simulation platform extends the
standard FL protocol with heterogeneity consideration, e.g., a device
can quit training due to a state change (details in §3.3). We finally
analyze heterogeneity’s impacts by comparing the metric values
achieved by heterogeneous devices and homogeneous devices ( 8 ).

3.2 The Datasets
As described in §3.1, we use two types of datasets in this study,
including (1) the IMA dataset describing the heterogeneity in real-
world smartphone usage, and (2) benchmark datasets containing
devices’ local data used for training and testing ML models.



Field Description Example
user_id Anonymized user id. xxxyyyzzz
device_model device type SM-A300M
screen_trace screen on or off screen_on
screen_lock_trace screen lock or unlock screen_lock
time time at current state 2020-01-29 05:52:16
network_trace network condition 2G/3G/4G/5G/WiFi
battery_trace battery charging state, battery level battery_charged_off 96.0%

Table 1: Example of a state entry.

…
𝑇"

battery	
charged

𝑇. 𝑇/ 𝑇0

screen
off WiFi 4G

available
interval

participating
drop out

Figure 2: A trace is a series of state changes over time.

3.2.1 IMA dataset. To power the heterogeneity-aware settings,
we collect large-scale real-world data from a popular IMA that
can be downloaded from Google Play. The dataset can be divided
into two parts, including (1) device state traces for annotating state
heterogeneity, and (2) capacity data for annotating hardware het-
erogeneity.
• Device state traces record the state changes (including battery
charging, battery level, network environment, screen locking, etc.)
of 136k devices within one week starting from Jan. 31 in 2020. More
specifically, every time the aforementioned state changes, the IMA
records it with the timestamp and saves it as a state entry (refer to
Table 1).

In total, we collect 136k traces (one for each device) containing
180 million state entries, accounting for 111GB of storage.

The state traces are to determine the time intervals when a device
is available for local training, which are critical in understanding
the FL performance under heterogeneity-aware settings. Figure 2
concretely exemplifies how a trace works during the simulation.
The device becomes available for training at𝑇2 because it meets the
state criteria [5], i.e., when a device is idle, charged, and connected
to WiFi. Then after a period of time at𝑇3, the network environment
changes to “4G”, thus the device becomes unavailable. As a result,
we obtain a training-available interval between 𝑇2 and 𝑇3.

As far as we know, this is the first-of-its-kind device usage
dataset collected from large-scale real-world devices, making it
much more representative than the datasets covering a small group
of devices [22, 54].
• Hardware capacity data indicate the computational and com-
munication capacities of different devices. This dataset, along with
the aforementioned state trace, determines how long and whether
a device can successfully finish its local training and upload the
model updates to the central server before a deadline.

For the computational capacity, we seek to obtain the training
speed for each given device. However, our collected IMA dataset
contains more than one thousand types of devices, making it rather
difficult to profile. Thus, we employ a “clustering” approach by map-
ping all device models to a small number of representative device
models that we afford to offline profile. The mapping consists of
two steps: (1) The total device models are first mapped to the device

models profiled by AI-Benchmark [19], a comprehensive AI per-
formance benchmark. For a few device models that AI-Benchmark
does not cover, we make a random mapping. It reduces the number
of device models to 296. (2) The remaining device models are then
mapped to what we afford to profile. So far, we have profiled three
representative and widely-used device models (Samsung Note 10,
Redmi Note 8, and Nexus 6), and we plan to include more device
models in the future. To profile these devices, we run on-device
training using the open-source ML library DL4J [15] and record
their training time for each ML model used in our experiments.
We are aware of learning-based approaches [51] to obtain the on-
device ML performance, but our empirical efforts show that these
approaches are not precise enough for on-device training tasks.

For the communication capacity, we recruit 30 volunteers and
deploy a testing app on their devices to periodically obtain (i.e.,
every two hours) the downstream/upstream bandwidth between
the devices and a cloud server. We fit each volunteer’s data to a
normal distribution and randomly assign a distribution to the device
during the simulation. The bandwidth data determine the model
uploading/downloading time during simulation.

3.2.2 Benchmark datasets. We use four benchmark datasets to
quantitatively study the impacts of heterogeneity on FL perfor-
mance. Three of them (i.e., Reddit [40], Femnist [14], and Celeba [35])
are synthetic datasets widely adopted in FL literature [3, 27, 29, 37],
while the remaining one is a real-world input corpus collected from
our IMA, named as M-Type. M-Type contains texts input from the
devices covered in the state traces in §3.2.1.4 Each dataset can be
used for an FL task. Specifically, Femnist and Celeba are for image
classification tasks, while Reddit and M-Type are for next-word
prediction tasks. For Femnist and Celeba, we use CNN models, and
for Reddit and M-Type, we use LSTM models. The four models are
implemented by Leaf [8], a popular FL benchmark. All the datasets
are non-IID datasets, i.e., the data distribution is skewed and un-
balanced across devices, which is a common data distribution in
FL scenarios [21]. We randomly split the data in each device into a
training/testing set (80%/20%).

3.2.3 Ethic considerations. All the data are collected with ex-
plicit agreements with users on user-term statements and a strict
policy in data collection, transmission, and storage. The IMA users
are given an explicit option to opt-out of having their data collected.
In addition, we take very careful steps to protect user privacy and
preserve the ethics of research. First, our work is approved by the
Research Ethical Committee of the institutes that the authors are
currently affiliated with. Second, the users’ identifies are all com-
pletely anonymized during the study. Third, the data are stored
and processed on a private, HIPPA-compliant cloud server, with
strict access authorized by the company that develops the IMA. The
whole process is compliant with the privacy policy of the company.

3.3 The Simulation Platform
Our platform follows the standard FL protocol [5] and divides the
simulation into three main following phases as shown in Figure 3.
We also follow the Google’s report [53] to configure the FL systems
, e.g., the time that the server waits for devices to check-in. Given

4Due to privacy concerns, we do not include M-Type in our GitHub repository.
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Figure 3: We build our FL simulation platform atop the stan-
dard FL protocol [5].

an FL task, a global ML model is trained in a synchronized way and
advanced round by round.
Selection.At the beginning of each round, the server waits for tens
of seconds for devices to check-in. Devices that meet the required
state criteria check in to the server ( 1○). Then the server randomly
selects a subset (by default 100) of these training-available devices.
Configuration. The server sends the global model and configura-
tion to each of the selected devices ( 2○). The configuration is used
to instruct the device to train the model. The device starts to train
the model using its local data once the transmission completed ( 3○).
Reporting. The server waits for the participating devices to re-
port updates. The time that the server waits is configured by the
reporting deadline. Each device first checks its “reporting qualifica-
tion” ( 4○), i.e., whether it has dropped out according to its states
over the corresponding time period. It also checks if it has missed
the deadline according to the time needed to finish training and
communication. The preceding checking is powered by our IMA
dataset described in §3.2.1. The server validates updates based on
the checking results and aggregates the qualified updates ( 5○). De-
vices that fail to report and those that are not selected will wait
until the next round ( 6○). This reporting qualification step is what
enables heterogeneity-aware FL and distinguishes our platform
from existing ones.

3.4 Experimental Settings
Algorithms. We briefly introduce the algorithms explored in our
study and leave more details and their hyper-parameters in §4. The
algorithms can be divided into three categories: (1) The Basic al-
gorithm, i.e., FedAvg, which has been deployed to real systems [5]
and is widely used in FL literature [20, 24, 29, 34]. (2) Aggregation
algorithms that determine how to aggregate the weights/gradients
uploaded from multiple devices, including q-FedAvg [29] and Fed-
Prox [28]. (3) Compression algorithms, including Structured Up-
dates [24], Gradient Dropping (GDrop) [1], and SignSGD [4], which
compress local models’ weights/gradients to reduce the communi-
cation cost between devices and the central server.
Metrics. In our experiments, we quantify the impacts of heterogene-
ity by reporting the following metrics: (1) Convergence accuracy,
which is directly related to the performance of an algorithm. (2)

Algorithms Acc. Training
Time/Round

Compression
Ratio Var. of Acc.

FedAvg ✓ ✓ − −
Structured Updates ✓ ✓ ✓ −

GDrop ✓ ✓ ✓ −
SignSGD ✓ ✓ ✓ −
q-FedAvg ✓ ✓ − ✓
FedProx ✓ ✓ − −

Table 2: Three categories of FL algorithms we choose and
their corresponding metrics we measure.

Training time/round, which is defined as the time/rounds for the
global model to converge. Noting that the training time reported by
our simulation platform is the running time after the FL system is
deployed in real world instead of the time to run simulation on the
pure cloud. (3) Compression ratio, which is defined as the fraction
of the size of compressed gradients to the original size [46]. (4)
Variance of accuracy, which is calculated as the standard deviation
of accuracy across all the devices in the benchmark dataset. This
metric indicates the cross-device fairness of an algorithm. Table 2
summarizes the algorithms and their corresponding metrics that
we measure.
Computing Environment. All experiments are performed on a
high-performance computing cluster with Red Hat Enterprise Linux
Server release 7.3 (Maipo). The cluster has 10 GPU workers. Each
worker is equipped with 2 Intel Xeon E5-2643 V4 processor, 256G
main memory, and 2 NVIDIA Tesla P100 graphics cards. In total,
the reported experiments cost more than 5,700 GPU-hours.

4 RESULTS
In this section, we report the results on how heterogeneity impacts
the performance of the basic FedAvg algorithm (§4.1) and advanced
FL algorithms proposed by recent FL-related studies (§4.2).

4.1 Impacts on Basic Algorithm’s Performance
We first measure the impacts of heterogeneity on the performance
(in terms of accuracy and training time/rounds) of the basic Fe-
dAvg algorithm. To obtain a more reliable result, we perform the
measurement under different numbers of local training epochs, i.e.,
different numbers of times that the devices use their local data to
update the weights of their local models (refer to §2). The number
of local training epoch is an important hyper-parameter of FedAvg
used to balance the communication cost between the server and
the devices [20, 28, 30]. We follow previous work [30] to set this
number (denoted as E) to 1, 5, and 20. Also, we use the learning rate
and the batch size recommended by Leaf [8] for each ML model.
Figure 4 illustrates how accuracy changes with training time and
training rounds under different numbers of local training epochs.
We summarize our observations and insights as follows.
• Heterogeneity causes non-trivial accuracy drop in FL. Un-
der heterogeneity-aware settings, the accuracy drops on each dataset
across various local training epoch. Specifically, the accuracy drops
by an average of 2.3%, 0.5%, and 4% on the existing Femnist, Celeba,
and Reddit datasets, respectively. On our M-Type dataset, the accu-
racy drop is more significant, with an average of 9.2%.
• Heterogeneity obviously slows down the training process
of FL in terms of both training time and training rounds.We
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Figure 4: The testing accuracy over time, across different numbers of local training epochs (denoted as E)
.

Dataset Heter. Algo. Average Worst 10% Best 10% Var. ×10−4

Femnist
Unaware FedAvg 82.13% 61.1% 97.2% 213

q-FedAvg 82.66% 64.7% 95.1% 157 (26.3% ↓)

Aware FedAvg 81.22% 61.1% 94.9% 203
q-FedAvg 81.24% 64.7% 95.1% 159 (21.7% ↓)

M-Type
Unaware FedAvg 8.15% 2.33% 13.5% 19

q-FedAvg 7.78% 2.33% 13.0% 17 (10.5% ↓)

Aware FedAvg 7.47% 2.27% 12.3% 16.2
q-FedAvg 7.47% 2.33% 12.4% 15.6 (3.7% ↓)

Table 3: Test accuracy for q-FedAvg and FedAvg. “Var” repre-
sents the variance of accuracy across devices.

first analyze the results in terms of training time. Under each setting
of the local training epoch, the training time increases on each
dataset when heterogeneity is considered. The increase ranges
from 1.15× (Reddit with 𝐸 = 1) to 2.32× (Celeba with 𝐸 = 20), with
an average of 1.74×. In addition, we find that the training time
increases more obviously when the number of local training epochs
increases. When we set 𝐸 to 20, the training time even increases
by around 12 hours on Femnist and Celeba. We next analyze the
results in terms of training rounds. Similar to the training time,
training rounds increase on each dataset when heterogeneity is
considered. The increase ranges from 1.02× (M-Type with 𝐸 = 20)
to 2.64× (Celeba with 𝐸 = 20), with an average of 1.42×.

4.2 Impacts on Advanced Algorithms’
Performance

We now measure the impacts of heterogeneity on advanced FL
algorithms, e.g., model aggregation and gradient compression.

4.2.1 Aggregation Algorithms. The aggregation algorithm is
a key component in FL that determines how to aggregate the
weights or gradients uploaded from multiple devices. Besides Fe-
dAvg, various aggregation algorithms are proposed to improve effi-
ciency [28, 37, 38], ensure fairness [29], preserve privacy [6, 38], etc.
To study how heterogeneity affects the performance of aggregation

algorithms, we focus on two representative ones: q-FedAvg [29]
and FedProx [28], both of which are open-sourced. q-FedAvg is
proposed to address the fairness issues in FL. It minimizes an ag-
gregated reweighted loss so that the devices with higher loss are
given higher relative weights. FedProx is proposed to tackle with
hardware heterogeneity in FL. Compared to FedAvg, FedProx allows
devices to perform various amounts of training work based on
their available system resources, while FedAvg simply drops the
stragglers that fail to upload the model updates. FedProx also adds
a proximal term to the local optimization objective (loss function)
to limit the impact of variable local updates.

We use FedAvg as the baseline for comparison. Due to the dif-
ferent optimization goals of q-FedAvg and FedProx, we make the
comparison separately. For q-FedAvg, the results are shown in Table
3, which illustrates the the same metrics as evaluated by q-FedAvg
(variance of accuracy, worst 10% accuracy, i.e., 10% quantile of ac-
curacy across devices, and best 10% accuracy, i.e., 90% quantile of
accuracy across devices). For FedProx, the results are shown in Fig-
ure 5, which presents the accuracy changes by round. Due to space
limit, we show only the results on two datasets, i.e., one dataset us-
ing the CNN model (Femnist) and another dataset using the LSTM
model (M-Type). Our observations are as follows.
• q-FedAvg that is supposed to address fairness issues is less
effective in ensuring fairness under heterogeneity-aware set-
tings. According to Table 3, under heterogeneity-unaware settings,
the worst 10% accuracy of q-FedAvg is higher than that of FedAvg
and q-FedAvg also obtains lower variance of accuracy on both
datasets. However, under heterogeneity-aware settings, the vari-
ance reduction decreases from 26.3% to 21.7% on Femnist and from
10.5% to 3.7% on M-Type, respectively. It is probably because q-
FedAvg cannot tackle the bias in device selection introduced by
state heterogeneity (see details in §5.3), which makes q-FedAvg less
effective in ensuring fairness.



Dataset Algo. Acc (%)
Heter-unaware

Acc (%)
Heter-aware

Acc Change
(ratio)

Training time
Heter-unaware

Training time
Heter-aware

Compression
Ratio

Femnist

No Compression 84.1 (0.0%) 83.0 (0.0%) 1.2% ↓ 5.56 hours (1.0×) 5.96 hours (1.0×) 100%
Structured Updates 84.2 (0.1% ↑) 83.2 (0.3% ↑) 1.1% ↓ 5.23 hours (0.95×) 5.56 hours (0.93×) 6.7%
GDrop 82.2 (2.2% ↓) 81.5 (1.8% ↓) 0.8% ↓ 7.17 hours (1.3×) 7.98 hours (1.3×) 21.4% ∼ 28.2%
SignSGD 79.0 (6.1% ↓) 76.3 (8.1% ↓) 3.4% ↓ 7.62 hours (1.4×) 20.5 hours (3.4×) 3.1%

M-Type

No Compression 9.86 (0.0%) 9.28% (0.0%) 5.9% ↓ 0.54 hours (1.0×) 1.23 hours (1.0×) 100%
Structured Updates 9.93 (0.6% ↑) 9.08 (2.2% ↓) 8.6% ↓ 0.53 hours (0.98×) 1.59 hours (1.3×) 39.4%
GDrop 8.09 (18.0% ↓) 8.27 (10.9% ↓) 2.2% ↑ 5.34 hours (10.0×) 4.29 hours (3.5×) 0.1% ∼ 2.1%
SignSGD 10.4 (6.0% ↑) 9.55 (2.9% ↑) 8.5% ↓ 1.45 hours (2.7×) 3.93 hours (3.2×) 3.1%

Table 4: The performance of different gradients compression algorithms.Numbers in the brackets indicate the accuracy change
compared to the “No Compression” baseline. “Acc. Change” refers to the accuracy change introduced by heterogeneity. The
compression ratio is the fraction of the size of compressed gradients to the original size.
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Figure 5: The training performance of FedProx and FedAvg
with and without heterogeneity.

• FedProx is less effective in improving the training process
with heterogeneity considered. According to Figure 5, on M-
Type, FedProx only slightly outperforms FedAvg, and the heterogene-
ity causes an accuracy drop of 7.5%. On Femnist, FedProx achieves
the same performance as FedAvg under heterogeneity-unaware
settings and slightly underperforms FedAvg under heterogeneity-
aware settings. The heterogeneity causes an accuracy drop of 1.2%.
Note that FedProx incorporates hardware heterogeneity into its
design while leaving state heterogeneity unsolved. We manually
check the involved devices and find that only 51.3% devices have
attended the training when the model reaches the target accuracy.
As a result, the model may have been dominated by these active
devices and perform badly on other devices.

4.2.2 Gradient Compression Algorithms. The cost of device-
server communication is often reported as a major bottleneck in
FL [21], so we first investigate gradient compression algorithms
that are extensively studied to reduce the communication cost.
Specifically, we focus on three well-adopted gradient compression
algorithms: Structured Updates [24], Gradient Dropping (GDrop) [1],
and SignSGD [4]. For each of them, we tune the hyper-parameters
to achieve the highest accuracy through massive experiments. As a
result, for Structured Updates, we set the max rank of the decompos-
ited matrix to 100; for GDrop, we set the weights dropout threshold
to 0.005; for SignSGD, we set the learning rate to 0.001, the momen-
tum constant to 0, and the weight decay to 0. We use FedAvg with
no compression as the baseline for comparison. Besides accuracy
and training time/rounds, we also use compression ratio (described
in §3.4) as the measurement metrics of these algorithms. We present
the metric values of the three compression algorithms as well as the
baseline under heterogeneity-unaware and heterogeneity-aware

settings in Table 4. Similar to §4.2.1, we report only the results on
Femnist and M-Type. We summarize our findings as follows.
• Heterogeneity introduces a similar accuracy drop to com-
pression algorithms as it does to the basic algorithm.Wemea-
sure the accuracy change introduced by heterogeneity (noted as
Acc. Change in Table 4). We observe that the introduced accuracy
degradation (3.1% on average) is similar to the one (3.2% on average)
that we observe in §4.1. On average, the accuracy drops by 1.7% on
Femnist and 5.3% on M-Type. It is reasonable because heterogeneity
will not affect the compressed gradients.
• Gradient compression algorithms can hardly speed up the
model convergence under heterogeneity-aware settings. Al-
though all these algorithms compress the gradients and reduce the
communication cost significantly (the compression ratio ranges
from 0.1% to 39.4%), the training time is seldom shortened (only
Structured Updates shortens the convergence time to 0.93× at most)
and lengthened in most cases. For example, on M-Type under
heterogeneity-aware environment, the training time is lengthened
by 1.3× to 2.5× for all compression algorithms. The training time
has not been shortened for two reasons. First, we find that com-
munication accounts for only a small portion of the total learning
time compared to on-device training. Most devices can finish the
downloading and uploading in less than 30 seconds for a model
around 50M while spending more time (1-5 minutes with 5 epochs)
on training. Second, the accuracy increases slowly when the gradi-
ents are compressed and the heterogeneity is introduced (refer to
§4.1), thus taking more rounds to reach the target accuracy.

5 ANALYSIS OF IMPACT FACTORS
Given the non-trivial negative impacts of heterogeneity shown in
the previous section, we dive deeper to analyze the main factors
of these impacts. In this section, we focus on FedAvg, considering
its wide usage in practical applications. Specifically, we first break
down heterogeneity into two types, i.e., state heterogeneity and
hardware heterogeneity, to analyze their individual impacts (§5.1).
Then we report two phenomena that are particularly obvious under
heterogeneity-aware settings according to our experiments: (1)
selected devices can fail to upload their model updates for several
reasons, which we call device failure (§5.2); (2) devices that succeed
in uploading still have biased contribution to the global model,
which we call participant bias (§5.3).
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Figure 6: The prevalence of different failure reasons. The optimal deadline (red line) refers to the one that achieves the shortest
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Figure 7: A breakdown of the impacts of different types
of heterogeneity. State heterogeneity causes more perfor-
mance degradation than hardware heterogeneity. “Heter” is
short for heterogeneity.

5.1 Breakdown of Heterogeneity
The preceding results indicate the joint impacts from two types of
heterogeneity. To analyze their individual impact, we disable the
hardware heterogeneity, i.e., all the devices have the same com-
putational and communication capacity (noted as “w/o hardware
heter”). Similarly, we disable the state heterogeneity, i.e., devices
are always available at any time and will not drop out (noted as
“w/o state heter”). We show the accuracy changes with the training
time in Figure 7.
• Both state heterogeneity and hardware heterogeneity slow
down the model convergence. According to Figure 7, state het-
erogeneity leads to comparable increase of training time to hard-
ware heterogeneity, i.e., 1.72× vs. 1.26× on M-Type and 2.34× vs.
2.62× on Femnist. It is reasonable because both drop-out (intro-
duced by state heterogeneity) and low-end devices (introduced by
hardware heterogeneity) affect the training time.
• State heterogeneity is more influential than hardware het-
erogeneity on the model accuracy. As shown in Figure 7, state
heterogeneity leads to a more significant accuracy drop than hard-
ware heterogeneity, i.e., 9.5% vs. 0.4% on M-Type and 1.1% vs. 0.1%
on Femnist. Note that existing FL-related studies usually ignore
state heterogeneity and only a small amount of work [9, 25, 28, 37]
explores hardware heterogeneity (refer to §2). Our results show
that state heterogeneity is more responsible for the model accuracy

drop, which explains why FedProx (it considers hardware hetero-
geneity) is less effective given both types of heterogeneity (refer to
§4.2.1).

5.2 Device Failure
Device failure refers to the phenomenon that a selected device
misses the deadline to upload the model updates in a round. It can
slow down the model convergence and cause a waste of valuable
device resources (computations, energy, etc.). However, device fail-
ure is seldom studied in prior work, probably because it is directly
related to the FL heterogeneity.

Heuristically, we categorize device failure to three possible causes:
(1) Network failure is detected if the device takes excessively long
time (default: 3× the average) to communicate with the server due
to a slow or unreliable network connection. (2) Interruption fail-
ure is detected if the device fails to upload the model updates due to
the user interruption, e.g., the device is uncharged during training.
(3) Training failure refers to the case when the device takes too
much time on training.

To understand device failure, we zoom into the previous experi-
ments under varied round deadlines. We vary the deadline because
we find that the proportion of failed devices is greatly affected by
it. Similar to §5.1, we will also check hardware heterogeneity’s and
state heterogeneity’s influence on device failure. The key questions
we want to answer here are: (1) how often the devices may fail
and what the corresponding reasons for the failure are; (2) and
which type of heterogeneity is the major factor. The results are
illustrated in Figures 6 and 8, from which we make the following
key observations.
• Heterogeneity introduces non-trivial device failure even
when an optimal deadline setting is given. The overall propor-
tion of the failed devices reaches 11.6% on average, with an optimal
deadline setting that achieves the shortest training time. A tight
deadline increases the failure proportion because devices receive
less time to finish their training tasks. We look into three types
of failure and find that: (1) Network failure accounts for a small
fraction of device failure (typically less than 5%) and it is more
stable than other types of failure. (2) Interruption failure is affected
by the deadline but in a moderate way. We further break down
the interruption failure into three sub-categories corresponding to
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Figure 8: Different kinds of heterogeneity’s influence on de-
vice failure.

three restrictions on training [5]. Specifically, results show that the
training process is interrupted by user interaction, battery charged-
off, and network changes with a probability of 46.06%, 36.96%, and
17.78% respectively. (3) Training failure is heavily affected by the
deadline. This type of failure accounts for the majority of the device
failure when the deadline is set too tight. Even with the optimal
deadline setting, this type of failure still occurs because we observe
that some low-end devices with too many local data sometimes fail
to meet the deadline.
•Hardware heterogeneity leads to more device failure than
state heterogeneity. According to Figure 8, hardware heterogene-
ity is more responsible for the device failure. For example, on M-
Type, hardware heterogeneity causes 14% failed devices on average
while state heterogeneity causes only 2.5%. It is probably because
when hardware heterogeneity is considered, there are low-end
devices that suffer longer training time.

5.3 Participant Bias
Participant bias refers to the phenomenon that devices do not par-
ticipate in FL with the same probability. It can lead to different
contributions to the global model, thus making some devices under-
represented. Due to state heterogeneity, devices frequently used
by users are less likely to check in. Due to hardware heterogeneity,
low-end devices are less likely to upload their updates to the central
server.

To measure the participant bias introduced by heterogeneity, we
run the same FL tasks in §4.1. We take the amount of computation
to reflect the participation degree of different devices. Since it is
difficult to compare the computation of different models directly,
we divide them by the amount of computation for a training epoch
(noted as computation loads). Figure 9 illustrates the distribution of
computation loads across devices when the global model reaches
the target accuracy. Similar to §5.1, we also break down to explore
the impacts of different types of heterogeneity. We summary our
findings as follows.
•The computation loads getmore unevenunder heterogeneity-
aware settings. The variance is increased by 2.4× (Reddit) to
10.7× (Femnist). Compared to heterogeneity-unaware environment
where every device participates with an equal probability, in the
heterogeneity-aware environment, the computation loads have a
trend of polarization. On Celeba, the maximum computation load
increases by 1.17×.
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Figure 9: The distribution of computations across devices
during FL training.
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Figure 10: A breakdown of the impacts of different types of
Heterogeneity on participant bias.

• The number of inactive devices increases significantly un-
der heterogeneity-aware settings.Themedian computation load
drops by 28% (Femnist) to 75% (Reddit), indicating that more in-
active devices appear. Compared to the heterogeneity-unaware
environment where top 30% of the devices contribute 54% of the
total computation, in the heterogeneity-aware environment, top
30% of the devices contribute 81% of the total computation, putting
the inactive devices at a disadvantage.
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Figure 11: Percentage of par-
ticipating devices over time.

• Up to 30% devices have
not participated in FL pro-
cesswhen the globalmodel
reaches the target accu-
racy under heterogeneity-
aware settings. To investi-
gate the reasons for these
inactive devices, we inspect
the percentage of participat-
ing devices over time and
demonstrate the result in Fig-
ure 11. We find that when
the model reaches the target accuracy (6-24 hours in our ex-
periments), more than 30% devices have not participated. In the
heterogeneity-unaware environment, the participating devices
accumulate quickly and soon cover the total population in 12
hours. While in heterogeneity-aware environment, the accumu-
lation speed gets much slower and it takes much longer time to
converge (more than 48 hours).



• State heterogeneity ismore responsible for participant bias.
As shown in Figure 10, state heterogeneity is the main reason for
computation bias. It causes the similar computation distribution
as the one in heterogeneity-aware environment. It is probably be-
cause state heterogeneity introduces bias in device selection, i.e.,
although the server selects devices randomly, the available devices
that can be selected highly depend on if the device can meet the
state criteria (refer to §3.2.1).

6 IMPLICATIONS
In this section, we discuss actionable implications for FL algorithm
designers and FL system providers based on our above findings.

6.1 For FL Algorithm Designers
Taking heterogeneity into consideration. As demonstrated in
our study, heterogeneity introduces non-trivial accuracy drop and
training slowdown in FL, as well as affects the effectiveness of
some proposed methods. These findings encourage researchers to
consider heterogeneity, especially state heterogeneity, when they
practice on FL. On the one hand, when designing approaches or
algorithms, researchers should consider circumstances that are
common in heterogeneity-aware environment but do not exist in
heterogeneity-unaware environment. For example, when designing
a device selection approach, researchers should be aware that some
devices can be unavailable at a given time and the server cannot
select as it wants. When designing an aggregation algorithm, re-
searchers should guarantee that the algorithm still works given
inevitable device failure. On the other hand, when evaluating FL al-
gorithms, researchers should add necessary heterogeneity settings
in the experiments according to the targeted scenario. For example,
additional system overhead of the algorithm may further widen
the gap in training time between different devices, which should
be considered during the evaluation.

Reducing device failure by a “proactive alerting” technique.
In §5.2, we find that around 10% of devices fail to upload their model
updates under typical settings. The reasons include excessive train-
ing time, unstable network, and device drop-out caused by state
changes. Existing efforts have explored dynamic deadline [26] and
tolerating partial work [28] to handle the device failure. However,
these algorithms are inadequate to handle the failure caused by
unstable network and drop-out because they are highly dependent
on the device’s states. One may explore a “proactive alerting” tech-
nique by predicting the device’s future states and network condition
based on historical data. The server should assign a low priority to
the devices that are likely to drop out. In this way, the overall device
failure can be reduced and more updates can be aggregated thus
saving the hardware resource and accelerating learning process.

Resolving bias in device selections. In §5.3, we find that the
global model is dominated by some active devices (top 30% of de-
vices can contribute 81% of the total computation). The reason is
that, due to state heterogeneity, devices do not participate in the
learning process with the same probability even when they are
randomly selected, and some (more than 30% in our experiments)
have never participated when the model reaches a local optimum.
To alleviate the bias in device selection, a naive approach is to set a
participation time window (e.g., one day) and omit the devices that

have participated in this window. The “fairness” is guaranteed, but
this may remarkably increase the training time of an FL task, and
the length of the time window should be carefully tuned. What is
more, adjusting the local objective (loss function) or re-weighting
updates can be possible alternatives.

6.2 For FL System Providers
Buildingheterogeneity-aware platforms.Our results show that
a heterogeneity-aware platform is necessary for developers to pre-
cisely understand how their model shall perform in real-world
settings. However, existing platforms [8, 18, 39, 42, 44] fail to in-
corporate heterogeneity into their design. Our work provides a
reference implementation and can be easily integrated into these
FL platforms. We also encourage system providers to collect their
own data that fit different scenarios to further help the FL commu-
nity.

Optimizing on-device training time, instead of optimizing
compression in unmetered (e.g.,WiFi) networks. In §4.2.2, we
find that gradient compression algorithms can hardly speed up
model convergence. The time spent on communication is relatively
small in the WiFi environment, compared to the time spent in train-
ing. As a result, an orthogonal way to accelerate FL is to optimize
the on-device training time. Possible solutions include neural archi-
tecture search (NAS) [16, 48] and using hardware AI accelerators
like mobile GPU and digital signal processor (DSP).

7 DISCUSSION
We next discuss open problems along with generalizability of our
study.
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Figure 13: Decoupling is ver-
ified on M-Type.

Bias of our IMA dataset. The device state traces (§3.2.1) are
collected from our IMA (app-specific) whose users mainly reside in
Southeast Asia and Latin America (geo-specific). The traces may not
be fully representative to other FL scenarios. However, we believe
that our findings are still faithful because (1) FL task is always
app-specific and improving IMA experience is a key scenario of
FL [5, 17, 53]; (2) our traces are large enough to cover the general
state change patterns of smartphones. What is more, the patterns
are consistent with prior work [53] as aforementioned. Furthermore,
new user traces can be seamlessly plugged into our platform where
researchers can reproduce all experiments mentioned in this paper.

Consistency with results reported by real-world FL sys-
tems. Similar to all existing FL platforms [8, 18, 39, 42, 44], our
platform (§3.3) performs FL tasks in a simulation way. We carefully



design the platform to simulate the real-world FL systems by con-
sidering the heterogeneity. However, we acknowledge that a gap
may still exist for unexpected FL glitches, e.g., software failure. We
plan to further validate our platform with real-world deployment.
Nevertheless, the observed patterns from our platform, e.g., device
availability (Figure 12) and failure proportion (Figure 6), are consis-
tent with the results reported from a large-scale FL deployment by
Google [5]. Therefore, we believe that our findings are still valid.

Validity of randomly assigning state traces and training
data to devices. In practice, the heterogeneity is inherently cou-
pled with the non-IID data distribution [21]. In this study, we de-
couple the heterogeneity from the data distribution, i.e., randomly
assigning a state trace to each device, to generalize our traces to
other benchmark datasets. We use M-Type to verify this design be-
cause it shares the same user population with our traces. According
to Figure 13, the gap between the coupled case and the decoupled
case is trivial compared to the gap between the heterogeneity-
unaware and heterogeneity-aware settings. It justifies our design
to decouple heterogeneity from any third-party datasets.

Other types of heterogeneity. In this paper, we focus on the
impacts of hardware and state heterogeneity. In fact, there also exist
other types of heterogeneity in FL. One is data heterogeneity [21, 27]
that resides in the skewed and unbalanced local data distribution
(non-IID data distribution) across devices. Data heterogeneity is one
of the basic assumptions in FL and existing work [9, 23, 30] has con-
ducted in-depth research on it. Since the benchmark datasets used
in our experiments are all non-IID datasets, data heterogeneity is in-
herently considered in our study. Other types of heterogeneity [21],
like heterogeneity on software or platform, are highly relevant to
the implementation of an FL system and hard to generalize. We
plan to leave them for future work.

8 CONCLUSION
We have collected large-scale real-world data and conducted exten-
sive experiments to first anatomize the impacts of heterogeneity.
Results show that (1) heterogeneity causes non-trivial performance
degradation in FL tasks, up to 9.2% accuracy drop and 2.32× con-
vergence slowdown; (2) recent advanced FL algorithms can be com-
promised and rethought with heterogeneity considered; (3) state
heterogeneity, which is usually ignored in existing studies, is more
responsible for the aforementioned performance degradation; (4)
device failure and participant bias are two potential impact factors
of performance degradation. These results suggest that heterogene-
ity should be taken into consideration in further research work and
that optimizations to mitigate the negative impacts of heterogeneity
are promising.
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