
Solving Sequential Text Classification as Board-Game Playing

Chen Qian Fuli Feng Lijie Wen∗

Tsinghua University National University of Singapore Tsinghua University
qc16@mails.tsinghua.edu.cn fulifeng93@gmail.com wenlj@tsinghua.edu.cn

Zhenpeng Chen Li Lin Yanan Zheng Tat-Seng Chua
Peking University Tsinghua University Tsinghua University National University of Singapore
czp@pku.edu.cn veralin1994@gmail.com zhengyanan932@gmail.com chuats@comp.nus.edu.sg

Abstract

Sequential Text Classification (STC) aims to classify a se-
quence of text fragments (e.g., words in a sentence or sen-
tences in a document) into a sequence of labels. In addi-
tion to the intra-fragment text contents, considering the inter-
fragment context dependencies is also important for STC.
Previous sequence labeling approaches largely generate a se-
quence of labels in left-to-right reading order. However, the
need for context information inmaking decisions varies across
different fragments and is not strictly organized in a left-to-
right order. Therefore, it is appealing to label the fragments
that need less consideration of context information first be-
fore labeling the fragments that need more. In this paper, we
propose a novel model that labels a sequence of fragments
in jumping order. Specifically, we devise a dedicated board-
game to develop a correspondence between solving STC and
board-game playing. By defining proper game rules and de-
vising a game state evaluator in which context clues are in-
jected, at each round, each player is effectively pushed to find
the optimal move without position restrictions via considering
the current game state, which corresponds to producing a label
for an unlabeled fragment jumpily with the consideration of
the contexts clues. The final game-end state is viewed as the
optimal label sequence. Extensive results on three represen-
tative datasets show that the proposed approach outperforms
the state-of-the-art methods with statistical significance.

Introduction
Sequential Text Classification (STC) is a fundamental and
critical research problem in natural language processing
(NLP) (Lee and Dernoncourt 2016). The goal of STC is
to classify a sequence of text fragments into a sequence of
labels. STC involves different text granularities (e.g., words
in a sentence or sentences in a document) and serves dual pur-
poses: 1) improving the accuracy of single text classification
by incorporating context information (Lee and Dernoncourt
2016); and 2) mining informative text clues at different levels
of granularity (Qian et al. 2019). STC can benefit a diversity
of NLP tasks, such as the part-of-speech tagging (Ratna-
parkhi 1996), dialog act recognition (Liu, Han, and others
2017), fine-grained sentiment analysis (Wang et al. 2018)

∗Lijie Wen is the corresponding author.
Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Two minutes later, add some sugar, and warm milk, until boiling.
f1 (CD) f2 (AI) f4 (CD)

f1 f2 f3 f4

CD

f1 f2 f3 f4

CD AI

f1 f2 f3 f4

CD AI IO

f1 f2 f3 f4

CD AI IO CD

CD Condition AI Action and Ingredient IO Ingredient Only → Context Flow

CD AI AI CD

f1 f2 f3 f4

CD AI CD

f2f1 f2 f3 f4

CD

f1 f3 f4

AI CD

f1 f2 f3 f4

f3 (AI)

Figure 1: Traditional successive labeling (above) produces
a sequence of labels in left-to-right order, while our pro-
posed jump labeling (below) produces a sequence of labels
in jumping order.

and clause-level aspect classification (Friedrich, Palmer, and
Pinkal 2016).

The key challenge of STC is how to effectively capture and
utilize context information because the label of a fragment
would be better forecasted if we consider the text information
and label information of other fragments (Yang et al. 2016;
Lee and Dernoncourt 2016). Recent studies show that
the use of both the bidirectional language representation
models to encode the contextual text information and se-
quence labeling models to model the contextual label de-
pendencies is a promising solution (Kumar et al. 2018;
Al-Zaidy, Caragea, and Giles 2019). However, in the la-
beling process, almost all of methods impose the Markov
assumption (Rabiner 1989) that the current state is condi-
tionally dependent upon the previous state(s); thus, they la-
bel a sequence in the left-to-right reading order (referred to
as successive labeling). This restricts their ability to capture
more beneficial context clues. The upper part of Figure 1
gives an example that illustrates the processes by which a
linear-chain conditional random field (LCRF) model classi-
fies a sequence of clause-level fragments. We can see that the
LCRF classifies the four fragments in the left-to-right order.
In such a case, it might misclassify the third fragment “and
warm milk” as IO (instead of AI) without considering the
backward clue from the subsequent neighbor “until boiling”.

Must the label generation process be following the left-to-
right reading order? In this paper, we explore a newparadigm
that labels the sequential fragments in jumping order (re-
ferred to as jump labeling). Our intuition is that the need for
context information in making decisions varies across dif-

Board-Game
PlayingLinear CRF

L1 LnL2 L3 Li

Jump Labeling (direction-free)

T3T1 T2 Tn

EncodeEncode Encode Encode

EmbedEmbed Embed Embed

L1 LnL2 L3 Li

Successive Labeling (direction-aware)

T3

EmbedEmbed

T2

Embed

Tn

EncodeEncode Encode Encode

Embed

T1

Figure 2: Mainstream STC framework (left) and our pro-
posed model GuGo (right).

ferent fragments. The order of fragments according to the
need for context information needs not be strictly organized
in the left-to-right order. Take the bottom part of Figure 1
as an example, the fourth fragment that includes the word
“until” could be easily classified as CD in advance without
considering any context information. After the fourth frag-
ment is labeled, the third fragment (“and warm milk”) could
be correctly classified as AI by considering the additional
context - “until boiling” and CD. Therefore, a potential so-
lution is to pre-predict the fragments that need less advance
consideration of context information to provide more context
clues for those fragments that needmore. As such, the perfor-
mance of jump labeling largely relies on the order of labeling
sequential fragments (referred to as labeling order). Con-
sidering that the number of possible labeling orders grows
exponentially with the number of fragments, i.e., the state
space explosion problem (Groote, Kouters, and Osaiweran
2015), it is challenging to perform jump labeling properly
and effectively.

In this paper, we propose a game-based jump labeling
model (GuGo) equipped with an efficient jump labeling
mechanism to solve the STC task. The key idea is to map
the act of classifying fragments to the act of playing a board-
game. By defining proper game rules and devising a game
state evaluator inwhich the intra-fragment and inter-fragment
context clues are fully injected as the game state evaluation
factors, the game will push each player to play the optimal
move (i.e., produce a label for a certain fragment) at each
round with the best usage of the current game state (i.e., the
injected context clues). The final game-end state is viewed as
the optimal label sequence of the STC task. Transforming the
STC problem into playing a board-game provides our model
with three advantages: 1) the way in which players place
pieces without position restrictions naturally corresponds to
producing labels for unlabeled fragments jumpily in STC;
2) the way in which players evaluate a candidate move from
global checkerboard layouts naturally corresponds to bidirec-
tional context incorporation in STC; and 3) utilizing efficient
game tree search effectively avoids the state space explosion
problem.

Figure 2 shows the architectures of the mainstream STC
framework and the proposed model. In our model, an em-
bedding layer is first used to learn a semantic representation
for each fragment. These representations are then fed into an

encoding layer that implicitly encodes contextual text infor-
mation. Finally, a game-playing layer performs jump label-
ing by explicitly taking into consideration the context clues.
In summary, we make the following main contributions:
• We propose the idea of jump labeling and devise a new
model equipped with the jump labeling mechanism for
STC. As compared with successive labeling, jump label-
ing can choose a better labeling order, providing various
degrees of context information for different fragments. To
our knowledge, we are the first study that performs the
(direction-free) jump labeling paradigm.
• We propose a new operator that performs jump labeling in
a board-game-playing manner. By utilizing the efficient
game tree search and the proposed speedup strategies, our
approach can effectively avoid the state space (i.e., the
labeling order) explosion problem.
• The experimental results on three representative datasets
show that our proposed approach significantly outper-
forms the state-of-the-art methods, validating the ef-
fectiveness of the proposed method and the jump la-
beling mechanism. The code is publicly available at
https://github.com/qianc62/GuGo.

Related Work
STC has been studied extensively within various NLP tasks
with different text granularities, including part-of-speech
(POS) tagging (Ratnaparkhi 1996), named entity recogni-
tion (NER) (Zhou and Su 2002), semantic roles labeling
(SRL) (Gildea and Jurafsky 2002) and dialogue act tagging
(Ji and Bilmes 2005). Some feature-based methods classify
each fragment independently, i.e., each fragment is viewed
as an individual text (Blatat, Mrakova, and Popelinsky 2004;
Yeung and Lee 2015). However, this strategy relies on a set
of handcrafted features and/or does not take into account the
inherent dependencies across fragments.

To remedy this, STC solutionswere explored in deep learn-
ing frameworks to incorporate contextual text information.
For example, (Santos and Zadrozny 2014) proposed a deep
neural network that learns character-level representation to
perform POS tagging. (Kalchbrenner and Blunsom 2013)
investigated the possibility of using CNN for dialogue act
classification. In addition, (Lee and Dernoncourt 2016) pre-
sented a model based on RNN+CNN to incorporate contexts
for short text classification.

To further incorporate the contextual label information,
linear statistical methods were widely studied, including
the hidden Markov models (HMM) (Stolcke et al. 2000;
Venkataraman et al. 2003), maximum entropy models
(MEM) (Ratnaparkhi 1996) and conditional random fields
(CRF) (Kim, Cavedon, and Baldwin 2010; Quarteroni,
Ivanov, and Riccardi 2011). More recently, some studies
combined deep-learning-based representation models and
the linear statistical models to incorporate both the contex-
tual text and label information. For example, (Al-Zaidy,
Caragea, and Giles 2019) combined BiLSTM+CRF model
for keyphrase extraction and (Ye and Ling 2018) for se-
quence labeling. (Ma and Hovy 2016) introduced a network
that benefits from both the word-level and character-level

representations by using the BiLSTM+CNN+CRF model
for POS tagging and NER. (Wu et al. 2019) introduced a
CNN+LSTM+CRF architecture to capture local and long-
distance contexts.

As combining bidirectional representation models and the
linear statistical models together, especially BiLSTM+CRF,
can effectively capture context information, the STC task has
gradually come to be regarded as the sequence labeling prob-
lem. However, almost all of sequence labeling techniques are
limited to left-to-right order. In this paper, we eliminate the
traditional successive labeling paradigm via jump labeling.

Methodology
Wefirst formulate the STC problem: given a sequence of text
fragments F = 〈F1,F2, · · · ,Fn〉 and a predefined category
set C, the goal of STC is to predict a sequence of labels
L = 〈L1, L2, · · · , Ln〉 such that each Li ∈ C (1 ≤ i ≤ n)
describes the category of Fi . Note that a fragment Fi ∈ F

can be any text content, e.g., a sentence, a clause or a word.
We propose a game-based jump labeling model (GuGo)

to predict sequential fragments in a jumping manner. The
high-level overview of GuGo is shown in Figure 2. GuGo
consists of three main phases: 1) given a sequence of frag-
ments, a pretrained language model, BERT (Devlin et al.
2019), is first used to learn fragment embeddings by pooling
word embeddings; 2) these representations are then fed into a
BiLSTM encoding layer (Melamud, Goldberger, and Dagan
2016) to implicitly encode the contextual text information
and an MLP to project each fragment embedding to a pre-
liminary probability; 3) the encoded vectors are then passed
to the game-playing layer for jump labeling.

Specifically, the game-playing layer: 1) maps each en-
coded vector (one vector per fragment) into a prior proba-
bility over categories via a pretrained multilayer perceptron
(MLP) (Trischler et al. 2016); and 2) utilizes these proba-
bilities as factors to evaluate game states and produce the
refined predictions (L̂) jumpily. In the following, we will
demonstrate how we perform jump labeling to shed light on
its rationale. First, we compare the processes of labeling se-
quential fragments to the processes of playing a board-game
(for jump labeling). Then, we design a new board-game
(for problem transformation). Finally, we utilize an efficient
game search to play the game (to find the optimal label se-
quence).

Problem Mapping
First, wemap the processes of STC to the processes of board-
game playing for jump labeling. Typically, there are three
main steps in playing the board-game: 1) the game starts
when all squares are empty; 2) players place pieces on empty
squares iteratively; and 3) the game ends when all squares are
occupied. As in the game-playing process, there are three
main phases in sequence labeling: 1) the to-be-predicted
fragments are initialized with unlabeled states; 2) the labeler
fills labels for unlabeled fragments iteratively; and 3) the
process terminates when all fragments are labeled.

Based on this observation, we map n fragments of a se-
quence to n squares of a checkerboard, to establish the one-

23
1 3

23
1

2
1

2

⟨C1 C3 C3 C2⟩⟨C1 ‒ C3 C2⟩⟨C1 ‒ ‒ C2⟩⟨‒ ‒ ‒ C2⟩⟨‒ ‒ ‒ ‒⟩
Board 321 Pieces ⟨× × × ×⟩

Sequential
LabelsSquares Empty

State‒ LabelsCx Position
Mapping: : : : : : :

Figure 3: Graphical illustration of the process mapping be-
tween board-game playing and sequence labeling.

to-one mapping between a sequence and a checkerboard (see
Figure 3). In thisway, labeling a sequence can be transformed
into playing a board game, and placing pieces without po-
sition restrictions naturally corresponds to producing labels
jumpily, i.e., jump labeling.

Game Design
Given a sequence of text fragments F = 〈F1,F2, · · · ,Fn〉 and
a category set C, we design a new board-game for problem
transformation. The key of such board-game is to design
appropriate game rules that make the final game-end state
correspond to the optimal solution of STC.

Game Elements. There is a checkerboard with n squares
arranged in an d

√
ne × d

√
ne grid1, |C| kinds of pieces and

two players2. The ith fragment in a sequence is mapped to
a square coordinate (j, k) of a checkerboard using ψn(i) =
(j, k) = (d i√

n
e, i − (d i√

n
e − 1)d

√
ne), i.e., map n fragments to

n squares of the checkerboard in row-major order. It should
be noted that although we employ the row-major order to
facilitate the presentation and illustration, any one-to-one
mapping (or any board shape) is acceptable.

Game Rules. Given these game elements, we define three
main game rules. 1) The game starts when all squares are
empty and ends when all are occupied. 2) Each player begins
with an unlimited amount of |C| kinds of pieces. At each
round, each player places one piece on an unoccupied square
(this action is also referred to asmaking a move), after which
the players take alternate turn. 3) After each move, the
player can earn a bonus that is dependent on the quality
of that move. The quality of a move is defined as how
well the current game state is considered, which involves the
intra-fragment features and the inter-fragment dependencies
(detailed below). The goal of each player is to maximize
his/her total bonuses in the whole game. The final game-end
state is viewed as the labeling output of the STC task.

The reason why we set two players for the game is to
conform with the Minimax principle used in game theory
(Straffin 1993) that each player has to logically analyze and
make his/her best move at each round, given that another
player is logically analyzing the best way to achieve his/her

1dxe rounds x up to an integer, i.e., the ceiling operation. When
n is not a square number, i.e., d

√
ne × d

√
ne > n, we can easily

remove the last d
√

ne × d
√

ne − n redundant squares.
2Actually, the game can be designed with multiple versions to

solve jump labeling, including 1 player, 2 players and even n (#piece
types) players. Under different versions, the game rules should be
correspondingly changed to achieve the desired labeling sequence.

Select Expand Evaluate Backpropagate Play

7
1

2

3
1

4

2

3
1

4

5 2

3
1

4
5

2

3
1

2

3
1

4

5 2

3
1

4
5

2

3
1

4

2

3
1

4

2

3
1

2

3
1

4

2

3
1

4

2

3
1

2

3
1

4

2

3
1

4

2

3
1

4

5
6

W = W + ⇠(·)

5 2
6
34

e(·)

t(·)

N = 0
W = 0
Q = 0

u1 2 A(u)

uT

arg max ✏(u1|u)

P = 1
|A(ut)|

7
8

9

9
8

8
5 2

1 6
34 7

9

321
2

3
1

4
Game State

Checkerboard

Pieces

Emission
Feature

Transition
Feature

u

N = N + 1

Q = W/N

Figure 4: The architecture of searching for the best move. Each simulation traverses the tree by selecting the best potential
candidate move. Then, the leaf node is expanded and evaluated before the edge statistics are updated in a backward fashion.
Once the search is complete, the best move is selected to play.

ends. Besides, by designing the game state evaluator inwhich
intra-fragment features and inter-fragment dependencies are
fully injected as the evaluation factors, two players will fight
for moves with higher chance to earn more bonuses by ap-
propriately utilizing the current game state. For STC, the
game rules would push each player to find the optimal label
for a certain unlabeled fragment at each round with the best
usage of both intra-fragment and inter-fragment information.

Playing the Game
Inspired by the remarkable success of Monte Carlo Tree
Search (MCTS) in board-games (Silver et al. 2017), we em-
ploy MCTS to find the best move to obtain the most bonus
for a player at each round. Technically, each node in the
MCTS tree represents a specific game state that consists of
all square status (could be empty or a specific type of piece).
At each iteration, given the game state u of current round,
MCTS searches for the best subsequent move from u. Typ-
ically, MCTS constructs a search tree evaluated by random
sampling of the game state space (i.e., by random simulat-
ing the future game states). Figure 4 shows one iteration of
executing the five actions iteratively:
• Select. Given a game state u, it selects child nodes that
represent states leading to better overall outcome.
• Expand. If a selected node u1 (the subscript denotes
the according timestep) is not a terminal node, i.e. there
exists at least one unoccupied square in u1, it runs random
simulations from u1 to a terminal3 node uT .
• Evaluate. For each expansion, MCTS evaluates the ter-
minal node uT as the simulation result.
• Backpropagate. MCTS uses the simulation result to up-
date statistics in the edges on the path from uT to u1.

3Different from the final game-end node (after playing), the
terminal node denotes the simulated game-end state (in playing).

• Play. MCTS estimates the quality of each child node of
u using simulated statistics and then selects the best child
node to make the move.
Specifically, in the simulation process, to record the sta-

tistical information, each node (u) in the tree contains edges
(u, v) for all legal moves v ∈ A(u). Each edge (u, v) stores
a set of statistics {N(u, v),W(u, v),Q(u, v),P(u, v)} where
N(u, v) is the number of simulated times,W(u, v) is the overall
value of simulations, Q(u, v) is the mean value of simulations
and P(u, v) denotes the probability to be selected.

Select Each simulation begins at a child node u1 and fin-
ishes when the random simulation reaches a terminal node
uT . At each of these timesteps, t < T , the best potential child
ut+1 from ut is selected according to its statistics:

ut+1 = arg max
v∈A(ut)

(
Q(ut, v) + cP(ut, v)

√∑
v′∈A(ut) N(ut, v

′)

1 + N(ut, v)
)
(1)

where c is a constant determining the level of exploration.
From the perspective of STC, the select phase helps to se-
lect an unlabeled fragment and produce the most promising
candidate label for it at each round.

Expand A node ut is randomly expanded, and each edge
(ut,ut+1) is initialized to N(ut,ut+1) = 0, W(ut,ut+1) = 0,
Q(ut,ut+1) = 0 and P(ut,ut+1) =

1
A(ut)

. For STC, the expand
phase simulates the future labeling of unlabeled fragments.

Evaluate Evaluating the terminal game state uT aims to of-
fer bonus for a player. For a good game, a proper bonus eval-
uation would push each player to find the optimal label for a
certain unlabeled fragment at each round. In other words, the
value of bonus should reflect whether the terminal game state
(i.e., a labeling result) properly considers the intra-fragment
and inter-fragment information. Here we mine two kinds
of linguistic clues to evaluate the usage of intra-fragment
and inter-fragment information, respectively. Specifically,

… “until” …

TIME

0.90

TOOL INGREDIENT TIMEACTION
0.85

ACTION INGREDIENT TIME
0.90

WHEN WHAT0.55

WHERE0.40WHEN

Figure 5: Examples of linguistic clues, including an emission
feature, two first-order transition features and two high-order
transition features. The observed probabilities are used as
the confidences of the clues.

for the intra-fragment information, we mine emission fea-
tures which quantify the probability of a label conditioned
on the text content of a fragment. Note that triggering an
emission feature means that the corresponding fragment can
be easily classified. For the inter-fragment information, we
mine the k th-order transition features which quantify the
probability of a label conditioned on k labels (see Figure 5).
Note that triggering a transition feature means the game state
successfully captures a context dependency pattern. Apart
from manually defined features, we additionally employ the
chi-square test to obtain the significance of a linguistic clue
in the training data (Sharma et al. 2018). We retain these
distinguishing linguistic clues whose testing values exceed a
threshold and use their corresponding observed probabilities
as the confidences of the clues.

By injecting the linguistic clues into the game state evalu-
ator, after many random expansions, each terminal node uL

can be quantitatively evaluated:

ξ(uT ,F) =
n∑

m=1

|e |∑
i=1

ei(uT (ψn(m))|Fm)+

|F |−1∑
k=1

|tk |∑
j=1

tkj (uT) (2)

where e(·) and tk(·) denote the emission features and the
k th-order transition features, respectively; u(ψn(i)) denotes
the type of the piece located at the position ψn(i) in u. In
summary, the evaluation value denotes the cumulative con-
fidence of all the triggered features, returning a larger value
if more features are triggered.

Backpropagate The evaluated value of each terminal node
uT is then backpropagated. The edge statistics are up-
dated in a backward pass from uT to u1 for the next deci-
sion. The simulation counts are incremented, N(ut,ut+1) =
N(ut,ut+1)+1, and the simulated value is updated to themean
value, W(ut,ut+1) = W(ut,ut+1) + ξ(uT ,F), Q(ut,ut+1) =
W(ut,ut+1)/N(ut,ut+1). For STC, the backpropagate phase
updates statistics for the decision at the next iteration.

Play At each round, MCTS selects the best child of u that
leads to the “most victories” through many simulations. The
overall confidence of a node is proportional to the product of
its exponentiated simulated value and the prior probability
of each placed piece:

ε(u1 |u) =
Q(u,u1)

1
τ∑

v∈A(u)Q(u, v)
1
τ

·

n∏
i=1

π
(
u1(ψn(i))

)
(3)

where τ controls the level of exploration and π(a) is the prior
probability of the piece a when given Ti obtained via the

pretrained MLP module. For STC, the play phase produces
the most confident label for an unlabeled fragment.

At each round, the search tree is reused at subsequent
timesteps: the child node corresponding to the played move
becomes the new root node, and the subtree below this child
is retained along with all its statistics, while the remainder
of the tree is discarded. Players iteratively place pieces until
the game ends. At that point, the optimal sequential labels
can be derived accordingly from the final game-end state u∗:

L̂ = 〈u∗(ψn(1)),u∗(ψn(2)), · · · ,u∗(ψn(n))〉 (4)

Heuristic Speedup Strategies
We now suggest some heuristic speedup strategies to further
shorten the search time of the game without much perfor-
mance penalty. 1) In the select phase, we only select one
candidate move for extension even if the maximum (Equa-
tion 1) corresponds to multiple candidates. 2) In the expand
phase, we only generate the child nodes whose neighbors
contain at least one occupied square, to avoid unnecessary
space search. We also expand a state to at most four deeper
layers (i.e., an observable game state can be evaluated in-
stead of expanding to a terminal state). 3) In the evaluate
phase, we use memory-augmented MCTS (Xiao, Mei, and
Muller 2018) to reduce the unneeded recalculations. 4) In
chi-square testing, we randomly use 10% of the training data
to test whether a linguistic clue is significant. If so, we retest
it on all the training data.

Evaluation
We conduct extensive experiments to answer the following
three research questions:

RQ1 Does our proposed approach, GuGo, outperform the
currently state-of-the-art STC solutions?

RQ2 How do the different labeling orders and the speedup
strategies affect performance?

RQ3 What are the main differences between jump labeling
and successive labeling apart from the labeling order?

Datasets We use three real-world datasets of maintenance
manuals (MAM), cooking recipes (COR) and customer re-
views (WeBis) to test the methods in different domains.

• MAM (Qian et al. 2019) contains manuals from a wiki-
based site4 to teach people to fix various devices such as
phones, cameras, cars, etc. For each manual, MAM con-
tains the word-level labels (Performer, Action, Device
and Other) that describe the semantic role of each word.

• COR (Feng, Zhuo, and Kambhampati 2018) is a collec-
tion of user-generated recipes with textual descriptions of
cooking procedures from a food-focused social network5.
The clause-level labels (e.g., repairing tools, actions and
empirical suggestions) are provided.

4https://www.ifixit.com
5https://www.recipe.com

Table 1: Statistics of the datasets used. #D, #T and #C
denote the number of text sequences, fragments and cate-
gories, respectively. @W/T denotes the the average number
of words.
Dataset Domain Granularity #D #T #C @W/T
MAM Maintenance Word 2,636 20,605 4 1.00
COR Cooking Clause 1,005 2,636 5 5.41
WeBis User Review Sentence 3,097 10,660 3 22.84

• WeBis (Chen et al. 2019) contains various consumer re-
views6 of movies, books, restaurants, etc. It is collected
from Amazon, Yelp, YouTube and Google News. For ev-
ery sentence in a review, WeBis has a sentiment polarity
label (i.e., Positive, Neutral and Negative).

The statistics of the datasets are summarized in Table 1.
These datasets are representative since they cover: 1) dif-
ferent domains; 2) various degrees of context dependencies
(finer-grained fragments tend to need more context informa-
tion); and 3) short and long samples, in which the average
length varies from 1.00 (i.e., word-level fragments) to 22.84
(i.e., sentence-level fragments). For comparison, all datasets
are divided into train/dev/test sets using an 8:1:1 ratio.

Metrics We follow Kim et al. (2019) and employ two har-
monicmetrics,Macro-F1 (MaF1) andMicro-F1 (MiF1) to re-
port the performance of STC.MaF1 is the average F1-score of
each category and is strongly influenced by the performance
of categories with fewer documents. MiF1 is the F1-score
over the whole dataset and depends on the performance of
categories with a large number of documents.

Baselines We choose three-group representative baselines:
• Single Text Classifiers. This group of methods classi-
fies each fragment separately. It includes a CNN based
text classifier (WordCNN) that utilizes word-level con-
volution filters and multiscale region sizes (Zhang and
Wallace 2017); and the state-of-the-art short text classifier
(RWMDCC) that uses the semantic centroid distance in
word mover’s space (Li, Ouyang, and Li 2019).
• Sequential Text Classifiers. This group of methods
solves STC with consideration of context information. It
includes a parsing-based classifier (PARPOS) that uses
the parse tree patterns and POS tags as text features
(Yeung and Lee 2015); a two-layer RNN+CNN network
(TLRCN) that incorporates context information (Lee and
Dernoncourt 2016); and the state-of-the-art STC solution
(CNNDAC) that uses a hierarchical CNN+RNNmodel for
dialog act classification (Liu, Han, and others 2017).
• General Sequence Labelers. This group of methods is
designed for general sequence labeling. It includes an
attention-based neural network (SASLNN) that can effec-
tively capture the important semantic roles in a sequence
(Tan et al. 2018); and the state-of-the-art general sequence
labeler (BiLCRF) that employs a CRF layer to label gen-
eral sequential data (Al-Zaidy, Caragea, and Giles 2019).

6https://webis.de

Table 2: Experimental results of all methods on the three
datasets. N and 4 indicate the best and the second-best
performing baselines, respectively. The best performance
among all methods is highlighted in boldface. ∗ means
GuGo achieves significant improvement over the baseline
(p ≤ 0.05).

Methods
MAM COR WeBis

MaF1 MiF1 MaF1 MiF1 MaF1 MiF1

WordCNN 0.476∗ 0.531∗ 0.431∗ 0.561∗ 0.626∗ 0.623∗
RWMDCC 0.430∗ 0.560∗ 0.457∗ 0.598∗ 0.703∗ 0.704∗
PARPOS 0.529∗ 0.689∗ 0.622∗ 0.726∗ 0.786∗ 0.786∗
TLRCN 0.6764∗ 0.769∗ 0.752∗ 0.832∗ 0.767∗ 0.767∗
CNNDAC 0.694N∗ 0.790N∗ 0.7934∗ 0.9034∗ 0.802∗ 0.802∗
SASLNN 0.570∗ 0.654∗ 0.697∗ 0.775∗ 0.8034∗ 0.8034∗
BiLCRF 0.670∗ 0.7744∗ 0.852N∗ 0.920N∗ 0.812N∗ 0.813N∗
GuGo 0.764 0.832 0.886 0.952 0.835 0.834

Implementation Details We use BERT (Devlin et al.
2019) as the language model and perform average pooling to
obtain the fragment embeddings with dimension of 768. For
the encoding layer, we also set its output dimension as 768.
In the game-playing layer, we set a hard threshold (α=0.05) in
chi-squared testing to select emission and transition features
for game bonus evaluation (Equation 2). In order to obtain
the prior probability of each fragment (Equation 3), we use
a one-hidden-layer MLP (the size of hidden layer is 200)
with ReLU as an activation function and the Adam optimizer
(Kingma and Ba 2015) with learning rate 10−4. The training
process includes two main steps: 1) We pretrain the encod-
ing layer and the MLP module with at most 5,000 epochs, a
mini-batch size of 32 and the cross entropy as the loss func-
tion. Note that the parameters of the BERT language model
are not updated; and 2) We use emission features, transi-
tion features and the prior probabilities obtained from the
pretrained parameters to evaluate the game states for game
playing. If not otherwise specified, all our proposed speedup
strategies are employed. We implement GuGo via Python
3.7.3 and Pytorch 1.0.1. All of our experiments are run on
a machine equipped with an Intel Core i7 processor, 32 GB
of RAM, and an NVIDIA GeForce-GTX-1080-Ti GPU. We
report the average performance over 5 different initiations
and the results of two-tailed paired t-test (Dror et al. 2018)
when necessary.

Performance Comparison (RQ1)
Table 2 presents the performance of the proposed GuGo and
the compared baselines on the three datasets w.r.t. MaF1 and
MiF1. From the table, we have several key observations:
• In all cases, our proposed model GuGo significantly out-
performs all baselines. In particular, GuGo, compared
with the strongest baseline, improves MaF1 by 7.0% and
MiF1 4.2% on MAM, and MaF1 by 3.4% and MiF1 by
3.2% on COR. These results validate the effectiveness of
the proposed method.
• Specifically, GuGo outperformsBiLCRF that achieves rel-
atively satisfying performance with first-order transition
features considered in a left-to-right manner. The im-

provements could be attributed to a better usage of context
information, indicating the use of jump labeling.
• GuGo achieves smaller performance improvements on
the WeBis dataset as compared to the MAM and COR
datasets. This is reasonable since the fragments in WeBis
are at sentence-levelwhichmight require less context clues
than the word-level (MAM) and clause-level (COR) sce-
narios (Lee and Dernoncourt 2016). Nevertheless, GuGo
still outperforms all methods on WeBis, improving MaF1
and MiF1 by 2.3% and 2.1%, respectively. This is promis-
ing since the weak-dependent scenarios face the context
deficiency problem (Lee and Dernoncourt 2016), which
could harm the performance if the context information is
not properly incorporated. The results verify that GuGo
can facilitate STC regardless of the degrees of text granu-
larities (or context dependencies).
• Among the baselines, the single text classifiers (Word-
CNN, RWMDCC) achieve worse performance than the
other methods, which show the necessity of considering
the context information among fragments. The sequential
text classifiers (PARPOS, TLRCN, CNNDAC) perform
slightly better than the single text classifiers, suggesting
that the context encoding could help to capture inherent
clues among fragments. However, the sequential text clas-
sifiers perform worse than BiLCRF in most cases, which
shows the merit of explicitly considering context informa-
tion in the labeling process.
Since GuGo achieves state-of-the-art results in terms of

F1-score and consistent performance across all datasets with
varying text granularities, we conclude that the designed
board-game and the jump labelingmechanism provide GuGo
with high accuracy and good generalizability.

Jump Labeling vs. Successive Labeling (RQ2)
We investigate the effectiveness of jump labeling by com-
paring GuGo with its two variants that are imposed with
the left-to-right (L2R) and right-to-left (R2L) direction
restrictions for game playing. Such restrictions downgrade
jump labeling to successive labeling, i.e., the variants that
label the fragments in left-to-right and right-to-left order, re-
spectively. The results in Table 3 show the performance of
GuGo, GuGo	L2R, and GuGo	R2L on the three datasets.
We can observe that downgrading the jump labeling to

successive labeling causes severe performance drops. For
example, as compared to GuGo, GuGo	L2R decreases the
MaF1 and MiF1 by 4.3% and 2.5%, respectively, on COR.
GuGo	R2L behaves even worse and decreases the MaF1
and MiF1 by 11.8% and 10.4%, respectively, on COR. The
main reasons include that 1) the long-history and the future-
context information are not fully captured under successive
labeling; 2) GuGo can predict the fragments that need less
consideration of context information in advance, which en-
ables it to provide bidirectional clues for those fragments that
need more consideration of context information. Thus, jump
labeling is beneficial to help sequence labeler choose a better
labeling order.

Moreover, we investigate the computation overhead of
jump labeling and the effects of the proposed speedup strate-

Table 3: Performance comparison between GuGo and its
two successive labeling variants. The best performance is
highlighted in boldface. The statistical significance (two-
tailed paired t-test) is indicated with ∗ (p ≤ 0.05).

Variants
MAM COR WeBis

MaF1 MiF1 MaF1 MiF1 MaF1 MiF1

GuGo 0.764 0.832 0.886 0.952 0.835 0.834
GuGo	L2R 0.712∗ 0.794∗ 0.843∗ 0.927∗ 0.814∗ 0.814∗
GuGo	R2L 0.669∗ 0.761∗ 0.768∗ 0.848∗ 0.781∗ 0.782∗

gies. Figure 6 shows the average running time curves. We
can conclude the following: 1) Vanilla jump labeling tends to
spendmuchmore time than successive labeling, themain rea-
son is discussed in the following section. 2) The model with
speedup strategies is much faster than that without speedup
strategies. The speedup strategies are able to reduce the
runtime by approximately three-quarter on average. As a
result, it is nearly double or triple the time of successive la-
beling, instead of exponentially. This demonstrates that our
proposed speedup strategies effectively shrinks the search
spaces and avoids the state space explosion problem to some
extent. 3) Although employing the proposed speedup strate-
gies shrinks many search spaces, it does not cause much
performance degradation. Therefore, we suggest applying
the proposed speedup strategies in real-world applications
where a fast response is required.

GuGo without Speedup Strategies
GuGo with Speedup Strategies
GuGo ⟲ L2R

GuGo without Speedup Strategies
GuGo with Speedup Strategies
GuGo ⟲ L2R

GuGo without Speedup Strategies
GuGo with Speedup Strategies
GuGo ⟲ L2R

10

5.0

7.5

2.5

min 16.0

8.0

12.0

4.0

min

0% 50% 100%75%25%

min20.0

10.0

15.0

5.0

0.0 0.00% 50% 100%75%25% 0% 50% 100%75%25%0.0

MAM COR WeBis

MiF1MiF1MiF1

Figure 6: Time costs with/without using the speedup strate-
gies. The point (x, y) on these curves indicates that themodel
has duration y when it first achieves the MiF1 point x.

Discussion (RQ3)
To answer RQ3, we conduct a case study for intuitive anal-
ysis. A representative cooking recipe from COR is chosen,
and the processes of jump labeling are shown in Figure 7.
The example intuitively illustrates that jump labeling via
board-game playing provides another two advantages:

• GuGo searches four unlabeled fragments and selects the
most confident label T for the fifth fragment at Step 1.
It then searches three unlabeled fragments and selects the
second-most confident label C for the first fragment at Step
2. Generally, in board-game playing, when deciding the
next move, a player simulates playing moves on all unoc-
cupied squares and selects the best one to play for more
bonuses. The action naturally corresponds to simulating
predicting candidate labels for all unlabeled fragments in
STC, i.e., the next prediction takes into consideration all
possible unlabeled fragments, rather than only the succes-
sive one. In thisway, in contrastwith traditional successive
labeling that searches only one successive unlabeled frag-

In a large bowl, whisk together seafood, spaghetti,
and dry macaroni, until the flavors have blended.

⟨‒ ‒ ‒ ‒ T⟩ ⟨C ‒ ‒ ‒ T⟩ ⟨C ‒ I ‒ T⟩ ⟨C A I ‒ T⟩

T
C IA
IT

C IA

⟨C A I I T⟩

T T
C

T
C I

A Action+IngredientAC ContainerC I Ingredient OnlyI T CONDITIONT

Triggered Emission Features Triggered Transition Features

Step 1. Step 2. Step 3. Step 4. Step 5.

Figure 7: Case study: A representative example to explain
why jump labeling via board-game playing is helpful.

ment at each step, GuGo enlarges the search spaces to all
unlabeled fragments at each step.
• Owing to jump labeling, the fourth fragment (Step 5) takes
the long-distance dependency from the second fragment
and the backward dependency from the fifth fragment into
consideration. Thus, GuGo is more confident in classi-
fying the fourth fragment into I (“dry” as an adjective)
instead of A (“dry” as a verb). Generally, successive label-
ing usually imposes the Markov assumption, which would
leave out those right-to-left clues and those left-to-right
clues beyond the assumptive scope. In contrast, jump la-
beling initially prefers to predict the fragments that need
less advance consideration of context information, since
there are no labeled fragments to consider at the beginning.
However, it asymptotically prefers to predict the fragments
that need more contexts, since there are enough labeled
fragments as additional context clues, which makes it pos-
sible to provide bidirectional and farther context clues for
the latter ones.

Conclusion and Future Work
We originally proposed the direction-free jump labeling
mechanism. In addition, we designed a new board-game
by defining proper game rules and suggesting some heuristic
speedup strategies. The proposed approach obtains satisfy-
ing results in terms of the F1-score, with better generalizabil-
ity and effectiveness. We draw two main conclusions. First,
compared with traditional successive labeling, jump label-
ing is more powerful by: a) enlarging the search spaces to
choose a better labeling order, and b) equipping the ability to
provide various degrees of context information for different
fragments. Second, our designed game and speedup strate-
gies are effective for problem transformation, enabling it to
utilize game search to find the optimal labeling order with
the avoidance of state space explosion problem.

In the future, we would like to formally prove that succes-
sive labeling is a linearized variant of jump labeling. We are
also interested in applying jump labeling to classify sequen-
tial video frames and general sequential data.

Acknowledgments
We thank the three anonymous reviewers for their valuable
suggestions. The work was supported by the National Nature

Science Foundation of China (No.71690231, No.61472207),
Tsinghua BNRist and NExT++ research supported by the
National Research Foundation, Prime Minister’s Office, Sin-
gapore under its IRC@SG Funding Initiative.

References
Al-Zaidy, R. A.; Caragea, C.; and Giles, C. L. 2019. Bi-
LSTM-CRF Sequence Labeling for Keyphrase Extraction
from Scholarly Documents. In the World Wide Web Confer-
ence (WWW).
Blatat, J.; Mrakova, E.; and Popelinsky, L. 2004. Frag-
ments and Text Categorization. In Annual Conference of the
Association for Computational Linguistics (ACL).
Chen, Z.; Shen, S.; Hu, Z.; et al. 2019. Emoji-Powered
Representation Learning for Cross-Lingual Sentiment Clas-
sification. In the World Wide Web Conference (WWW).
Devlin, J.; Chang, M.-W.; Lee, K.; et al. 2019. BERT: Pre-
training of Deep Bidirectional Transformers for Language
Understanding. In the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL).
Dror, R.; Baumer, G.; Shlomov, S.; et al. 2018. The Hitch-
hiker’s Guide to Testing Statistical Significance in Natural
Language Processing. In Annual Conference of the Associa-
tion for Computational Linguistics (ACL).
Feng, W.; Zhuo, H. H.; and Kambhampati, S. 2018. Ex-
tracting Action Sequences from Texts Based on Deep Rein-
forcement Learning. In the International Joint Conference
on Artificial Intelligence (IJCAI).
Friedrich, A.; Palmer, A.; and Pinkal, M. 2016. Situation En-
tity Types: Automatic Classification of Clause-level Aspect.
In Annual Conference of the Association for Computational
Linguistics (ACL).
Gildea, D., and Jurafsky, D. 2002. Automatic Labeling of
Semantic Roles. In Computational linguistics.
Groote, J. F.; Kouters, T. W.; and Osaiweran, A. 2015.
Specification Guidelines to Avoid the State Space Explosion
Problem. In Software Testing, Verification and Reliability.
Ji, G., and Bilmes, J. 2005. Dialog Act Tagging using Graph-
ical Models. In the International Conference on Acoustics,
Speech and Signal Processing (ICASSP).
Kalchbrenner, N., and Blunsom, P. 2013. Recurrent Con-
volutional Neural Networks for Discourse Compositionality.
In arXiv:1306.3584.
Kim, K.-M.; Kim, Y.; Lee, J.; et al. 2019. From Small-scale
to Large-scale Text Classification. In the World Wide Web
Conference (WWW).
Kim, S. N.; Cavedon, L.; and Baldwin, T. 2010. Classifying
Dialogue Acts in One-on-one Live Chats. In the Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP).
Kingma, D. P., and Ba, J. L. 2015. Adam: A Method for
Stochastic Optimization. In the International Conference on
Learning Representations (ICLR).
Kumar, H.; Agarwal, A.; Dasgupta, R.; et al. 2018. Di-
alogue Act Sequence Labeling Using Hierarchical Encoder

with CRF. In the AAAI Conference on Artificial Intelligence
(AAAI).
Lee, J. Y., and Dernoncourt, F. 2016. Sequential Short-
Text Classification with Recurrent and Convolutional Neural
Networks. In the North American Chapter of the Association
for Computational Linguistics (NAACL).
Li, C.; Ouyang, J.; and Li, X. 2019. Classifying Ex-
tremely Short Texts by Exploiting Semantic Centroids in-
Word Mover’s Distance Space. In the World Wide Web Con-
ference (WWW).
Liu, Y.; Han, K.; et al. 2017. Using Context Information for
Dialog Act Classification in DNNFramework. In the Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP).
Ma, X., and Hovy, E. 2016. End-to-end Sequence Labeling
via Bi-directional LSTM-CNNs-CRF. InAnnual Conference
of the Association for Computational Linguistics (ACL).
Melamud, O.; Goldberger, J.; and Dagan, I. 2016. Con-
text2Vec: Learning Generic Context Embedding with Bidi-
rectional LSTM. In the SIGNLL Conference on Computa-
tional Natural Language Learning (CoNLL).
Qian, C.; Wen, L.; Long, M.; et al. 2019. Extracting Process
Graphs from Texts via Multi-Granularity Text Classification.
In arXiv:1906.02127.
Quarteroni, S.; Ivanov, A. V.; and Riccardi, G. 2011. Si-
multaneous Dialog Segmentation and Classification from
Human-human Spoken Conversations. In the International
Conference on Acoustics, Speech and Signal Processing
(ICASSP).
Rabiner, L. R. 1989. A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition. In IEEE.
Ratnaparkhi, A. 1996. A Maximum Entropy Model for
Part-Of-Speech Tagging. In the Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Santos, C.N.D., andZadrozny, B. 2014. LearningCharacter-
level Representations for Part-of-Speech Tagging. In the
International Conference on Machine Learning (ICML).
Sharma, R.; Bhattacharyya, P.; Dandapat, S.; et al. 2018.
Identifying Transferable Information Across Domains for
Cross-domain Sentiment Classification. In Annual Confer-
ence of the Association for Computational Linguistics (ACL).
Silver, D.; Schrittwieser, J.; Simonyan, K.; et al. 2017.
Mastering the Game of Go without Human Knowledge. In
Nature.
Stolcke, A.; Ries, K.; Coccaro, N.; et al. 2000. Dialogue
Act Modeling for Automatic Tagging and Recognition of
Conversational Speech. In Computational linguistics.
Straffin, P. D. 1993. Game Theory and Strategy. In The
Mathematical Association of America.
Tan, Z.; Wang, M.; Xie, J.; et al. 2018. Deep Semantic Role
Labeling with Self-Attention. In the AAAI Conference on
Artificial Intelligence (AAAI).
Trischler, A.; Ye, Z.; Yuan, X.; et al. 2016. A Parallel-
Hierarchical Model for Machine Comprehension on Sparse

Data. In Annual Conference of the Association for Compu-
tational Linguistics (ACL).
Venkataraman, A.; Ferrer, L.; Stolcke, A.; et al. 2003. Train-
ing a Prosody based Dialog Act Tagger fromUnlabeled Data.
In the International Conference on Acoustics, Speech and
Signal Processing (ICASSP).
Wang, S.; Mazumder, S.; Liu, B.; et al. 2018. Target-
Sensitive Memory Networks for Aspect Sentiment Classifi-
cation. In Annual Conference of the Association for Compu-
tational Linguistics (ACL).
Wu, F.; Liu, J.; Wu, C.; et al. 2019. Neural Chinese Named
Entity Recognition via CNN-LSTM-CRF and Joint Training
withWord Segmentation. In theWorldWideWebConference
(WWW).
Xiao, C.; Mei, J.; andMuller, M. 2018. Memory-Augmented
Monte Carlo Tree Search. In the AAAI Conference on Artifi-
cial Intelligence (AAAI).
Yang, Z.; Yang, D.; Dyer, C.; He, X.; et al. 2016. Hierar-
chical Attention Networks for Document Classification. In
the North American Chapter of the Association for Compu-
tational Linguistics (NAACL).
Ye, Z.-X., and Ling, Z.-H. 2018. Hybrid semi-Markov CRF
for Neural Sequence Labeling. In Annual Conference of the
Association for Computational Linguistics (ACL).
Yeung, C. Y., and Lee, J. 2015. Automatic Detection of Sen-
tence Fragments. In Annual Conference of the Association
for Computational Linguistics (ACL).
Zhang, Y., andWallace, B. C. 2017. ASensitivityAnalysis of
(and Practitioners’ Guide to) Convolutional Neural Networks
for Sentence Classification. In arXiv:1510.03820.
Zhou, G., and Su, J. 2002. Named Entity Recognition using
an HMM-based Chunk Tagger. In Annual Conference of the
Association for Computational Linguistics (ACL).

