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Serverless computing is a popular cloud computing paradigm that enables developers to build applications
at the function level, known as serverless applications. The Serverless Application Model (AWS SAM) is the
most widely adopted configuration schema. However, misconfigurations pose a significant challenge due to
the complexity of serverless configurations and the limitations of traditional data-driven techniques. Recent
advancements in Large Language Models (LLMs), pre-trained on large-scale public data, offer promising poten-
tial for identifying and explaining misconfigurations. In this paper, we present SlsDetector , the first framework
that harnesses the capabilities of LLMs to perform static misconfiguration detection in serverless applications.
SlsDetector utilizes effective prompt engineering with zero-shot prompting to identify configuration issues. It
designs multi-dimensional constraints aligned with serverless configuration characteristics and leverages the
Chain of Thought technique to enhance LLM inferences, alongside generating structured responses. We evalu-
ate SlsDetector on a curated dataset of 110 configuration files, which includes correct configurations, real-world
misconfigurations, and intentionally injected errors. Our results show that SlsDetector , based on ChatGPT-4o
(one of the most representative LLMs), achieves a precision of 72.88%, recall of 88.18%, and F1-score of 79.75%,
outperforming state-of-the-art data-driven methods by 53.82, 17.40, and 49.72 percentage points, respectively.
We further investigate the generalization capability of SlsDetector across recent LLMs, including Llama 3.1
(405B) Instruct Turbo, Gemini 1.5 Pro, and DeepSeek V3, with consistently high effectiveness.
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2 Wen et al.

1 INTRODUCTION
Serverless computing is a popular cloud computing paradigm that allows developers to build and
run applications, known as serverless applications, without managing underlying infrastructure
tasks [60]. It has been widely adopted across diverse application domains [19, 53, 69], attracting
growing interest from research communities, such as Software Engineering (SE) [60] and Sys-
tems [42], and from industry. To support the development and execution of serverless applications,
leading cloud providers have introduced serverless platforms. Among these providers, Amazon
Web Services (AWS) stands out as the leader in serverless computing [34, 60, 61].

Serverless computing includes two primary service models: Function-as-a-Service (FaaS) and
Backend-as-a-Service (BaaS) [26, 32]. FaaS allows developers to build applications as small and
event-driven functions (i.e., serverless functions). BaaS provides ready-to-use cloud services such as
storage (e.g., AWS S3 [2]), database, and API gateway management. FaaS collaborates with BaaS to
enable developers to create serverless applications efficiently. To configure and manage functions
and required cloud resources for serverless applications, AWS provides the Serverless Application
Model (AWS SAM) [5], the most widely adopted configuration schema in the serverless computing
practice [1, 7, 15]. It can streamline the development process and reduce complexities associated
with resource management in serverless applications.

However, misconfigurations have emerged as a major challenge in serverless application devel-
opment [40, 55, 61], leading to serious security vulnerabilities and operational risks. For instance,
as reported [17], a coronavirus testing company exposed over 50,000 scanned IDs and thousands of
test results due to an AWS S3 bucket misconfiguration [17]. In another case, API misconfigurations
within a serverless environment led to a breach affecting 4.9 million customers [12]. These incidents
highlight that misconfigurations are systemic rather than isolated, underscoring the urgent need
for effective detection mechanisms in serverless computing.

Misconfigurations have become one of the major causes of system software failures [66]. Despite
the promise of existing data-driven methods for misconfiguration detection in other scenarios [50,
51, 72, 73], they have low effectiveness in serverless computing. Data-driven approaches, which
rely on anomaly detection or pattern recognition based on training data, suffer from limitations
such as incomplete or incorrect datasets [72, 73]. Additional strategies that incorporate extensive
knowledge, such as predefined templates and official documentation, lack flexibility and adaptability.
These problems make the data-driven approach not enough to detect configuration problems of
serverless applications. Moreover, serverless application configurations involve intricate structures,
including domain-specific languages, complex dependency relationships, and nested objects across
over 800 cloud resource types, which further complicates their detection.
Recent advancements in Large Language Models (LLMs) offer a promising solution to this

challenge. LLMs have demonstrated significant success in various SE tasks [44], such as code
generation [29], code summarization [18], program repair [28], test generation [45], and log pars-
ing [64]. Trained on large-scale public data, LLMs can potentially capture configuration patterns,
best practices, and common pitfalls, making them well-suited for detecting misconfigurations in
serverless applications.
In this paper, we present SlsDetector , the first LLM-based framework specifically designed to

perform static misconfiguration detection in serverless applications. It does not rely on a large
number of real-world training examples. Leveraging advanced prompt engineering in conjunc-
tion with zero-shot prompting, which requires no prior examples, SlsDetector efficiently identifies
configuration problems with minimal effort. Given a serverless configuration file, it outputs de-
tected misconfigurations along with detailed, structured explanations. SlsDetector features a prompt

, Vol. 1, No. 1, Article . Publication date: June 2025.
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generation component that dynamically integrates the configuration file, task description, multi-
dimensional constraints, and customized response template. Multi-dimensional constraints are
designed according to serverless configurations, incorporating resource types, configuration entries
and values, as well as different levels of dependencies to provide context-aware guidance. Addition-
ally, SlsDetector employs the Chain of Thought reasoning technique [10, 23] to enhance inference
quality. The customized response template provides the content demand and format demand of
LLM outputs, ensuring that responses are not only structured but also actionable answers aligned
with detailed explanations. Particularly, SlsDetector targets misconfigurations within serverless
application configuration files. It does not analyze application source code, nor does it detect
misconfigurations related to external systems or environment-specific issues.

To evaluate SlsDetector , we curate an evaluation dataset of 110 configuration files, including 26
correctly configured files, 58 with real-world misconfigurations, and 26 with injected errors. Results
show that SlsDetector , based on ChatGPT-4o (one of the most representative LLMs known for
outstanding performance), achieves a precision of 72.88%, recall of 88.18%, and F1-score of 79.75%.
It outperforms the state-of-the-art data-driven approach by 53.82, 17.40, and 49.72 percentage
points, respectively. We further explore the generalization capability of SlsDetector using other
representative LLMs, including Llama 3.1 (405B) Instruct Turbo, Gemini 1.5 Pro, and DeepSeek V3,
with results demonstrating consistently high effectiveness across models.

In summary, this paper makes the following contributions:

• Wepresent SlsDetector , the first LLM-based approach specifically designed for detectingmisconfig-
urations in serverless computing. Its core is a carefully designed zero-shot prompt, incorporating
novel multi-dimensional constraints that capture the configuration characteristics of serverless
computing.

• We construct the first benchmark dataset for misconfiguration detection in serverless computing,
releasing it alongside our scripts and results as a replication package [16].

• We conduct an empirical study using our benchmark dataset to evaluate the effectiveness of our
misconfiguration detection approach, demonstrating that it outperforms baseline methods.

2 BACKGROUND
2.1 Serverless Computing
Applications developed within the serverless computing paradigm are referred to as serverless
applications. These applications are built around event-driven serverless functions (i.e., FaaS),
which represent the core business logic. Functions collaborate with associated cloud services that
facilitate the integration of backend functionalities, i.e., BaaS. This combination streamlines the
development process [26, 60]. During the development and deployment of serverless applications,
developers define essential execution settings. These settings include the runtime environment,
memory allocation, timeout duration, predefined event triggers, and required cloud resources for
the serverless applications.

2.2 Serverless Application Configurations: AWS SAM
Developers leverage specified configuration files, such as YAML files, to define the execution
settings of serverless applications. In serverless computing, serverless functions are inherently
event-driven, meaning that the relationships between functions and predefined events are not
explicitly detailed in the application code. Instead, these relationships are succinctly captured in
the configuration file, which automates infrastructure provisioning. Thus, the configuration file
plays a crucial role in the development process of serverless applications.
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Among mainstream serverless platforms, AWS Lambda employs a widely used configuration
schema [1, 15] known as the AWS Serverless Application Model (AWS SAM) [5]. AWS SAM enables
developers to easily reuse proven configurations, streamlining the development and deployment
of serverless applications. In contrast, other platforms, such as Google Cloud Functions [14] and
Microsoft Azure Functions [9], lack a formal configuration schema. They rely on command-line
interfaces or platform consoles to manually manage key settings and required resources. This
manual way lacks standardization and the availability of configuration datasets for analysis. Given
AWS Lambda’s widespread use and the advantages offered by AWS SAM’s configuration
schema, our paper focuses on analyzing the configurations of serverless applications built
using AWS SAM.

AWS SAM uses a YAML-based configuration file format with specialized template specifications.
It builds upon and extends AWS CloudFormation [3], which is primarily used for provisioning and
configuring non-serverless cloud resources. AWS SAM introduces a syntax specifically designed
for defining and managing both serverless infrastructure (spanning nine categories [6]) and non-
serverless infrastructure (covering over 800 categories [4]).

Serverless application configurations are complex and exhibit unique characteristics. Unlike the
simple “flat” key-value pair format commonly seen in prior configuration studies [21, 50, 55, 58, 65],
serverless application configurations feature intricate structures, including objects, lists, maps, and
nested elements. Each cloud resource type is represented by custom-named objects, which contain
specific configuration entries and their corresponding values. These values can be strings, lists, maps,
or even nested objects representing other cloud resources. Additionally, serverless configurations
introduce resource types specific to serverless environments (e.g., “AWS::Serverless::Function”) and
attributes unique to serverless applications (e.g., Handler, MemorySize, Timeout). This exhibits
that AWS SAM YAML files function as domain-specific languages within the serverless computing
domain, increasing the complexity of configurations.

2.3 Example of Configuration File
We provide a real-world configuration file example [13] from GitHub, a widely used platform

for studying developer issues [35, 36], as shown in Fig. 1. In this example, the developer created
a serverless function that responds to events from the AWS S3 storage service [2]. However,
this configuration failed during deployment. Resolving this issue required nearly 20 rounds of
communication involving 26 people and spanned almost five years before a correct solution was
found. The root cause was the unsupported Condition entry mistakenly added on line 24. This
example underscores the critical need for an effective approach to detect misconfigurations in
serverless applications early. Such an approachwould quickly pinpoint potential issues, reducing the
time, effort, and communication overhead required to troubleshoot and resolve misconfigurations.

We explain this configuration file. The content mainly includes Resources section (lines 15-39).
It defines the required execution settings through resource types. The “AWS::Serverless::Function”
resource type (named “BucketEventConsumer”) aims to configure a serverless function, while
“AWS::S3::Bucket” (named “SomeBucket”) represents an AWS S3 bucket, a non-serverless resource
that frequently interacts with serverless functions. The “BucketEventConsumer” object includes
configuration entries such as the handler function (line 19), runtime environment (line 20),
code location (line 21), and predefined event (lines 22-33). These entries are allocated values that
conform to the constraints. For example, Runtime is set to “python3.6” (line 20). The function is
triggered when an S3 object is created (lines 27-28) and the object meets the filter rule specified as
key-value pairs (lines 31-33). Name from line 32 and Value from line 33 need to appear together,
indicating entry dependencies. Line 27 illustrates a relationship between Bucket value and the
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1 AWSTemplateFormatVersion : '2010 −09 −09 '
2 Transform : AWS : : S e r v e r l e s s −2016 −10 −31
3 De s c r i p t i o n : Lambda t h a t r e sponds to S3 even t s
4 Pa rame te r s :
5 P r e E x i s t i n gBu c k e t :
6 D e s c r i p t i o n : " Does an e x i s t i n g bucke t e x i s t ( not managed by c l oud f o rma t i on ) "
7 Type : S t r i n g
8 De f a u l t : ' no '
9 Al lowedValues :
10 − ' yes '
11 − ' no '
12 Con s t r a i n tD e s c r i p t i o n : must s p e c i f y yes or no .
13 Cond i t i on s :
14 NeedsSomeBucket : ! Equa l s [ ! Ref P r eEx i s t i n gBucke t , ' no ' ]
15 Re sou r ce s : // define objects with specific resource types (lines 15-39)
16 BucketEventConsumer :
17 Type : AWS : : S e r v e r l e s s : : Func t i on
18 P r o p e r t i e s :
19 Handler : BucketEventConsumer . main . l ambda_hand le r // set configuration entry: the corresponding value
20 Runtime : python3 . 6 // set configuration entry: the corresponding value
21 CodeUri : bund le . z i p
22 Event s :
23 Crea teMetaEvent :
24 # Cond i t i on : NeedsSomeBucket
25 Type : S3
26 P r o p e r t i e s :
27 Bucket : ! Re f SomeBucket // rely on the resource object (line 34), representing value dependency
28 Event s : " s3 : Ob j e c tC r e a t e d : ∗ "
29 F i l t e r :
30 S3Key :
31 Ru l e s :
32 − Name : s u f f i x
33 Value : meta . j s on // rely on Name entry (line 32), representing entry dependency
34 SomeBucket :
35 Cond i t i on : NeedsSomeBucket
36 Type : AWS : : S3 : : Bucket
37 P r o p e r t i e s :
38 BucketName : ' some−bucket −somewhere '
39 D e l e t i o n P o l i c y : R e t a i n

Fig. 1. An configuration file example of serverless applications.

“AWS::S3::Bucket” resource in line 34, showing that the value dependencies of one configuration
value depend on other values.

In addition to the core sections, other parts of the configuration file are also important. The
AWSTemplateFormatVersion section (line 1) specifies the template’s capabilities, with the current
valid format version being “2010-09-09” [8]. The Transform section (line 2) identifies the file as
an AWS SAM template with the value “AWS::Serverless-2016-10-31.” The Description section
(line 3) provides a textual description of the template. The Parameters section (lines 4-12) defines
values that are passed to the template at runtime. The “PreExistingBucket” parameter accepts either
“yes” or “no” as values. The Conditions section (lines 13-14) controls resource creation or property
assignment based on the value of a parameter. The “NeedsSomeBucket” condition checks if the
“PreExistingBucket” parameter is set to “no”. If true, the condition evaluates to true, otherwise, it
evaluates to false.

2.4 Prompt Engineering of LLMs
Recent studies [43, 71] have demonstrated the effectiveness of prompt engineering in enhancing
LLM performance across various tasks. Prompt engineering involves designing task-specific in-
structions, known as prompts, to guide LLM behavior without modifying the underlying model
parameters. This approach allows LLMs to adapt seamlessly to different tasks based solely on
carefully crafted input prompts. We introduce commonly used prompt engineering techniques:
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A Configuration File to be Detected

Task Description

Multi-dimensional Constraints (CoT)

Customized Response

LLM Detected
Results

Resource Type
Constraint

Entry
Constraint

Value
Constraint

Entry
Dependency
Constraint

Value
Dependency
Constraint

Input

ü Resource Type Errors
ü Entry Errors
ü Entry Value Errors
ü Entry Dependency Errors
ü Value Dependency Errors

Output

Content
Demand

Format
Demand

Prompt Generation

Fig. 2. The overview of our approach SlsDetector .

• Zero-shot prompting: The LLM performs a task without any prior training or examples,
relying entirely on the prompt’s instructions to generate the expected output. This approach
tests the model’s ability to generalize knowledge directly from its pre-trained data.

• Few-shot prompting: The LLM is provided with a limited set of examples within the prompt
to infer patterns and apply learned knowledge to similar tasks. This technique improves
response accuracy by offering contextual cues while still requiring minimal training data.

• Chain-of-Thought (CoT) prompting: The LLM enhances its reasoning capabilities by
breaking down complex tasks into a sequence of intermediate natural language reason-
ing steps. This structured approach helps the model generate more logical, coherent, and
interpretable responses.

This paper leverages prompt engineering techniques to design specialized prompts for detecting
misconfigurations in serverless applications, ensuring effective misconfiguration identification.

3 OUR APPROACH: SLSDETECTOR
We present SlsDetector , an LLM-based framework designed to detect misconfigurations in serverless
applications. SlsDetector takes a configuration file of the serverless application to be detected as
input and outputs structured results, providing a list of detected misconfigurations along with
detailed explanations for each issue. The framework is adaptable and supports various LLMs.

3.1 Overview
Fig. 2 shows an overview of SlsDetector . It converts a misconfiguration detection request into a
meticulously constructed prompt for LLMs. We employ zero-shot prompting to minimize reliance
on external sample configurations. This technique, which requires no prior examples, is a popular
optimization technique [33, 62, 71].Whilemany studies [43, 64, 68] have utilized few-shot prompting
to improve effectiveness by learning from examples during inference, they rely heavily on the quality
and selection of labeled samples. In contrast, zero-shot learning avoids the cost and effort associated
with sample collection and curation, making it the preferred technique for our framework.

In SlsDetector , we design a prompt generation component to construct a tailored prompt focused
on the objective of detecting misconfiguration in serverless applications. This prompt is structured
into four parts, where multi-dimensional constraints are the core of SlsDetector and highly context-
aware, shown in Fig. 2. In particular, this paper novelly introduces multi-dimensional constraints
based on configuration characteristics of our scenario, rather than previous work. Once the prompt
is constructed, it is sent to the LLM, which generates the final output. Next, we introduce the
prompt generation component in detail.
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LLM-Based Misconfiguration Detection for AWS Serverless Computing 7

n Role: You are an expert at writing AWS SAM configurations for serverless 
applications.

n Question: Are there any misconfigurations in the above configuration file?

Ø Please consider the following constraints in a category-by-category manner.
ü [Resource Type Constraint]

Configuration File

Task Description

Multi-dimensional Constraints

1. Check whether the resource type is currently supported by AWS
SAM Search the following URL1 to compare all supported AWS
resources listed, noting the letter case.

2. Follow the steps below for a step-by-step check.
Step 1: Check whether each configuration entry under each

resource type actually exists, paying attention to the accuracy of the
name of the configuration entry, including case and singular and
plural forms;

Step 2: If Events exists, also further check whether the
corresponding configuration entry exists under each event source
type, and please point out the non-existence of configuration entries;

Step 3: Check whether the hierarchical level of all configuration
entries is correct, and pay attention to the indentation problem.

3. Check that the value type, constraints, and supported values of the
configuration entry are correct, that the value representation is
accurate, and that the value cannot be defined as null.

4. Check if there are dependencies between configuration entries
and check that they are used in the correct way, e.g. Ref and that the
referenced resource types are correct, and that the relevant required
reference definitions are given. Further check which configuration
entries are or are not required under the PackageType type.

5. Check if there is a dependency (possibly implicit) between the
values of configuration entries. Check that the usage is correct and
that the relevant required reference definitions are given.

ü [Entry Constraint]
ü [Value Constraint]
ü [Entry Dependency Constraint]
ü [Value Dependency Constraint]

Customized Response

n Please summarize the misconfigurations that are absolutely certain. They are 
categorized as [Resource Type Errors], [Configuration Entry Errors], 
[Configuration Entry Value Errors], [Entry Dependency Errors], 
[Value Dependency Errors] (if present).

n Answer format (You MUST follow this): Detected errors are written 
between <START> and <END> tags:

Fig. 3. The prompt structure of SlsDetector .

3.2 Prompt Generation
We present the prompt content generated by the prompt generation component, which includes:
(i) the configuration file to be analyzed, (ii) a task description for the LLMs, (iii) detailed multi-
dimensional constraints, and (iv) a customized response. Fig. 3 illustrates our prompt structure.

3.2.1 Task Description. The task description includes the following elements: (i) a role-playing
instruction designed to enhance the LLM’s ability to detect misconfigurations, which is a common
prompt optimization technique [25, 71]; and (ii) a task description instruction. In our scenario,
the role is designed as “You are an expert at writing AWS SAM configurations for serverless
applications”, while the task description asks, “Are there any misconfigurations in the above
configuration file?”. These elements are carefully crafted to clearly outline the tasks the LLM needs
to complete within the assigned role.

3.2.2 Multi-dimensional Constraints. Multi-dimensional constraints are designed based on the
distinct hierarchical structure of serverless application configurations, as described in Section 2.3.
We systematically define five key constraint dimensions: resource types, configuration entries,
values of configuration entries, entry dependencies, and value dependencies. These elements
represent critical and unique configuration components due to the event-driven, distributed, and
auto-scaling nature of serverless computing. While these components enable flexible and scalable
resource management, they also introduce complexity and specific challenges in configuring and
managing resources. Thus, emphasizing these components in the detection process enhances the
LLM’s ability to effectively identify misconfigurations.
• Resource Types: Serverless applications often comprise diverse resource types, including serverless
functions, event sources such as API Gateway, S3, and DynamoDB, and resources that support
scalability, such as step functions or queues. In AWS SAM, defining these resource types is critical
because serverless applications are inherently composed of multiple resources that must work
together seamlessly. Different from traditional server-based applications, where resources are fixed
and managed manually, serverless applications dynamically scale and interact based on event
triggers. This makes resource type configuration especially important. Fig. 1 shows some resource
types in lines 17 and 36. For instance, custom names such as “BucketEventConsumer” (line 16) are
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assigned to objects tied to specific resource types, such as “AWS::Serverless::Function”. Moreover,
resource type names are case-sensitive.
• Configuration Entries: Serverless applications require specific configuration entries to set execu-
tion parameters, such as the runtime environment, required memory, and event sources. These
entries determine the operational behavior of serverless applications. For example, the Runtime
entry defines the runtime environment for a serverless function, and the Events entry specifies the
event triggers (e.g., API Gateway, S3 uploads) for the serverless function. In Fig. 1, the Runtime (line
20) and Events (line 22) entries are key configuration parameters that define how the serverless
function is executed and what triggers it.
• Values of Configuration Entries: Configuration entries are assigned specific values that are often
constrained by predefined sets. For example, memory size, timeout duration, and other trigger-
related values must be accurately set. In Fig. 1, the Runtime entry in a serverless function configura-
tion only allows certain runtime environments, such as “python3.6” and “nodejs16.x”. The Bucket
entry (line 27) might only accept references to other AWS objects or resources. These values must
be accurate to ensure the serverless application behaves as intended.
• Entry Dependencies: Serverless applications often involve multiple interconnected services, such
as event triggers or communication between functions. These dependencies must be accurately
configured to ensure the correct flow of events and data. For instance, a serverless function might
be triggered by an API Gateway, which itself needs proper configuration in terms of timeouts,
integration, and permissions. The need for precise management of dependencies between these
services is a defining feature of serverless environments, where different functions and services
interact based on events. In this situation, some configuration entries are dependent on others
to work correctly. For example, Name from line 32 and Value from line 33 need to be configured
together for the configuration to be valid. These dependencies are generally implicit and can be
discovered through documentation or inferred by understanding how AWS services interact.
• Value Dependencies: In serverless computing, values from one resource can influence the configu-
ration of another. These cross-resource value dependencies are unique to serverless applications,
where each resource’s configuration may directly affect the efficiency of others. For example, the
RestApiId entry, which is required for API Gateway event triggers, depends on the object name of
the corresponding “AWS::Serverless::Api” resource. This shows how values can be linked across
different resource types, reflecting the tight integration between Function-as-a-Service (FaaS) and
Backend-as-a-Service (BaaS) resources in serverless environments. This level of interdependence
requires careful validation to avoid conflicts or inefficiencies.

Leveraging these configuration characteristics, we design serverless-specific multi-dimensional
constraints to enhance the LLM’s ability to identify serverless application misconfigurations.
These constraints include: resource type constraint, entry constraint, value constraint, entry
dependency constraint, and value dependency constraint. Importantly, these constraints are
internally designed and do not require input from developers or generation by other tools. Fig. 3
shows their details.

Before explaining constraints, we apply the CoT technique [10, 23, 39]. CoT is a reasoning strategy
to guide the problem-solving process toward more accurate and logical conclusions. Based on its
principle, we design our CoT strategy for detecting misconfigurations of serverless applications by
guiding LLMs to consider constraints in a “category-by-category” manner.
For resource type constraint, we describe it as follows: “Check whether the resource type

is currently supported by AWS SAM. Search the following URL1 to compare all supported AWS
resources listed, noting the letter case.” By providing a direct link to the official documentation, we

1Supported resource types: https://docs.aws.amazon.com/serverlessrepo/latest/devguide/list-supported-resources.html
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enable SlsDetector to effectively identify and compare resource type names, with a particular focus
on case sensitivity, a critical aspect in AWS SAM configurations.

For entry constraint, we adopt a structured three-step reasoning process that follows a coarse-
to-fine validation design: (1) Large-scale constraint validation verifies whether each configuration
entry exists under the corresponding resource type, ensuring structural integrity. (2) Fine-grained
entry validation applies additional checks to essential entries in serverless applications, particularly
event-related entries, which are critical for function execution. (3) Format validation ensures
correct entry indentation in YAML-based configuration files, as improper formatting can lead to
misconfigurations. This structured reasoning process refines misconfiguration detection, enabling a
more effective evaluation. This structural design systematically refines constraint validation, moving
from broad checks to fine-grained validation. By progressively narrowing the validation scope,
its design helps the LLM focus on progressively more specific misconfiguration risks. SlsDetector
applies these checks using the CoT technique, following a “step-by-step” process, as shown in Fig. 3.
Step 1: SlsDetector checks that each configuration entry exists under its respective resource type.
Step 2: For event-related entries, SlsDetector checks that configuration entries corresponding to
each event source type are present. Step 3: SlsDetector checks the correct hierarchical structure of
all configuration entries, with special attention to indentation. Misplaced or improperly indented
entries may lead to errors, as they will not be recognized under the expected resource type.
This three-step validation process allows SlsDetector to systematically detect errors, ensuring
comprehensive and accurate checks for configuration entries.

For value constraint, SlsDetector validates that each configuration entry has the correct value
type, satisfies the defined constraints and supported values, maintains an accurate value repre-
sentation, and is not assigned a null value. These constraints ensure that all values adhere to the
required specifications.
For entry dependency constraint, SlsDetector checks whether dependencies exist between

configuration entries and verifies that they are correctly used. We also provide guidelines for vali-
dating dependencies, such as checking the accuracy of referenced resource types, ensuring required
reference definitions are present, and confirming that required entries are properly configured.
For value dependency constraint, SlsDetector checks whether there are dependencies (in-

cluding implicit ones) between the values of configuration entries, verifies their correct usage,
and ensures that all required reference definitions are provided. This constraint helps to main-
tain consistency and correctness in how values interact and depend on each other within the
configurations.

3.2.3 Customized Response. We customize the LLMs’ output by specifying both the content and
format requirements for the responses, ensuring their effectiveness and relevance. For the content
demand, we aim to avoid receiving vague or uncertain answers that fail to explicitly identify
configuration errors. To achieve it, we instruct the model with the directive: “Please summarize the
misconfigurations that are absolutely certain”. This ensures that only clear, deterministic errors
are returned. Additionally, when applicable, we categorize the detected misconfigurations into
specific groups, including “Resource Type Errors,” “Configuration Entry Errors,” “Configuration
Entry Value Errors,” “Entry Dependency Errors,” and “Value Dependency Errors”.

For the format demand, to eliminate redundant content that does not reveal specific misconfigu-
rations from the raw output, we use delimiters: “<START>” and “<END>”, to mark the required
portion of the response. In SlsDetector , the desired output is enclosed within these markers, for
example: “<START> Resource Type Errors: ..., Value Dependency Errors: ... <END>”. This structured
way ensures that only the relevant content is captured. During post-processing, SlsDetector employs
regular expressions to extract the information between these markers efficiently. Although the
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model might generate additional text beyond the expected response, the use of locators allows for
the seamless extraction of relevant content while discarding unnecessary text.

3.3 Prompt Discussion
The prompt generation process is designed iteratively through systematic trial and error, aiming
to maximize misconfiguration detection effectiveness. The process begins with a minimal prompt
that encapsulates only a generic misconfiguration detection objective, as shown in Fig. 4. However,
early evaluations reveal its limited capability, consistent with the results of the basic LLM method
presented in Section 5.2. To enhance detection effectiveness, we hypothesize that enriching the
prompt with configuration-specific features would be beneficial. Guided by this insight, we analyze
the structural and semantic characteristics of configuration files, focusing on key elements such as
resource types, configuration entries, and their values, as well as dependencies among different
elements. Based on this analysis, we iteratively introduce a series of constraints that capture these
essential dimensions. Each iteration involved empirical evaluation of configuration examples, as-
sessing whether the modified prompt improved the detection of ground-truth misconfigurations.
This process included refinements such as progressing from coarse-grained to fine-grained valida-
tion, and incrementally supplementing constraints to better model the implicit rules governing
configuration correctness. Through this iterative refinement, we arrive at the final optimized prompt
shown in Fig. 3, which achieves a practical balance between detection accuracy and description
generalizability. Its effectiveness is further validated by large-scale evaluation results presented in
RQ2, which is attributable to the incorporation of multi-dimensional configuration constraints.

4 EXPERIMENTAL EVALUATION
To evaluate the effectiveness of SlsDetector in identifying misconfigurations within serverless
applications, we present four research questions (Section 4.1). To answer these questions, we detail
the evaluation metrics (Section 4.2), baselines for comparison (Section 4.3), evaluation dataset
(Section 4.4), and experimental settings (Section 4.5).

4.1 ResearchQuestions
• RQ1: How does the effectiveness of SlsDetector compare to traditional data-driven methods?
• RQ2: How effective is SlsDetector without considering our multi-dimensional constraints?
• RQ3: How does the non-determinism of LLMs influence the effectiveness of SlsDetector?
• RQ4: How well does the generalization capability of SlsDetector perform when using different
LLMs?

4.2 Evaluation Metrics
We use 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒 as evaluation metrics to compare SlsDetector against the
baseline methods at the configuration parameter level, i.e., configuration entries or values. We
check whether the detection approach can accurately determine the validity of each configuration
parameter within the configuration file. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 measures the proportion of correctly identified
misconfigured parameters among all parameters flagged as misconfigured. 𝑟𝑒𝑐𝑎𝑙𝑙 quantifies the
ability of the approach to detect actual misconfigurations by calculating the proportion of true
misconfigured parameters that are correctly identified. 𝐹1-𝑠𝑐𝑜𝑟𝑒 provides a balanced measure that
accounts for the significance of both false positives and false negatives. These metrics are calculated
through True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN),
explained in Table 1. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 , 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 . Values

range from 0% to 100%, with scores closer to 100% indicating greater effectiveness.
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Table 1. The explanation of TP, FP, TN, and FN in our scenario.

TP A misconfigured parameter correctly identified as misconfigured
FP A correctly configured parameter mistakenly flagged as misconfigured
TN A correctly configured parameter accurately recognized as valid
FN A misconfigured parameter that is overlooked or incorrectly classified as valid

4.3 Baseline Methods
We implement three types of baselines to evaluate effectiveness. Given the lack of approaches
specifically tailored for detecting misconfigurations in serverless computing, we first draw on
principles from established data-driven techniques used in prior configuration studies [50, 51, 72, 73].
By adapting thesemethods, we create a data-driven baseline suited to the characteristics of serverless
applications. Additionally, we introduce LLM-based baselines as comparisons.
• Baseline 1: Data-driven method. We implement a data-driven approach for serverless appli-
cations by learning configuration patterns from a dataset of configuration files. As no existing
dataset specifically focuses on serverless application configurations, we collect our data from the
AWS Serverless Application Repository (SAR) [7], an official repository for serverless applications
where each application is packaged with an AWS SAM template and links to relevant configuration
files. We include all configuration files associated with serverless applications that have been
successfully deployed at least once. This results in a collection of 701 configuration files across
658 serverless applications, with some links providing multiple configuration files representing
distinct configurations. Given the correctness of ensuring the dataset, we conduct a careful manual
review of the configuration files. This review was performed by the first two authors, who have
a background in cloud computing. Identified issues were discussed and resolved with consensus
among the authors. To assess the consistency of independent labeling, we employ Cohen’s Kappa
(𝜅) [24], a widely used metric for measuring inter-rater agreement. The resulting 𝜅 value of 0.916
indicates an almost perfect agreement and a reliable labeling procedure [37].
Using this dataset, we learn configuration patterns, focusing on common resource types, con-

figuration entries, values, and dependencies among entries and values. We first standardize the
configuration files into a uniform representation. Object names for various resource types are iden-
tified, with object names replaced by standardized labels (e.g., a placeholder “PH+resource type”)
for consistency across configuration entries and values. We then extract the used resource types,
entries, and values. To detect dependencies among both entries and values, we apply association
rule mining techniques [67, 70]. Specifically, we use the FP-Growth algorithm [31], which is known
for its scalability. We set a support threshold for frequent itemsets using the formula 𝛼 × 𝑙𝑒𝑛, where
𝑙𝑒𝑛 represents the total number of configuration files, a deterministic value, and 𝛼 is a percentage
that indicates the desired mining granularity. Leveraging mined frequent itemsets, we generate
association rules by utilizing traversal way and dividing items into left and right sets, where items
in the right set must appear if those in the left set are present. These rules reveal the configuration
dependencies. If the tested file contains all items in a left set, this approach checks whether it
includes the corresponding items in the right set. If any items are missing, it reports them.
• Baseline 2: Basic LLM method. It is designed using a straightforward prompt that does not take
our multi-dimensional constraints into account. This prompt contains the configuration file content
followed by a task description. Similarly, the output is enclosed within a locator pair, “<START>”
and “<END>”, to delimit the required response. This prompt is shown in Fig. 4.
• Alternative Baselines: We design other LLM-based methods: (1) splitting our multi-dimensional
constraints into separate prompts and integrating their results, denoted as Separated LLM method,
and (2) employing few-shot prompting with a small sample set, denoted as Few-shot LLM method.
For the first method, we divide the constraints into five separate prompts, each corresponding to a
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n Question: Are there any misconfigurations 
in the above configuration file?

Configuration File Task Description Response

Ø Answer format (You MUST follow this):
Detected errors are written between 

<START> and <END> tags:

Fig. 4. The prompt of basic LLM method.

specific constraint type. We then aggregate the results (enclosed within a locator pair, “<START>”
and “<END>”) from these prompts. For the secondmethod, we design a three-shot learning approach
inspired by common comparison practices in software engineering research [46, 48]. We randomly
select three configuration files from the 701 correctly configured samples. Two of these files are
injected with misconfigurations, while the third maintains correct configurations without injected
errors. We provide the corresponding detection results for these examples to guide the LLMs.

4.4 Evaluation Dataset
We conduct experimental evaluations on a dataset comprising three types of configurations. The first
type includes error-free configurations, enabling us to evaluate true negatives and false positives
in detection. The second type contains configurations with real-world errors, allowing for the
assessment of true positives and false negatives. Although this second type is somewhat free of data
leakage concerns of LLMs, we include a third type to strengthen the validity of our conclusions. The
third type consists of configurations with injected errors, which are not exposed to LLMs during
training, thereby eliminating data leakage concerns. By utilizing these diverse configurations, we
can achieve a valid and comprehensive evaluation.
• Configurations without Errors (26). We manually collect configuration files that have been suc-
cessfully executed without errors. This data is separate from the one used to mine configuration
patterns in the data-driven approach.

We collect real-world configuration cases from GitHub. GitHub issues provide rich information,
including developer discussions and related code or configuration fragments. We conduct the
following steps. First, on July 2, 2024, the date we collected this data, we searched GitHub using
the keywords “AWS,” “serverless,” and “configuration,” which yielded more than 8,000 relevant
configuration-related issues. We then manually reviewed these issues to extract correct configura-
tion fragments from the problematic cases—a time-consuming and challenging process. To facilitate
this task, the first two authors jointly review the configurations. Initially, they filter through the
configuration fragments by searching for terms including “successful,” “successfully,” and “it works”
within the issues to identify correct configurations. For the fragments that matched, they conducted
a manual verification process to ensure that the configurations were indeed error-free. Over two
months, the two authors identified 52 configuration fragments that met our criteria. These error-free
real-world configuration fragments are divided into two sets: 26 (naming from case 1 to case 26) are
used to evaluate error-free configurations, while the remaining 26 (naming from case 27 to case 52)
are reserved for generating configurations with injected errors, which is explained in detail later.
• Real-world Misconfigurations (58). To evaluate the effectiveness of approaches in identifying real-
world misconfigurations in serverless applications, we construct a relevant dataset by mining
real-world configuration issues from GitHub. These issues need to contain clearly identified root
causes as ground truths, enabling us to accurately assess the effectiveness of detection results.

The selection process is as follows: First, we use the same keywords (i.e., “AWS,” “serverless,” and
“configuration”) to search for relevant issues on GitHub on July 2, 2024. Next, we identify satisfied
issues based on the following criteria: (i) the issue is marked as closed, indicating that it has been
resolved; (ii) the issue includes a configuration fragment based on AWS SAM for analysis; and (iii)
the discussion concludes with a clearly identified root cause of the problem. Using these criteria,
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Table 2. Misconfiguration generation rules (we use generation rules from previous work [40, 41, 55, 65] and
customize them in our scenario.)

Category Subcategory Specification Generation Rules

Syntax
Resource
type Value set = {AWS::Serverless::Function,

AWS::Serverless::Api, ...}
Generate a resource type that does not
belong to the value set

Entry Value set = {entry1, entry2, ...}, specific en-
tries are used in a certain resource type

Generate an invalid entry for a resource
type

Range

Basic
numeric Valid range constrained by data type Generate values outside the valid range

(e.g., max value+1)
Enum Options, value set = {enum1, enum2, ...},

specific values are used in a certain config-
uration entry

Generate a value that does not belong
to set

Dependency
Entry

relationship (𝑃1,𝑉 , ⋄) ↦→ 𝑃2, ⋄ ∈ {>, ≥,=,≠,<, ≤
, 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 }

Generate invalid entry relationships for
configuration entries (𝑃1,𝑉 ,¬⋄)

Value
relationship (𝑃1, 𝑃2, ⋄), ⋄ ∈ {>, ≥,=,≠,<, ≤

, 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 }
Generate invalid value relationship for
configuration entry values (𝑃1, 𝑃2,¬⋄)

110 Configuration Files (Evaluation Dataset)

26 Configuration Files 
without Errors

58 Configuration Files 
with Real-world Errors

26 Configuration Files 
with Injected Errors

4,108 Correct Configuration 
Parameters 308 Misconfigured Parameters

90 Misconfigured 
Resource Types

108 Misconfigured 
Entries

48 Misconfigured 
Values

39 Misconfigured 
Entry Dependencies

23 Misconfigured 
Value Dependencies

Fig. 5. The Details of Evaluation Dataset.

we select 58 real-world configuration problems encountered in serverless applications, surpassing
the scale of prior studies on configuration-related research [70, 72].

To ensure the accuracy of the configuration errors to be detected, we meticulously review each
real-world configuration file in conjunction with its identified root cause. During this process, we
also manually identify and address any potential configuration issues (e.g., outdated runtime) that
could influence the evaluation. Details of the modifications are available on our GitHub [16].
• Injected Misconfigurations (26). We construct injected misconfigurations by generating various
errors in the correct configuration files. To achieve this, we use 26 error-free configuration files
named from case 27 to case 52. Misconfigurations of different types are then generated, following
misconfiguration generation rules from prior studies [40, 41, 43, 55, 65]. Prior studies [40, 43]
showed that these rules can cover most configurations. In addition to utilizing existing rules, we
extend specific misconfiguration generation rules tailored to serverless application configurations,
as outlined in Table 2. For each selected configuration file, we randomly sample a configuration
parameter that aligns with the subcategories in Table 2 and generate invalid configurations, creating
a new erroneous configuration file for detection. In total, we generate 26 configuration files with
injected misconfigurations for evaluation. Detailed changes are provided on our GitHub [16].

Our evaluation dataset contains 110 configuration files with corresponding ground-truth answers.
Fig. 5 shows its details. Of these, 26 are error-free configuration files, 58 contain real-world errors,
and 26 have injected errors. Across all configuration parameters, there are 4,108 correct configura-
tion parameters and 308 misconfigured ones. Among the misconfigured parameters, 90 involve
incorrect resource types, 108 have misconfigured entries, 48 contain incorrect values, 39 exhibit
entry dependency issues, and 23 have value dependency issues. We analyze the detection results
across all configuration parameters to obtain TP, FP, TN, and FN. We then calculate 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,
𝑟𝑒𝑐𝑎𝑙𝑙 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒 to evaluate the effectiveness of the detection.
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Table 3. RQ1: Results about SlsDetector and the data-driven method.

Methods 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙 𝐹1-𝑠𝑐𝑜𝑟𝑒
Data-driven method with 5% threshold (default) 19.06% 70.78% 30.03%
SlsDetector (vs data-driven method with 5% threshold) 72.88% (↑ 53.82%) 88.18% (↑ 17.40%) 79.75% (↑ 49.72%)
Data-driven method with 10% threshold 17.70% 64.61% 27.79%
Data-driven method with 3% threshold 18.83% 70.13% 29.69%
Data-driven method with 1% threshold 18.85% 70.45% 29.75%

4.5 Experimental Settings
We introduce our parameter settings, experimental repetitions, and environment.
Parameter Settings. For RQ1, the compared data-driven method needs to specify a frequent
threshold, 𝛼 . We experiment with various threshold levels: low (1%), medium (3% and 5%), and high
(10%). A lower threshold corresponds to a lower support value, enabling the discovery of more
dependencies. For comparisons with SlsDetector , we use a default 𝛼 value of 5%. Experimental results
also show that 5% is optimal for achieving the best effectiveness results in the data-driven method.
We also report results for both SlsDetector and the data-driven method across other thresholds. For
RQ2, we compare SlsDetector with the basic LLM method and other alternative methods, all of
which leverage LLMs. We select ChatGPT-4o as the default LLM due to the widespread use and
outstanding performance of ChatGPT in recent research [43, 71]. A crucial parameter of LLMs is
the temperature, which controls the level of randomness in the generated responses. To ensure
reproducibility and consistency, we follow the previous work [22, 30, 64, 68] to set the temperature
to 0 for all identical queries. For RQ3, we set the temperature to 0 by default to conduct a detailed
analysis of the non-determinism of LLMs. Additionally, we also set the temperature to 0.2 and
0.5 to evaluate the robustness of SlsDetector in real-world scenarios. For RQ4, we evaluate the
generalization capability of SlsDetector across various LLMs, excluding ChatGPT-4o. Specifically,
we utilize an open-source model, Llama 3.1 (405B) Instruct Turbo, and a proprietary model, Gemini
1.5 Pro. These models are among the top-ranked LLMs [11]. We also leverage DeepSeek V3, a
recently emerging and widely recognized model. As with RQ2, we set the temperature of LLMs to
0 to maintain consistent outputs across repeated queries.
Experimental Repetitions. For experiments involving stochastic processes, we follow established
best practices [30, 64], repeating each experiment five times and reporting the mean evaluation
metrics to reduce the impact of random variations.
Experimental Environment. Our experiments were conducted on an Ubuntu 18.04.4 LTS server
with an Intel Xeon (R) 4-core processor and 24GiB ofmemory. The LLMswere accessed through their
respective APIs. While all methods are implemented in Python, their misconfiguration detection
capabilities are independent of the underlying programming language.

5 EVALUATION RESULTS
This section presents the results of each research question.

5.1 RQ1: Effectiveness of SlsDetector and Data-Driven Method
This section explores the effectiveness of SlsDetector in comparison to the data-driven method.
SlsDetector has a significant advantage in the effectiveness aspect. Table 3 presents their results in
detecting misconfigurations in serverless applications. Specifically, SlsDetector achieves a 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
of 72.88%, 𝑟𝑒𝑐𝑎𝑙𝑙 of 88.18%, and 𝐹1-𝑠𝑐𝑜𝑟𝑒 of 79.75%. In contrast, the data-driven method, with its
default threshold of 5%, only reaches a 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 19.06%, 𝑟𝑒𝑐𝑎𝑙𝑙 of 70.78%, and 𝐹1-𝑠𝑐𝑜𝑟𝑒 of 30.03%.
SlsDetector outperforms the data-driven method, increasing 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 by 53.82 percentage points,
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Table 4. RQ1: Results* of TP, FN, FP, and TN for data-driven method and SlsDetector .

Methods 308 misconfigured parameters 4,108 correct configuration parameters
TP FN FP TN

Data-driven method (default) 218 (70.78%) 90 (29.22%) 926 (22.54%) 3,182 (77.46%)
SlsDetector (default) 272 (88.31%) ✓ 36 (11.69%) ✓ 102 (2.48%) ✓ 4,006 (97.52%) ✓
* Higher TP and TN are preferable, while lower FN and FP are desired.

Table 5. RQ1: Results of TP, FN, FP, and TN for the data-driven method with different thresholds 𝛼 .

Methods 308 misconfigured parameters 4,108 correct configuration parameters
TP FN FP TN

Data-driven method with 10% threshold 199 109 925 3,183
Data-driven method with 3% threshold 216 92 931 3,177
Data-driven method with 1% threshold 217 91 934 3,174

𝑟𝑒𝑐𝑎𝑙𝑙 by 17.40 percentage points, and 𝐹1-𝑠𝑐𝑜𝑟𝑒 by 49.72 percentage points, showing its superior
effectiveness.
We investigate why the data-driven method produces less effective results. One major issue is

its low 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (19.06%) and 𝐹1-𝑠𝑐𝑜𝑟𝑒 (30.03%). We further observe TP, FN, FP, and TN values
obtained by the data-driven method across all configuration parameters, as shown in Table 4. Results
show that the FP value is 926, indicating that 22.54% of the 4,108 correct configuration parameters
are mistakenly flagged as misconfigurations. In contrast, on average, SlsDetector misclassifies only
2.48% of correct configuration parameters as misconfigurations. Thus, the low effectiveness of the
data-driven method is attributed to high false positives. The data-driven method learns configu-
ration patterns based on historical data, which mainly includes previously used configurations.
This reliance makes it difficult to accurately identify configurations that are either rare or newly
supported, resulting in numerous false positives. Thus, the data-driven method fails to detect some
valid configurations that are indeed supported, leading to its low 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝐹1-𝑠𝑐𝑜𝑟𝑒 .

We also compare the effectiveness of the data-driven method under different thresholds 𝛼 : 10%,
3%, and 1%, with the results presented in Table 3. As 𝛼 decreases from 10% to 1%, the evaluation
metrics show improvement. Specifically, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 increases from 17.70% to 18.85%, 𝑟𝑒𝑐𝑎𝑙𝑙 rises
from 64.61% to 70.45%, and 𝐹1-𝑠𝑐𝑜𝑟𝑒 improves from 27.79% to 29.75%. To further explore the reasons
for their changes, we give TP, FN, FP, and TN results of the data-driven method under different
thresholds, as shown in Table 5. The primary reason for improvements is that lower 𝛼 mines
more dependencies among entries or values. This enables the accurate identification of a larger
number of misconfigured parameters. Specifically, the TP value for the data-driven method at a 10%
threshold is 199, whereas at a 1% threshold, it increases to 217. This improvement leads to a higher
𝑟𝑒𝑐𝑎𝑙𝑙 , increasing from 64.61% to 70.45%. However, a lower 𝛼 also increases the risk of generating
potentially invalid dependencies, resulting in correctly configured parameters being mistakenly
flagged as misconfigurations. This is evident from the FP values: the FP value for the data-driven
method at a 10% threshold is 925, while at a 1% threshold, it increases to 934. As a result, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
shows only a modest improvement, from 17.70% to 18.85%. For 𝐹1-𝑠𝑐𝑜𝑟𝑒 , lowering 𝛼 enhances the
effectiveness of the data-driven method, reaching a value of 29.75%. However, it still significantly
lags behind the 79.75% achieved by SlsDetector .

In addition, we observe that a threshold of 5% for the data-driven method yields superior results
compared to 1%, 3%, and 10%, suggesting that 5% is an optimal threshold for the data-driven method
in this scenario. In the threshold of 5%, the FP-growth algorithm can effectively mine relationships
without losing valid dependencies or generating an excessive number of invalid dependencies.
However, even at 5%, the effectiveness of the data-driven method remains significantly lower than
that of SlsDetector , with particularly low 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝐹1-𝑠𝑐𝑜𝑟𝑒 .
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Table 6. RQ1: The number of misconfigured parameters correctly identified as misconfigured across different
categories for the data-driven method and our approach.

Methods
Misconfigured

resource types (90)
Misconfigured
entries (108)

Misconfigured
values (48)

Misconfigured entry
dependencies (39)

Misconfigured value
dependencies (23)

Data-driven
method 89 (98.89%) ✓ 79 (73.15%) 25 (52.08%) 12 (30.77%) 10 (43.48%)

SlsDetector 84 (93.33%) 93 (86.11%) ✓ 43 (89.58%) ✓ 38 (97.44%) ✓ 19 (82.61%) ✓

To assess the ability of different methods to identify various types of misconfigurations, we
analyze the number of misconfigured parameters correctly detected across different categories by
our approach and the data-driven method. As shown in Table 6, the data-driven method demon-
strates a higher detection rate for resource type errors (98.89%) compared to SlsDetector (93.33%).
This suggests that the 701 historical configuration samples used by the data-driven method cover
the most commonly applied resource types, leading to a stronger effectiveness in this category.
Resource types are relatively high-level objects that encompass multiple configuration entries,
making them less numerous and easier to match against historical data. However, the detection rate
of SlsDetector in this category remains high, exceeding 90% with only a minimal gap. In addition,
in most other misconfiguration categories, SlsDetector outperforms the data-driven method. Specif-
ically, SlsDetector identifies a higher proportion of errors in configuration entries (86.11%), values
(89.58%), entry dependencies (97.44%), and value dependencies (82.61%). The lower effectiveness
of the data-driven method in these categories may be attributed to several factors. First, many
configuration entries and values in real-world settings may not have been previously encoun-
tered in historical data, leading to gaps in coverage. Second, constraints governing values may
be incomplete or underrepresented in the dataset, limiting the effectiveness of historical value
matching. Finally, implicit dependencies—particularly those related to entry relationships and
value relationships, which are complex and context-dependent, making them difficult to extract
purely from past configurations. These results indicate the advantages of SlsDetector in detecting a
wider range of misconfigurations, especially in cases where historical data is insufficient in the
data-driven method to generalize to unseen configuration scenarios.

Ans. to RQ1: SlsDetector , which does not rely on learning from a large number of real
examples, achieves a 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 72.88%, 𝑟𝑒𝑐𝑎𝑙𝑙 of 88.18%, and 𝐹1-𝑠𝑐𝑜𝑟𝑒 of 79.75%, surpassing
data-driven methods across all metrics. It shows significant improvements, with increases of
53.82 percentage points in 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 17.40 percentage points in 𝑟𝑒𝑐𝑎𝑙𝑙 , and 49.72 percentage
points in 𝐹1-𝑠𝑐𝑜𝑟𝑒 . These results suggest the high effectiveness of SlsDetector .

5.2 RQ2: Effectiveness of SlsDetector and LLM-based Baselines
We explore the effectiveness of SlsDetector in comparison to the basic LLM method and other
alternative methods (separated LLM method and few-shot LLM method) using the default ChatGPT-
4o for detecting misconfigurations in serverless applications. Table 7 presents their results, showing
that SlsDetector is more effective than the basic LLM method and other alternative methods.
Specifically, SlsDetector achieves a 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 72.88%, a 𝑟𝑒𝑐𝑎𝑙𝑙 of 88.18%, and an 𝐹1-𝑠𝑐𝑜𝑟𝑒 of 79.75%.
In contrast, the basic LLM method achieves a 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 51.65%, 𝑟𝑒𝑐𝑎𝑙𝑙 of 65.00%, and an 𝐹1-𝑠𝑐𝑜𝑟𝑒
of 57.55%. For the separated LLM method, the results indicate a 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 48.20%, a 𝑟𝑒𝑐𝑎𝑙𝑙 of
87.73%, and an 𝐹1-𝑠𝑐𝑜𝑟𝑒 of 62.20%. The few-shot LLMmethod achieves a 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 70.10%, a 𝑟𝑒𝑐𝑎𝑙𝑙
of 66.95%, and an 𝐹1-𝑠𝑐𝑜𝑟𝑒 of 68.43%. For specific analyses, SlsDetector significantly outperforms
the basic LLM methods across all evaluation metrics, with improvements of 21.23 percentage points
in 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 23.18 percentage points in 𝑟𝑒𝑐𝑎𝑙𝑙 , and 22.20 percentage points in 𝐹1-𝑠𝑐𝑜𝑟𝑒 . For the
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Table 7. RQ2: Results about SlsDetector and the compared LLM-based methods using the default LLM
(ChatGPT-4o).

Baseline 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙 𝐹1-𝑠𝑐𝑜𝑟𝑒 Our Approach 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙 𝐹1-𝑠𝑐𝑜𝑟𝑒

Basic LLM
method

51.65% 65.00% 57.55% SlsDetector
(vs Basic LLM
method)

72.88%
(↑ 21.23%)

88.18%
(↑ 23.18%)

79.75%
(↑ 22.20%)

Separated
LLM
method

48.20% 87.73% 62.20% SlsDetector (vs
Separated LLM
method)

72.88%
(↑ 24.67%)

88.18%
(↑ 0.45%)

79.75%
(↑ 17.55%)

Few-shot
LLM
method

70.10% 66.95% 68.43% SlsDetector (vs
Few-shot LLM
method)

72.88%
(↑ 2.78%)

88.18%
(↑ 21.23%)

79.75%
(↑ 11.32%)

Table 8. RQ2: Results of TP, FN, FP, and TN for the compared LLM-based methods and SlsDetector ,
on average.

Methods 308 misconfigured parameters 4,108 correct configuration parameters
TP FN FP TN

Basic LLM method (default) 200 (64.94%) 107 (34.74%) 188 (4.58%) 3,920 (95.42%)
Separated LLM method (default) 270 (87.66%) ✓ 38 (12.34%) ✓ 291 (7.08%) 3,817 (92.92%)
Few-shot LLM method (default) 207 (67.21%) 102 (33.12%) 88 (2.14%) ✓ 4020 (97.86%) ✓
SlsDetector (default) 272 (88.31%) ✓ 36 (11.69%) ✓ 102 (2.48%) ✓ 4,006 (97.52%) ✓
* Higher TP and TN are preferable, while lower FN and FP are desired.

separated LLM method, SlsDetector also shows significant improvements in 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝐹1-𝑠𝑐𝑜𝑟𝑒 ,
with increases of 24.67 and 17.55 percentage points, respectively. Compared to the few-shot LLM
method, SlsDetector significantly achieves gains of 21.23 and 11.32 percentage points on the metrics
of 𝑟𝑒𝑐𝑎𝑙𝑙 and 𝐹1-𝑠𝑐𝑜𝑟𝑒 , respectively. Overall, these results indicate that the compared methods are
less effective than our approach across all evaluation metrics.

We analyze the factors contributing to the lower effectiveness of the compared methods. Table 8
presents TP, FN, FP, and TN values obtained by each method across all configuration parameters.
The results reveal that the basic LLM and few-shot LLM methods exhibit low TP values of 200 and
207, correctly identifying only 64.94% and 67.21% of the 308 misconfigured parameters, respectively.
In contrast, SlsDetector and the separated LLM method accurately detect an average of 272 (88.31%)
and 270 (87.66%) misconfigured parameters, respectively. Although the separated LLM method
achieves a 𝑟𝑒𝑐𝑎𝑙𝑙 comparable to SlsDetector , indicating that most true misconfigured parameters are
correctly identified, it suffers from a lower 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (48.20%) and 𝐹1-𝑠𝑐𝑜𝑟𝑒 (62.20%). This suggests
a higher proportion of correctly configured parameters being mistakenly flagged as misconfigured,
as reflected by its high FP value (291, 7.08%) in Table 8. For the few-shot method, while it maintains
a low FP value (2.14%), it struggles with low TP (67.21%), leading to a lower 𝑟𝑒𝑐𝑎𝑙𝑙 (66.95%) and 𝐹1-
𝑠𝑐𝑜𝑟𝑒 (68.43%) due to its reduced ability to correctly identify true misconfigured parameters. Overall,
these analyses demonstrate that SlsDetector outperforms the compared methods. By leveraging
multi-dimensional constraints, our approach achieves a better balance between 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 ,
effectively reducing false positives while maintaining high misconfiguration detection accuracy.
To further examine the factors influencing detection effectiveness, we analyze the average

number of correctly identified misconfigured parameters across different categories for both the
baselines and our approach. As shown in Table 9, the basic LLM and few-shot methods consistently
underperform compared to SlsDetector across all categories, detecting fewer errors in resource types
(68.89% and 66.67%), entries (76.85% and 63.89%), values (81.25% and 77.08%), entry dependencies
(17.95% and 71.79%), and value dependencies (52.17% and 52.17%). In contrast, SlsDetector achieves
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Table 9. RQ2: The average number of misconfigured parameters correctly identified as misconfigured across
different categories for the compared LLM-based methods and our approach SlsDetector .

Methods Resource types (90) Entries (108) Values (48) Entry
dependencies (39)

Value
dependencies (23)

Basic LLM method 62 (68.89%) 83 (76.85%) 39 (81.25%) 7 (17.95%) 12 (52.17%)
Separated LLM method 84 (93.33%) 88 (81.48%) 42 (87.50%) 34 (87.18%) 21 (91.30%)
Few-shot LLM method 60 (66.67%) 69 (63.89%) 37 (77.08%) 28 (71.79%) 12 (52.17%)

SlsDetector 84 (93.33%) 93 (86.11%) 43 (89.58%) 38 (97.44%) 19 (82.61%)

higher detection effectiveness, identifying 93.33% of misconfigured resource types, 86.11% of entries,
89.58% of values, 97.44% of entry dependencies, and 82.61% of value dependencies. These results
confirm that each constraint incorporated into SlsDetector contributes positively to detecting
corresponding misconfigurations.
For the basic LLM method, the most significant gap between basic LLM and SlsDetector is

observed in entry dependency detection. Further analysis reveals that the basic LLM method
struggles to identify cross-entry dependencies, particularly those involving cloud service resources
that must co-occur with event sources in serverless functions. For instance, the configuration entry
RestApiId under an event source of type “Api” should be associated with configuration entries of
the “AWS::Serverless::Api” resource type. The basic LLM method fails to capture such relationships,
leading to a high number of undetected misconfigurations. The few-shot LLM method performs
worse than both SlsDetector and the basic LLM method in detecting misconfigured configuration
entries. This is because configuration entries are widely distributed across diverse resource types,
making it challenging to generalize simple examples of the few-shot LLM method across all
configurations. The few-shot prompting in the few-shot LLM method lacks sufficient coverage
of constraint detection and contextual awareness, limiting its ability to guide accurate detection
across a wide variety of configuration entries. In addition, the separated LLM method achieves
comparable 𝑟𝑒𝑐𝑎𝑙𝑙 to SlsDetector , indicating that it can accurately detect misconfigurations across
different categories, as shown in Table 9. However, it suffers from a high false positive (FP) rate,
as correctly configured parameters are frequently misclassified as misconfigured. This indicates
that splitting multi-dimensional constraints into separate prompts and integrating their results
is insufficient for effective misconfiguration detection. A more holistic approach, incorporating
multiple interdependent constraints, is essential to enhance effectiveness.
Overall, these results highlight the limitations of relying on the raw capabilities of LLMs (ba-

sic LLM method), splitting multi-dimensional constraints into separate prompts (separated LLM
method), and employing few-shot prompting with a small sample set (few-shot method). These
baselines rely on isolated prompts or limited examples. Another possible reason for their weak
performance is that they receive less attention during prompt engineering. The effectiveness of
SlsDetector stems from its ability to integrate multi-dimensional constraints holistically, ensuring
that LLM-based inference is guided by contextual dependencies. These constraints are systemati-
cally designed across various configuration dimensions, allowing SlsDetector to capture intricate
relationships to obtain more effective misconfiguration detection.

Ans. to RQ2: SlsDetector outperforms the LLM-based baseline methods across all metrics using
the default ChatGPT-4o. Results also suggest that integrating multi-dimension constraints is
beneficial for handling misconfiguration detection in serverless applications.
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Table 10. RQ3: Evaluation metrics results of SlsDetector across five repetitions.

LLM Factor Metrics Repetition 1 Repetition 2 Repetition 3 Repetition 4 Repetition 5 Mean

temperature=0
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 71.83% 70.78% 70.35% 75.28% 76.14% 72.88%
𝑟𝑒𝑐𝑎𝑙𝑙 91.88% 91.23% 84.74% 86.04% 87.01% 88.18%
𝐹1-𝑠𝑐𝑜𝑟𝑒 80.63% 79.72% 76.88% 80.30% 81.21% 79.75%

temperature=0.2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 67.82% 74.30% 71.71% 72.18% 73.86% 71.97%
𝑟𝑒𝑐𝑎𝑙𝑙 82.79% 86.36% 83.12% 85.06% 84.42% 84.35%
𝐹1-𝑠𝑐𝑜𝑟𝑒 74.56% 79.88% 76.99% 78.09% 78.79% 77.66%

temperature=0.5
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 77.35% 71.05% 73.70% 71.24% 71.84% 73.04%
𝑟𝑒𝑐𝑎𝑙𝑙 85.39% 86.04% 82.79% 87.66% 81.17% 84.61%
𝐹1-𝑠𝑐𝑜𝑟𝑒 81.17% 77.83% 77.98% 78.60% 76.22% 78.36%

5.3 RQ3: Impact of Non-determinism on SlsDetector
We explore how the non-determinism of LLMs impacts our evaluation results, with a temperature
of 0 by default. As detailed in Section 4.5, each experiment is repeated five times. We analyze
their results shown in Table 10. Results show that while the non-determinism of LLMs influences
evaluation results, its effect is relatively minor, with a variance of about 5 percentage points. When
the temperature of LLMs is 0, SlsDetector consistently achieves high effectiveness across different
trials. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ranges from 70.35% to 76.14%, 𝑟𝑒𝑐𝑎𝑙𝑙 varies between 84.74% and 91.88%, and 𝐹1-
𝑠𝑐𝑜𝑟𝑒 falls between 76.88% and 81.21%. Even the lowest values, i.e., 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 at 70.35%, 𝑟𝑒𝑐𝑎𝑙𝑙 at
84.74%, 𝐹1-𝑠𝑐𝑜𝑟𝑒 at 76.88%, are still higher than 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (19.06%), 𝑟𝑒𝑐𝑎𝑙𝑙 (70.78%), and 𝐹1-𝑠𝑐𝑜𝑟𝑒
(30.03%) of the data-driven approach. Furthermore, the lowest metric values for SlsDetector remain
approximately 20 percentage points higher than the average results (i.e., 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 at 51.65%, 𝑟𝑒𝑐𝑎𝑙𝑙
at 65.00%, 𝐹1-𝑠𝑐𝑜𝑟𝑒 at 57.55%) of the basic LLM-based method. This suggests that our conclusions
regarding SlsDetector are not affected by the non-determinism of LLMs.
To further assess the robustness of SlsDetector in real-world scenarios, we analyze the experi-

mental results at temperatures 0.2 and 0.5. As shown in Table 10, there is a relatively minor impact,
with a variance of approximately 5 percentage points on the same evaluation metric. Despite these
variations, the effectiveness remains consistently high across all evaluation metrics, comparable to
the default setting (temperature = 0). Specifically, when temperature = 0.2, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ranges from
67.82% to 74.30%, 𝑟𝑒𝑐𝑎𝑙𝑙 varies between 82.79% and 86.36%, and 𝐹1-𝑠𝑐𝑜𝑟𝑒 falls between 74.56% and
79.88%, with respective differences of 6.48, 3.57, and 5.32 percentage points. When temperature =
0.5, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ranges from 71.05% to 77.35%, 𝑟𝑒𝑐𝑎𝑙𝑙 varies between 81.17% and 87.66%, and 𝐹1-𝑠𝑐𝑜𝑟𝑒
falls between 76.22% and 81.17%, with respective differences of 6.31, 6.49, and 4.95 percentage points.
Overall, even the lowest observed values surpass those of the data-driven approach. Additionally,
the lowest metrics values remain approximately 20 percentage points higher than the average
results of the compared basic LLM method. These results confirm that SlsDetector maintains strong
robustness in real-world settings.

Ans. to RQ3: Our conclusions are not impacted by the non-determinism of LLMs.

5.4 RQ4: Generalization Capability of SlsDetector
To explore the generalization capability of SlsDetector , we use three additional LLMs: Llama 3.1
(405B) Instruct Turbomodel, Gemini 1.5 Pro model, and DeepSeek V3model. SlsDetector consistently
achieves high effectiveness across all metrics, with 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒 values exceeding
70%, regardless of the LLM utilized. Table 11 shows their results. Specifically, with the Llama 3.1
(405B) Instruct Turbo, SlsDetector achieves a 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 70.27%, 𝑟𝑒𝑐𝑎𝑙𝑙 of 78.38%, and an 𝐹1-𝑠𝑐𝑜𝑟𝑒
of 74.05%. With the Gemini 1.5 Pro model, SlsDetector yields a 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 71.72%, 𝑟𝑒𝑐𝑎𝑙𝑙 of 74.35%,
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Table 11. RQ4: Results about SlsDetector and basic LLM method using various LLMs.

Basic LLM
Method (BL) 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙 𝐹1-𝑠𝑐𝑜𝑟𝑒 SlsDetector 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙 𝐹1-𝑠𝑐𝑜𝑟𝑒

GPT-4o 51.65% 65.00% 57.55% GPT-4o (vs BL) 72.88%
(↑ 21.23%)

88.18%
(↑ 23.18%)

79.75%
(↑ 22.20%)

Llama 48.88% 58.38% 53.09% Llama (vs BL) 70.27%
(↑ 21.39%)

78.38%
(↑ 20.00%)

74.05%
(↑ 20.96%)

Gemini 44.41% 22.86% 30.11% Gemini (vs BL) 71.72%
(↑ 27.31%)

74.35%
(↑ 51.49%)

72.93%
(↑ 42.82%)

DeepSeek 56.59% 57.66% 57.11% DeepSeek (vs BL) 70.71%
(↑ 14.12%)

77.86%
(↑ 20.19%)

74.10%
(↑ 16.99%)

Gemini
with Type 45.91% 40.58% 43.06% Llama 3.1 8B 60.42% 75.06% 66.85%

and an 𝐹1-𝑠𝑐𝑜𝑟𝑒 of 72.93%. With the DeepSeek V3 model, SlsDetector yields a 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 70.71%,
𝑟𝑒𝑐𝑎𝑙𝑙 of 77.86%, and an 𝐹1-𝑠𝑐𝑜𝑟𝑒 of 74.10%. Among these, SlsDetector with ChatGPT-4o offers the
highest effectiveness, while SlsDetector with the Gemini 1.5 Pro model shows comparatively lower
metrics but still achieves a high 𝐹1-𝑠𝑐𝑜𝑟𝑒 of 72.93%.
We also evaluate the basic LLM method with different LLMs, shown in Table 11. We observe

considerable variability. While the basic LLM method achieves 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒
values approaching or exceeding 50% when using ChatGPT-4o, Llama 3.1 (405B) Instruct Turbo, and
DeepSeek V3, its effectiveness drops substantially with the Gemini 1.5 Pro model, where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
is 44.41%, 𝑟𝑒𝑐𝑎𝑙𝑙 is 22.86%, and 𝐹1-𝑠𝑐𝑜𝑟𝑒 is 30.11%. This indicates a key limitation of the basic LLM
method: its effectiveness is dependent on the specific LLM used. In contrast, SlsDetector provides
the ability to maintain consistent effectiveness across different models, showing its generalization.

We compare the effectiveness differences between SlsDetector and the basic LLM method when
using the same LLM. From Table 11, SlsDetector outperforms the basic LLM method by over 20
percentage points across all evaluation metrics, regardless of ChatGPT-4o and Llama 3.1 (405B)
Instruct Turbo models. For the Deepseek V3 model, SlsDetector also improves on all evaluation
metrics by almost 20 percentage points, which are respectively 14.12, 20.19, and 16.99. With the
Gemini 1.5 Pro model, SlsDetector outperforms the basic LLM method with even greater gains,
achieving 27.31 percentage points higher in 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 51.49 percentage points higher in 𝑟𝑒𝑐𝑎𝑙𝑙 ,
and 42.82 percentage points higher in 𝐹1-𝑠𝑐𝑜𝑟𝑒 . The effectiveness gap is especially pronounced
with Gemini 1.5 Pro, showing an effectiveness difference of around 50% in 𝑟𝑒𝑐𝑎𝑙𝑙 and 𝐹1-𝑠𝑐𝑜𝑟𝑒 ,
underscoring the effectiveness of our approach. The weak performance shown by the basic LLM
method when using the Gemini 1.5 Pro model is likely related to the type specification of the
configuration file given to the LLM, making it difficult for the LLM to infer the intended task.
In this situation, we try to explicitly specify the configuration file type when using the Gemini
1.5 Pro model in the basic LLM method. Specifically, we indicate that the configuration file is
the type of AWS SAM before performing misconfiguration detection. The obtained values for
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒 are 45.91%, 40.58%, and 43.06%, respectively. These results suggest
that explicitly specifying the file type leads to a modest improvement in performance across all
metrics, with a particular gain in 𝑟𝑒𝑐𝑎𝑙𝑙 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒 . While more misconfigurations are identified
under this setting, the performance gap, especially in 𝑟𝑒𝑐𝑎𝑙𝑙 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒 , remains significant,
at approximately 40%, when compared to our proposed approach. Therefore, the relatively weak
performance of the Gemini 1.5 Pro model appears to stem not primarily from the lack of type
specification in the prompt, but from intrinsic limitations of the Gemini model itself.
As consumer hardware becomes increasingly capable of running smaller-scale LLMs, such as

Llama 3.1 8B, evaluating the effectiveness of SlsDetector in smaller LLMs is crucial for real-world
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applicability. To investigate this, we apply the Llama 3.1 8B model to our approach and assess
its effectiveness. The results indicate that the obtained 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒 are 60.42%,
75.06%, and 66.85%, respectively. Although these values are relatively lower than those achieved
with larger LLMs (ChatGPT-4o, Gemini 1.5 Pro, Llama 3.1 405B, and DeepSeek V3), they remain
superior to the effectiveness of the basic LLM method using large-scale models, demonstrating
the effectiveness of our approach even with smaller LLMs. This underscores the adaptability and
effectiveness of SlsDetector even when applied to smaller, more accessible models. Thus, SlsDetector
shows promise for real-world applications, particularly in contexts where computational resources
may be constrained.

Ans. to RQ4: SlsDetector exhibits generalization capability, consistently achieving highly
effective results across various LLMs. In contrast, the effectiveness of the basic LLM method
varies significantly depending on the chosen LLM. When using the Gemini 1.5 Pro model,
SlsDetector outperforms the basic LLM method by approximately 50 percentage points in both
𝑟𝑒𝑐𝑎𝑙𝑙 and 𝐹1-𝑠𝑐𝑜𝑟𝑒 .

6 THREATS TO VALIDITY
Data Leakage Concerns. One potential risk when using LLMs is data leakage, as these models
are trained on vast datasets. Specifically, open-source configuration data may have been exposed to
the LLMs utilized in SlsDetector , raising concerns about memorization of our evaluated error-free
configurations available on platforms such as GitHub. However, during our evaluation, we found
that the model did not recognize outdated configuration values as correct, suggesting that the
error-free configurations we evaluated were not fully present in the LLM’s training data. Note that
outdated configuration values were manually corrected before our experimental evaluation.

Our evaluation data also includes both real-world and manually injected misconfigurations. The
ground truths for real-world errors are established through an analysis of developer discussions
on GitHub to identify root causes. Injected misconfigurations are deliberately introduced into
correct configurations through misconfiguration generation rules. These misconfigurations were
not exposed to the LLM during training. In addition, the number of configuration files evaluated
with errors (58 real-world + 26 injected = 84) significantly exceeded those without errors (26). Thus,
the likelihood of our effectiveness results being significantly affected by data leakage is negligible.
We also compare the effectiveness of the basic LLM method without our multi-dimensional

constraints. The basic LLM method yields a 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 51.65%, a 𝑟𝑒𝑐𝑎𝑙𝑙 of 65.00%, and an 𝐹1-
𝑠𝑐𝑜𝑟𝑒 of 57.55%, indicating low effectiveness. If our evaluation dataset had been exposed to the
LLMs, we would expect the basic LLM method to achieve significantly higher results. However,
the results do not reflect this, suggesting that our evaluation dataset was not exposed to the
LLMs. SlsDetector incorporates multi-dimensional constraints to detect the same evaluation dataset,
resulting in improved metrics: a 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 72.88%, a 𝑟𝑒𝑐𝑎𝑙𝑙 of 88.18%, and an 𝐹1-𝑠𝑐𝑜𝑟𝑒 of 79.75%.
These enhancements indicate that our design effectively boosts detection results, rather than being
influenced by potential data leakage.
Impact of LLMKnowledge Limitations. Since SlsDetector relies on the internal knowledge of the
LLMs, it may struggle with misconfigurations involving rarely used dependencies, a challenge faced
by traditional data-driven methods. To assess this, we analyze whether our approach encounters
similar limitations, particularly when handling seldom-used configuration dependencies. As shown
in Table 6, the data-driven method correctly identifies only 30.77% of misconfigured entry depen-
dencies and 43.48% of misconfigured value dependencies, whereas our approach achieves 97.44%
and 82.61%, respectively. These results suggest that LLMs possess broader internal knowledge,
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allowing them to detect a wider range of misconfigurations than data-driven methods. However,
100% accuracy is not achieved, indicating that LLMs have inherent knowledge limitations. Some
configurations may not be fully covered in the LLM’s pre-trained knowledge base, leading to occa-
sional misclassifications. Despite these challenges, our approach achieves significant improvements
over traditional data-driven methods in identifying misconfigured dependencies, highlighting the
advantages of leveraging LLMs for misconfiguration detection while also acknowledging their
inherent limitations.
Randomness Concerns. Randomness in evaluation results primarily stems from the inherent
nondeterminism of LLMs. To address this, we set a crucial parameter, specifically initializing temper-
ature as 0, to ensure that the model produces consistent outputs for the same input. While this can
reduce randomness, minor fluctuations may still arise due to underlying probabilistic mechanisms
within the model. To further minimize randomness, we conduct five independent experiments for
each experimental setup and use the mean results as the final outcome. By combining temperature
control with multiple experiment repetitions, we ensure that the impact of randomness on our
evaluation results is effectively minimized.
Deployment Evaluation Limitation. In our experimental evaluation, we do not conduct real-
world deployment to assess the effectiveness of our misconfiguration detection approach. Such
deployment introduces numerous uncontrolled variables, such as hardware differences, network
conditions, and external dependencies, making systematic evaluation highly challenging. This is
also why prior misconfiguration detection research [50, 55, 58] has commonly relied on curated
datasets of configuration files with known ground-truth errors rather than real-world deployment.
Our evaluation follows this established practice.

7 DISCUSSION
Generalization of SlsDetector. Although this paper primarily focuses on serverless computing
configurations, the design principles underlying SlsDetector are broadly applicable to various soft-
ware configuration contexts. The core methodology of SlsDetector is based on multi-dimensional
structural constraints, which define generalized detection rules by capturing fundamental con-
figuration components of serverless applications rather than domain-specific parameters. These
constraints operate at an abstract level, making them adaptable across different configurable sys-
tems without requiring extensive customization. This characteristic aligns with broader principles
in software configuration research [49, 54]. While serverless platforms like Google Cloud Functions
and Microsoft Azure Functions currently lack a formal configuration schema, our approach remains
applicable if standardized configuration objects are available. The core of SlsDetector relies on
analyzing configuration constraints rather than being tied to a specific cloud provider.
On the other hand, SlsDetector leverages LLMs for misconfiguration detection, allowing it to

support diverse configuration formats, including JSON, XML, infrastructure-as-code templates, and
program code. Since the detection process is structured around high-level constraints, adapting
SlsDetector to new environments primarily requires adjusting key constraint definitions. Further-
more, our evaluation in RQ4 demonstrates that SlsDetector maintains consistent effectiveness across
different LLMs, e.g., ChatGPT-4o, Gemini 1.5 Pro, Llama 3.1 (405B), and DeepSeek V3, suggesting
the generalization capability of SlsDetector . As fine-tuned LLMs continue to advance, the efficiency
of SlsDetector may further improve, making it a practical and scalable solution for a wide range of
software configuration systems.
Scope of Error Detection. The scope of this paper is misconfiguration detection within configu-
ration files of serverless applications. Therefore, if the application logic is implemented within the
configuration file, SlsDetector can detect related errors. We consider two cases: incorrect function
definitions and misconfigured function triggers. (1) For function definitions explicitly specified
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in the “Handler” entry of the configuration file, SlsDetector applies its configuration entry and
value checks to detect issues such as missing or improperly defined handlers. However, if function
definitions reside outside the configuration file (e.g., in the application’s source code), they are
beyond the scope of this work. SlsDetector is specifically designed to validate AWS SAM configu-
rations, not to perform general-purpose source code analysis. (2) Since function triggers are also
defined within the configuration file, SlsDetector can effectively detect their misconfigurations. It
leverages entry- and value-level dependency analyses to examine the relationships between event
sources and their corresponding functions, enabling the identification of incorrect event-trigger
bindings directly within the configuration. Ensuring completely error-free deployments requires a
combination of approaches, including misconfiguration detection, program analysis, and runtime
error detection and repair, similar to practices in traditional software development. This paper
focuses on misconfiguration detection as a critical step toward reliable deployment.
Design Choice. In the context of LLM-based code generation, many approaches rely on iterative
refinement guided by runtime feedback. However, such mechanisms typically require actual de-
ployment, which introduces significant variability and is not standard practice in misconfiguration
detection, as discussed in Section 6. Therefore, SlsDetector is designed to perform static misconfigu-
ration detection, rather than iterative refinement based on runtime feedback. Its primary goal is to
reduce early-stage deployment failures caused by configuration file errors, rather than to serve as a
comprehensive deployment verification.

8 RELATEDWORK
8.1 Serverless Computing
The increasing adoption of serverless computing has attracted widespread interest from the re-
search community, particularly within SE. A broad range of topics has been explored, including
literature reviews [60], evolution and current state [56], and analyses of serverless application
characteristics [26, 27]. Additional research has delved into the challenges faced by developers [61],
the development of stateful serverless applications [20], and methods for testing and debugging [38].
For example, a comprehensive literature review [60] was conducted to explore the breadth and
depth of serverless computing research. Eismann et al. [26] analyzed 89 serverless applications
to assess them from multiple dimensions. Wen et al. [61] identified 36 challenges developers face
when developing serverless applications, highlighting configuration issues as a prominent concern.
Despite these efforts, to the best of our knowledge, no prior work has addressed misconfiguration
detection in serverless computing. This paper fills this gap by introducing SlsDetector .

8.2 Traditional Misconfiguration Detection
Existing misconfiguration detection methods can be categorized into two types: white-box and
black-box approaches. White-box approaches [47, 55, 57, 58, 63, 65] generally focus on source
code or program analysis to identify misconfigurations within the codebase, relying on defined
domain-specific rules. For example, Rex [47] detected dependency violations between source code
and configurations that must be updated together. Ctest [55] identified configuration-induced
failures in code affected by configuration changes. SPEX [65] employed static program analysis to
infer configuration constraints, designing predefined rules from variables in the source code to
uncover misconfiguration vulnerabilities. However, these methods are not well-suited for detecting
misconfigurations in serverless applications, which rely on YAML-based configuration files rather
than source code structures. Serverless-specific misconfigurations, embedded in configuration files,
require new approaches that extend beyond traditional white-box techniques.
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Black-box approaches [50, 51, 59, 72, 73] are generally data-driven and rely on learning configu-
ration patterns from a dataset of example configurations. For instance, EnCore [72] used numerous
configurations to learn and customize rule templates, inferring correlations and detecting mis-
configurations in server applications. ConfigC [51] analyzed a dataset of correct configurations
to build a language model that could detect errors in new configurations. DRIVE [73] created a
Dockerfiles dataset and applied sequential pattern mining to extract frequent patterns, identifying
rule violations through heuristic-based reduction and human intervention. However, these data-
driven methods have inherent limitations: (i) They require a well-curated dataset, but ensuring
the completeness and correctness of such datasets is challenging. As a result, configurations not
represented in the training data may be missed, while normal configurations might be incorrectly
flagged as anomalies due to dataset gaps. (ii) To compensate for dataset issues, these methods incor-
porate domain-specific knowledge (e.g., customized rule templates), requiring significant manual
effort and continuous checking. These limitations hinder the practical application of data-driven
approaches. Our results on RQ1 show that such approaches are less effective in our scenario.

8.3 LLM-based Misconfiguration Detection
LLM-based approaches offer a promising alternative. LogConfigLocalizer [52] addressed configuration-
related error localization on Hadoop by leveraging log analysis and LLM. It worked by parsing
runtime log messages and comparing them with fault-free logs stored in a database. LogConfigLo-
calizer then used predefined rules and LLM to localize the suspected root-cause configuration
properties. However, LogConfigLocalizer primarily relies on runtime logs, which limits its ability to
detect misconfigurations. In contrast, our approach focuses on identifying misconfigurations prior
to deployment, offering an earlier intervention for preventing potential runtime errors. A recent
paper presented Ciri [43], an LLM-based configuration validator. It demonstrated the potential of
LLMs for detecting misconfigurations in systems such as Alluxio, Django, Etcd, and HDFS. However,
Ciri depends on an external database containing valid configurations, misconfigurations, related
questions, and ground-truth responses. Constructing this database is costly and challenging for var-
ious scenarios. In contrast, SlsDetector employs zero-shot prompting that does not require external
datasets, eliminating the need for predefined data. On the other hand, Ciri used a prompt without
any constraint, limiting its ability to detect dependencies [43]. Serverless applications have complex
configuration structures and stronger interdependencies, making simple prompt-based methods
less effective. Our results on RQ2 and RQ4 show that such a method (i.e., basic LLM method) is less
effective in our scenario. Instead, SlsDetector incorporates carefully designed multi-dimensional
constraints without predefined data, providing a more effective detection for serverless application
configurations.

9 CONCLUSION
Our work opens a promising research direction, showing that LLMs can effectively address con-
figuration issues in cloud applications built on emerging serverless computing. Specifically, we
introduced SlsDetector , the first LLM-based framework specifically designed for detecting mis-
configurations in serverless applications. It did not rely on learning from a large number of real
examples. SlsDetector leveraged advanced prompt engineering and zero-shot prompting to identify
configuration issues with minimal input effort. SlsDetector included a prompt generation com-
ponent that integrates the configuration file to be detected, task description, multi-dimensional
constraints, and customized responses. Particularly, the multi-dimensional constraints are tailored
to the characteristics of serverless applications, offering context-aware guidance using the Chain
of Thought technique. The customized responses focused on both content and format demands,
ensuring that the LLM outputs deterministic and clearly explained detection results. Our evaluation

, Vol. 1, No. 1, Article . Publication date: June 2025.



LLM-Based Misconfiguration Detection for AWS Serverless Computing 25

on a curated dataset of 110 configuration files demonstrated that SlsDetector achieved a precision
of 72.88%, recall of 88.18%, and F1-score of 79.75%, surpassing state-of-the-art data-driven methods
by 53.82, 17.40, and 49.72 percentage points, respectively. Furthermore, we investigated the gener-
alization capability of SlsDetector across various LLMs, finding that it consistently maintains high
effectiveness across these models.

A promising direction for future work is the integration of hybrid static-dynamic misconfigura-
tion detection. While static configuration analysis enables early identification of many classes of
configuration issues, dynamic behaviors introduced during deployment present complementary
challenges. In future work, we plan to augment our static detection results with selectively captured
runtime metadata, broadening the coverage of misconfiguration detection.
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