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Serverless computing is a popular cloud computing paradigm that has found widespread adoption across
various online workloads. It allows software engineers to develop cloud applications as a set of functions
(called serverless functions). However, accurately measuring the performance (i.e., end-to-end response latency)
of serverless functions is challenging due to the highly dynamic nature of the environment in which they
run. To tackle this problem, a potential solution is to apply checks of performance testing techniques to
determine how many repetitions of a given serverless function across a range of inputs are needed to cater to
the performance fluctuation. However, the available literature lacks performance testing approaches designed
explicitly for serverless computing. In this paper, we propose SCOPE, the first serverless computing-oriented
performance testing approach. SCOPE takes into account the unique performance characteristics of serverless
functions, such as their short execution durations and on-demand triggering. As such, SCOPE is designed as a
fine-grained analysis approach. SCOPE incorporates the accuracy check and the consistency check to obtain
the accurate and reliable performance of serverless functions. The evaluation shows that SCOPE provides
testing results with 97.25% accuracy, 33.83 percentage points higher than the best currently available technique.
Moreover, the superiority of SCOPE over the state-of-the-art holds on all functions that we study.

CCS Concepts: • Computer systems organization→ Cloud computing; • Software and its engineering
→ Software performance.

Additional Key Words and Phrases: serverless computing, performance testing

1 INTRODUCTION
Serverless computing is becoming a mainstream cloud computing paradigm that has been widely
adopted in various online workloads like big data analytics, deep learning, large language models
(LLM), and so on [31, 52, 60, 80–82, 85, 91]. It frees software engineers from tedious and error-prone
infrastructure management and allows them to focus on developing a cloud application as a set
of event-driven functions, called serverless functions [75]. To support the execution of serverless
functions, mainstream cloud vendors have provided serverless platforms, such as AWS Lambda [2]
and Google Cloud Functions [14]. It is predicted that the market size of serverless computing is
projected to grow significantly, reaching $41 billion in 2028, compared to $19 billion in 2024 [19]. It
indicates that an increasing number of developers will pivot to develop serverless functions.
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The surging popularity of serverless computing has led to heightened interest among diverse
research communities, including Software Engineering (SE) and Systems [74]. Notably, performance
stands out as the most extensively studied aspect in serverless computing research [74]. However,
it is challenging to obtain accurate and reliable performance (i.e., end-to-end response latency)
measurements for serverless functions due to the following reasons. Serverless platforms, where
serverless functions are executed, have a highly dynamic cloud underlying infrastructure. This
introduces various challenges for accurate and reliable performance measurement such as multi-
tenancy, resourcemanagement, and networking issues [32, 33, 37, 50, 54, 64, 83]. Serverless functions
are generally short-lived tasks that require a small memory size to be configured to provide the
resource [67, 68]. This results in a high-density deployment environment, increasing the risk
of performance fluctuations [63, 77, 89]. Under these circumstances, serverless functions can
produce highly fluctuating performance results even with multiple identical runs when executed on
serverless platforms. Moreover, developers design a variety of serverless functions with different
functionalities, possibly with different levels of performance fluctuations.

To alleviate this issue, a straightforward way is to set a fixed number of measurement repetitions
for all evaluated serverless functions, according to experiment repetitions used in prior studies.
The results obtained from measurements are used as the accurate and reliable performance for the
serverless function. However, due to the diversity of serverless functions developed by various
developers, it is evident that not all serverless functions require or benefit from the same level
of repetition. Therefore, using a fixed number of repetitions is unreasonable and ineffective in
determining the actual performance for different serverless functions executed on different plat-
forms. A better strategy would be to devise a method for recommending a customized number of
repetitions for each serverless function, thereby achieving a more accurate and reliable performance
evaluation.
To achieve this goal, a possible solution is to use performance testing techniques, standard

procedures for obtaining and evaluating the performance of a software application in SE [24, 35, 90].
Generally, the performance testing technique is conducted by repeatedly executing the application-
under-test with a set of inputs until a stopping criterion deems that the performance results
obtained from the test are accurate [21, 35, 36, 57, 59, 70]. Performance testing techniques are
important for serverless computing. Serverless functions can be part of user-facing features where
end-to-end response time directly impacts user experience, thus demanding performance-critical
considerations. Other serverless functions can be invoked infrequently, such as end-of-month
reports or daily reminder emails. Although such functions are often tolerant of cold start latencies,
characterizing their performance remains crucial to ensure that service-level objectives (SLOs) are
met and to make informed cost-benefit decisions regarding their deployment. Given the diversity of
use cases, it is necessary for the developers of serverless functions to employ effective performance
testing techniques. However, to the best of our knowledge, the literature lacks a performance
testing approach tailored to serverless functions.
In this paper, we propose SCOPE, the first serverless computing-oriented performance testing

approach. SCOPE takes into account the unique performance characteristics of serverless functions,
such as their short execution durations and on-demand triggering. Our primary goal with SCOPE
is to provide a novel stopping criterion to determine a specific repetition number to obtain highly
accurate and reliable performance profiles for each given serverless function. SCOPE poses a strict
requirement on accuracy and utilizes the accuracy check and the consistency check to determine the
stopping criterion for repeated runs. The accuracy check first utilizes the non-parametric confidence
interval to analyze whether a specific performance profile is accurate. For the performance result
set of the current test, if most of its performance is determined to be accurate, this set is considered
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Fig. 1. The process of using serverless computing.

accurate. The consistency check examines whether the performance result set of the current test
and the performance result set obtained from the previous run intervals are both accurate. If this is
true, SCOPE deems that the performance result set of the current test is sufficient to represent the
accurate and reliable performance of the serverless function and terminate the repeated runs.

We evaluate the effectiveness of SCOPE and state-of-the-art techniques developed for traditional
cloud applications by investigating 65 serverless functions from existing work [76]. We use the
performance results of 1,000 identical runs (which is the largest number of runs used in the literature)
of a serverless function as its ground-truth performance. The evaluation of the 65 serverless
functions shows that SCOPE provides testing results with 97.25% accuracy, 33.83 percentage points
higher than the best currently available technique. Furthermore, SCOPE is widely effective, as it
outperforms state-of-the-art techniques on all serverless functions that we consider. In contrast to
the indiscriminate implementation of a fixed repetition strategy, SCOPE shows enhanced flexibility
and efficacy in determining a specific repetition and achieving accurate and reliable performance
across diverse serverless functions.

To the best of our knowledge, our research is the first to explore both (1) a performance testing
technique specifically tailored for serverless computing and (2) an empirical study on the effective-
ness of performance testing techniques in serverless computing. These contributions constitute the
novelty of our work. We also provide a public repository [17] including all the data and code used
in this study to facilitate future replication and extension.

2 BACKGROUND
2.1 Serverless computing
In serverless computing, developers focus on application implementation based on serverless
functions. Fig. 1 depicts the process of using serverless computing for developers. (1) First, developers
implement event-driven serverless functions using high-level programming languages, e.g., Python
and JavaScript [1, 16, 29, 30]. (2) Second, developers can define specific rules that bind their functions
to the corresponding events, e.g., HTTP requests and data updates in cloud storage. (3) Then,
serverless functions are deployed to the serverless platform along with dependent libraries, e.g.,
Numpy. During this phase, developers can provide specific function configurations, e.g., memory
size and timeout time [34, 74]. (4) When the serverless function is triggered by predefined events,
the serverless platform automatically launches new function instances (e.g., containers or virtual
machines) or reuses existing ones to process requests. (5) Upon completion of executions, the
serverless platform logs information related to function execution, allowing developers to access
and review it later. (6) Finally, developers pay for the cost according to the number of requests and
the resources actually allocated or consumed by the serverless function [48, 74].

2.2 Serverless function performance
The performance of serverless computing has gained widespread attention in the serverless com-
puting literature [34, 45, 56, 74]. Researchers have proposed various solutions to optimize serverless
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function performance [27, 48, 49, 67, 68, 84, 86]. Serverless function performance can be classified
into two types: cold-start performance and warm-start performance. When the serverless function
is executed on newly launched instances in the serverless platform, it will produce cold-start
performance. If the serverless platform has reusable instances for the same function to handle
requests within a short keep-alive time (e.g., 7 minutes for AWS Lambda [6]), the serverless function
will produce warm-start performance.

The serverless function performance that we focus on is end-to-end response latency, i.e., the time
period between sending a request to invoke a serverless function hosted in the serverless platform
and receiving the execution result of the function. End-to-end response latency is the most common
metric used for performance evaluation and optimization of serverless functions [29, 54, 75, 79, 89].
It contains the serverless platform’s preparation time, the function’s task processing time, etc. In
this paper, we study both cold-start and warm-start end-to-end response latencies.

2.3 Motivation
We present examples of serverless function performance across multiple runs. For instance, we
observe Func52 and Func30, which are part of our dataset described in Section 4.3. The maximum
and minimum values of the cold-start end-to-end response latencies of Func52 can vary by as much
as 45.83% between runs. Similarly, the warm-start end-to-end response latencies of Func30 can differ
by 369.24%, with the maximum value being 4.69 times greater than the minimum. These examples
show the significant variability in serverless function performance, even with repeated, identical
runs. Furthermore, as shown in Fig. 15, the bars represent the number of repetitions needed to
achieve reliable performance across different serverless functions. The results demonstrate that
each serverless function requires a tailored number of repetitions to ensure accuracy and reliability.
Overall, these observations emphasize the need for a method that recommends a customized
number of repetitions for each serverless function to obtain accurate and reliable performance.

3 OUR PERFORMANCE TESTING APPROACH: SCOPE
It is crucial to obtain accurate and reliable performance for serverless functions. However, the
existing serverless computing literature does not offer performance testing techniques specifically
for it. Therefore, designing a performance testing approach for serverless computing is necessary.
Generally, the primary goal of a performance testing approach is to determine whether the tested
performance results accurately reflect the actual performance, guiding the decision on whether
additional repeated runs from another run interval are necessary. The run interval refers to the
specific number of repetitions or trials needed for executing the serverless function. Within each
run interval, the serverless function is executed multiple times to acquire new performance data
samples. To motivate our approach design, we first summarize key characteristics of serverless
functions.

3.1 Key characteristics
• Serverless functions run for short duration. The response latency of serverless functions is often
measured in milliseconds [67, 89]. However, short-lived serverless functions executed on serverless
platforms with highly dynamic cloud underlying infrastructure can exhibit significant performance
fluctuations [63, 76, 89].
• Serverless functions are executed at small run intervals. In one run interval of performance testing,
which refers to the specific number of repetitions required to execute the serverless function,
the number of performance results obtained is generally small. This is because the serverless
computing scenario inherently uses small repetitions. (1) Serverless functions can be triggered
at any time, allowing developers and researchers to obtain performance results as needed. Small
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Fig. 2. The workflow of SCOPE.

repetitions serve as the foundation, as developers and researchers pay based on the number of
invocations and resource consumption. Consequently, they tend to invoke serverless functions
with small repetitions on demand. (2) In research work on serverless computing, prior experimental
evaluations have employed a predefined number of runs performed on serverless functions for
performance analysis. This number is generally small repetitions [77], e.g., 3, 10, and 20 times, thus
obtaining a small number of performance results.
Based on these key characteristics, there is a pressing need for a fine-grained, high-accuracy

performance testing approach specifically tailored to serverless computing. Such an approach
would facilitate accurate and reliable performance measurements and obtain a specified number of
repetitions for serverless functions.

3.2 Overview of SCOPE
We propose SCOPE, a performance testing approach for serverless computing. SCOPE is an auto-
mated performance tester that provides accurate and reliable performance for serverless functions.
To use SCOPE, developers collect the performance result set of a function with a given input from
the serverless platform and provide it to SCOPE. SCOPE determines whether this set accurately
reflects real performance and whether more repeated runs from another run interval are necessary.
A run interval represents the specific number of repetitions required to trigger and execute the
serverless function. SCOPE provides a fine-grained and high-accuracy guaranteed stopping criterion
to determine if the performance result set of the current test is sufficiently accurate and reliable to
terminate the execution and collection of further repeated runs. If the performance result set of
the current test passes this stopping criterion, it is considered accurate and reliable to represent
the actual performance of the serverless function. Otherwise, developers are notified to collect
performance results of the serverless function by requesting more repeated runs from another run
interval.

Fig. 2 gives the workflow of SCOPE. First, developers input a set of end-to-end response latencies
generated by the serverless function to be evaluated. These performance results are denoted as
𝑆𝑐𝑢𝑟 (Step 1). Second, SCOPE calculates the required values (e.g., the non-parametric confidence
interval for the median [43]) and then performs the accuracy check (Steps 2 and 3). Note that the
non-parametric confidence interval allows us to estimate percentile performance without relying
on strong assumptions about the data distribution. We also provide three specific methods for
calculating these non-parametric confidence intervals in Section 3.4. To ensure the reliability of
the performance result acquired with our approach, SCOPE also conducts the same performance
accuracy analysis for the performance result set obtained from the previous run intervals, denoted
as 𝑆𝑝𝑟𝑒 . 𝑆𝑝𝑟𝑒 is obtained by removing performance data produced by the last run interval from
the end of the 𝑆𝑐𝑢𝑟 (Step 1*). SCOPE then calculates the required values for 𝑆𝑝𝑟𝑒 and conducts the
accuracy check (Step 2* and Step 3*). Next, SCOPE performs the consistency check of the stopping
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criterion to check whether the returned results of Step 3 and Step 3* are both true (Step 4), i.e.,
satisfying the accuracy check. If yes, SCOPE can give information that the performance result set
of the current test 𝑆𝑐𝑢𝑟 is available to represent the actual serverless function performance, and no
further repeated runs are needed. Otherwise, SCOPE waits for developers to collect and provide
new end-to-end response latencies when triggering the serverless function repeatedly (i.e., for the
number of repetitions specified by the run interval). These new performance data are denoted as
𝑑𝑎𝑡𝑎𝑛𝑒𝑤 and added to 𝑆𝑐𝑢𝑟 , resulting in an updated set of performance results for evaluation. SCOPE
conducts a new round of performance testing using the same processing steps.

3.3 Stopping criterion of SCOPE
Our stopping criterion includes the accuracy check and the consistency check. The accuracy check
is designed to ensure the high accuracy of the obtained performance result, while the consistency
check aims to alleviate the possible influence of result fluctuations and ensure result stability.

For the accuracy check, we assume that a specific performance can be accurate if there exists a
desired non-parametric confidence interval for that performance. In our work, the presence of such
a desired confidence interval for a given performance is denoted as 𝑑𝑐𝑖 . Specifically, SCOPE checks
if the confidence intervals for specified metrics (at the given confidence level 𝑐𝑙%), calculated from
the performance result set of the current test (𝑆𝑐𝑢𝑟 ), lie within the corresponding 𝑟% error margins
of the observed true value for metrics. If it is yes, there exists the desired confidence intervals for
specified metrics. For example, SCOPE determines whether the calculated 95% confidence interval for
the 50th percentile lies within a 1% error margin of the observed true 50th percentile performance.
In other words, SCOPE determines whether 𝑑𝑐𝑖50𝑡ℎ exists. Adopting such an accuracy check aims to
find the desired and accurate non-parametric confidence interval (CI), where the obtained empirical
value of a specific metric (e.g., 50th percentile) differs from its observed true performance by
no more than the 𝑟% error at a given confidence level. To improve the overall accuracy of the
performance result acquired with SCOPE, SCOPE extends the same performance accuracy check
to most performance of 𝑆𝑐𝑢𝑟 . Most performance of a performance distribution generally includes
performance results from the 25th percentile to the 75th percentile [57, 70, 89]. Moreover, the
50th percentile performance represents the midpoint of the performance distribution and plays an
important role in performance analysis [57, 70]. Thus, our accuracy check transforms into whether
the CIs for the 25th, 50th, and 75th percentiles, calculated from 𝑆𝑐𝑢𝑟 , fall within the 𝑟% error margin
of their respective observed true percentile performance, referred to Step 3 in Fig. 2. In other words,
SCOPE checks whether 𝑑𝑐𝑖25𝑡ℎ , 𝑑𝑐𝑖50𝑡ℎ , and 𝑑𝑐𝑖75𝑡ℎ exist. If it is satisfied, 𝑆𝑐𝑢𝑟 is considered accurate.
Thus, the accuracy check is formulated as (1).

AccuracyCheck =

{
True if (𝑑𝑐𝑖25𝑡ℎ = True) ∧ (𝑑𝑐𝑖50𝑡ℎ = True) ∧ (𝑑𝑐𝑖75𝑡ℎ = True)
False otherwise

(1)

Our approach primarily relies on CI since it can achieve a robust analysis in the face of random
performance fluctuations [70].Moreover, CI has been established as a valuablemetric in performance
engineering [43, 57, 70]. Consequently, we are based on CI to design and customize our accuracy
check for performance testing of serverless computing in our work.
For the consistency check, SCOPE checks whether both 𝑆𝑐𝑢𝑟 and the performance result set

obtained from the previous run intervals (𝑆𝑝𝑟𝑒 ) are accurate. This is because potential performance
fluctuations could make 𝑆𝑐𝑢𝑟 get a temporary result of meeting the accuracy check. However,
performance data might be unstable and thus yield unreliable testing results. Thus, we take the
accuracy of 𝑆𝑝𝑟𝑒 into account. Our consistency check is to ensure the accuracy of both 𝑆𝑐𝑢𝑟 and
𝑆𝑝𝑟𝑒 , formulated as (2).
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ConsistencyCheck =

{
True if (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶ℎ𝑒𝑐𝑘𝑆𝑐𝑢𝑟 = True) ∧ (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶ℎ𝑒𝑐𝑘𝑆𝑝𝑟𝑒 = True)
False otherwise

(2)
Therefore, we deem 𝑆𝑐𝑢𝑟 to be stable when 𝑆𝑝𝑟𝑒 obtained from previous run intervals also exhibits

most of its performance to be accurate. That is to say, for both 𝑆𝑐𝑢𝑟 and 𝑆𝑝𝑟𝑒 , the calculated CIs for
the 25th, 50th, and 75th percentiles all lie within the 𝑟% error margin of the observed true 25th
percentile performance, 50th percentile performance, and 75th percentile performance, respectively.
This process refers to Step 4 in Fig. 2.

3.4 Implementations of SCOPE
SCOPE relies on the accuracy check, which compares the range of the calculated non-parametric CI
with the 𝑟% error margin. Particularly, we consider non-parametric methods to calculate the required
CIs in our approach design. This is because the performance of most serverless functions follows a
non-normal distribution in both cold and warm starts [76]. Non-parametric methods are suitable
for the performance analysis of serverless functions. Moreover, they work for the performance data
with a normal distribution [57]. Note that in non-parametric analysis, the probability distribution of
performance data is unknown, and fewer assumptions are required. Therefore, the metrics related
to mean and standard deviation are rarely used because they are not robust when dealing with
non-normal distribution [43]. In our approach, we choose percentile performance metrics because
they do not depend on specific distribution assumptions. Calculating CIs for percentile performance
also follows a non-parametric approach because it is a way to perform statistical analysis without
assuming that the data follow any particular distribution. In Fig. 2, we support three mainstream
non-parametric calculations of CIs for percentile performance (Step 2 and Step 2*). Thus, we obtain
the following three implementations of SCOPE to provide the user with flexibility.

• SCOPE 1: We use the general method [44, 57, 70] to calculate CIs for the percentile. The method
involves sorting performance results in ascending order and then calculating two index values
based on the data size, the given percentile, and the desired confidence level. Values at these two
locations are the lower and upper bounds of the CI for the specified percentile and confidence level.

• SCOPE 2: We use the basic bootstrapping method [5] based on resampling technique to
calculate CIs. In this method, a set of 𝑛 performance data is randomly sampled with replacement to
construct a new set. This selection process is repeated 𝑛 times to form one resample. The resampling
process is then repeated 𝑐 times (at least 1,000 times [35]) to generate 𝑐 resample sets. For each
resample, the performance at a specific percentile is calculated, and the resulting values are sorted.
Finally, the lower and upper bounds of the CI are determined based on the sorted 𝑐 values and a
given confidence level 𝑐𝑙%.
• SCOPE 3: We use the block bootstrapping method [4] to calculate CIs. Unlike the basic

bootstrapping method, in the block bootstrapping method, the data selection of a round resample
becomes the selection and combination of the block data with continuous performance results. We
apply the automated selection of block size used in this work [35] to this method. Conducting 𝑐
times of resamples will obtain the total of 𝑐 values about the percentile performance. These values
are still sorted, and the lower and upper bounds of the CI for this percentile are generated with a
given confidence level 𝑐𝑙%.

3.5 An illustrating example of applying SCOPE
SCOPE ensures scalability without requiring additional manual efforts or modifications to the exist-
ing serverless platforms. It can be seamlessly integrated as an external service or auxiliary analysis
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tool to assess performance results. Serverless functions, including complex tasks, are triggered
and executed on original serverless platforms. Developers who employ SCOPE capture and collect
performance data from the serverless platform and input it into SCOPE. Then, SCOPE automatically
analyzes performance data and provides insights into the need for additional repetition runs. This
flexibility makes SCOPE highly scalable for various serverless functions.

To illustrate how SCOPE is used, we provide a real-world example of assessing the performance
of a serverless function. The serverless function is from the dataset described in Section 4.3 of the
experimental evaluation. We use Func43 from the work [54] executed on AWS Lambda. First, the
developer gives a set of performance results of a serverless function executed on its serverless
platform (Step 1), e.g., 180 performance data points regarding the function Func43. Then, SCOPE
calculates the corresponding CIs for the 25th, 50th, and 75th percentiles (Step 2). Step 3 checks
whether these CIs fall within the 𝑟% (e.g., 1%) error margin of respective observed true percentile
performance, i.e., actual 25th, 50th, and 75th percentile performance in performance distribution
with 180 data points. The result shows that these CIs satisfy the accuracy check. At the same time,
SCOPE uses a set of performance results from Step 1 to get the performance result set from previous
run intervals, as outlined in Step 1*. If the number of repetitions of the run interval is set to 5,
the performance result set from previous run intervals is composed of the first 175 data points,
excluding the last 5 data points. Similarly, SCOPE calculates and checks the accuracy of the newly
calculated CIs for the 25th, 50th, and 75th percentiles (Step 2* and Step 3*). The result shows that
these CIs obtained from 175 data points satisfy the accuracy check. Both Step 3 and Step 3* satisfy
the corresponding accuracy checks (Step 4), and then the performance result set given in Step 1 is
reported as the final performance of Func43.

4 EXPERIMENTAL EVALUATION
4.1 Research questions
We explore the following research questions:

RQ1: How general effective is SCOPE for serverless functions compared to the state-of-the-art
techniques? This RQ aims to compare the general effectiveness of SCOPE and state-of-the-art
performance testing techniques for cloud computing on serverless functions.
RQ2: How well do SCOPE and state-of-the-art techniques apply to serverless functions under

varying parameters? The performance testing techniques aim to design the stopping criterion
to determine whether the tested performance result set accurately reflects real performance and
whether additional repeated runs from another run interval are necessary. The number of repetitions
within the run interval represents the amount of new performance data added in each round of
testing. Based on this, we investigate the effectiveness of SCOPE and state-of-the-art techniques
under different constraints of the stopping criterion and different numbers of repetitions within
the run interval.
RQ3: How flexible and effective is SCOPE compared to the strategy of setting a fixed number of

repetitions for all evaluated serverless functions? As commonly used in previous studies, a fixed
number of repetitions is applied for all serverless functions. This RQ aims to investigate the flexibility
and effectiveness of SCOPE compared to the strategy of setting a fixed number of repetitions for all
evaluated serverless functions.

4.2 Baselines
To answer RQ1 and RQ2, we select state-of-the-art performance testing techniques for comparison.
As serverless computing is a cloud computing paradigm, a straightforward idea is to adopt existing
performance testing techniques designed for cloud applications to serverless functions. Thus,
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we consider two state-of-the-art performance testing techniques designed for cloud applications:
PT4Cloud [36] and Metior [35]. These approaches are non-parametric and have been evaluated
to be superior to other techniques for cloud applications [35, 36], e.g., detecting repetitiveness of
performance data and analyzing coefficient of variation of performance data. The cloud applications
that they test are developed based on IaaS [23], a traditional cloud computing pattern that allows
developers to lease resources and configure and manage the infrastructure. In addition, we also
consider another non-parametric method, CONFIRM [57], for cloud environments. CONFIRM
estimates the required number of repetitions for an experiment.
The stopping criteria of PT4Cloud [36] and Metior [35] rely on the stability assessment of

performance distributions. PT4Cloud and Metior respectively compare the distribution similarity
and changes in a performance metric. Particularly, PT4Cloud needs to set an objective probability
𝑝0 (e.g., 90%) to represent accuracy requirements. Metior needs to specify a maximum allowed
percentage error 𝑒0% (e.g., 3%). The stopping criterion of CONFIRM [57] relies on the correctness
assessment of CIs. It uses resampling without replacement and CIs for the median to determine
whether the mean CIs fall within a desired error bound 𝑒0% (e.g., 3%).

4.3 Dataset
To evaluate the effectiveness of performance testing techniques, we use a representative dataset
that has recently been made publicly available for serverless function performance analysis [76].
This dataset comprises 65 serverless functions that have been meticulously sourced from peer-
reviewed papers published in top-tier academic venues spanning the period from 2014 (the year
that serverless computing started to be popular [40, 75]) to 2022. The size of our dataset (i.e.,
65 serverless functions) is comparable to and even larger than those used in previous studies of
serverless computing performance [49, 72, 78, 79, 87, 88].

The 65 serverless functions span a wide range of task types, ensuring a diverse representation of
workloads. Specifically, it covers 25 distinct task categories, such as mathematical operations, image
processing, face detection, graph network analysis, video processing, and natural language process-
ing. This broad task variety provides a comprehensive view of real-world serverless computing
workloads. Furthermore, the dataset covers widely-used benchmarks in the serverless computing
research community [41, 55, 87] and the industry [3], e.g., ServerlessBench [15], FunctionBench [13],
and FaaSDom [12]. In terms of serverless platforms, the dataset focuses on AWS Lambda and Google
Cloud Functions, which are the most prevalent public serverless platforms to study [16, 29, 34]. For
programming languages, the dataset includes functions written in Python and JavaScript, which
are the dominant programming languages in serverless computing [1, 16, 29, 30].

4.4 Experimental setup
Execution configurations of serverless functions.We execute 65 serverless functions using
the original function configurations and serverless platforms specified in the work [76]. If a
configuration is not provided, we use the default configuration of the platform. At the time of our
study, AWS Lambda uses a default memory size of 128 MB [8] and a timeout of 3 seconds [10],
while Google Cloud Functions adopts a default memory size of 256 MB [9] and a timeout of 60
seconds [11]. If the configured memory size or timeout time is insufficient to support executions, we
increase the value of these parameters and test the function again to ensure successful execution.

We repeatedly invoke the serverless function to produce a series of performance data, which are
input to performance testing techniques to check when the repeated runs can be stopped. If the
stopping criterion is not satisfied, we start the next run interval to generate more performance data.
Since our goal is to evaluate the effectiveness of performance testing techniques in the context
of serverless computing, by default, we set the number of repetitions of the run interval to five
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repetitions, an established number of repetitions commonly used in the experimental setting of
serverless computing papers [22, 38, 61]. This small number allows us to obtain a fine-grained stop
location and reduce the unnecessary overhead of running the function. In RQ2, we investigate the
effect of the size of this number. We evaluate the effectiveness of performance testing techniques
using cold-start and warm-start performance of the serverless functions. The cold-start performance
is obtained by invoking the function after the resources generated by previous invocations have
been released. The warm-start performance is obtained by invoking the function before releasing
the resources from previous invocations. We use a half-hour invocation frequency for cold-start
performance and a five-second frequency for warm-start performance, both after the previous
invocation, as they can ensure the serverless function experiences cold and warm starts. For
performance testing techniques, we use the same performance data of the functions to fairly
compare their effectiveness.
Parameter configurations. In experiment evaluation, we will explore the supported three versions
of SCOPE (i.e., SCOPE 1, SCOPE 2, and SCOPE 3) to demonstrate the flexibility and applicability
of our approach across different non-parametric confidence interval calculations for percentile
performance. For the comparison of evaluation results, we use the version of SCOPE (e.g., SCOPE 1)
that is the most effective.
To answer RQ1, the confidence level 𝑐𝑙% and the error margin 𝑟% in SCOPE use by default the

values that have been widely adopted by previous work on performance analysis [57, 70]. 𝑐𝑙%
and 𝑟% are set to 95% and 1%, respectively. The resample times in SCOPE 2 and SCOPE 3 are by
default set to 1,000, consistent with previous work [35]. For PT4Cloud andMetior , we use the default
settings provided in their open-sourced code. For PT4Cloud, we use the default objective probability
(𝑝0) of 90%, i.e., expecting the accuracy of testing results to be at least 90%. For Metior , we use the
maximum allowed percentage error (𝑒0%) of 3% for the median performance and the confidence
level of 95%. For CONFIRM , we use the same error 𝑒0% of 3% for the CIs for the median performance
and the confidence level of 95%, as in Metior .

To answer RQ2, we adjust key parameters. (1) First, we adjust 𝑟% of SCOPE to 5%, 4%, 3%, 2%, and
1% to investigate the characteristics of the stopping criterion. We also adjust the key parameters
for the stopping criterion of the state-of-the-art techniques: 𝑝0 of PT4Cloud and 𝑒0% of Metior
and CONFIRM . We set 𝑝0 to values of 90%, 92%, 94%, 96%, and 98%, where 92%, 94%, 96%, and
98% are stricter constraints that have not been used in previous evaluations of PT4Cloud [36].
We set 𝑒0% to values of 5%, 4%, 3%, 2%, and 1%, where 2% and 1% are also stricter constraints not
used in previous evaluations of Metior [35, 57]. (2) Second, we adjust the number of repetitions
within the run interval to 3, 4, 5, 10, and 20, which are commonly used in serverless computing
papers [20, 22, 32, 38, 61, 64, 71] for the total experimental repetitions. Serverless computing
scenario generally uses small repetitions. The possible reason is that serverless functions can be
triggered at any time, which makes it convenient to obtain any number of performance results.
Thus, in the serverless computing scenario, developers tend to use a small run interval to invoke
serverless functions on demand at any time without needing to lease resources in advance. Taking
these values as the number of repetitions of one run interval, we could investigate if adding a cycle
of performance data affects testing results and if the repetitions specified in previous work are
sufficient to obtain accurate serverless function performance. We use default configurations for
other parameters of SCOPE, PT4Cloud, Metior , and CONFIRM .

To answer RQ3, we evaluate the strategy of indiscriminately setting a fixed number of repetitions
for all tested serverless functions, in the same way used in prior serverless computing studies.
This strategy is different from our compared baselines. We evaluate different values from small to
large, including 20 [69], 50 [62], 100 [42], 300 [54], and 500 [25]. They had been used in serverless
computing papers.
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Evaluation strategy and metrics. We use the performance data of the serverless function being
repeatedly executed 1,000 times as the ground truth performance for identifying the effectiveness of
testing results. To establish the ground truth, we require a relatively large number of performance
tests that can capture all potential impacts of the serverless platform. We observe that 1,000
repetitions are the largest number found in existing serverless computing literature [46, 72, 76].
To confirm whether 1,000 repetitions are sufficient, we execute each serverless function for an
additional 500 runs, and the results, discussed in Section 6.2, show consistent effectiveness compared
to 1,500 repetitions. Therefore, 1,000 executions provide a trustworthy ground truth. We apply
performance testing techniques to determine the termination of the repeated runs for the serverless
function, i.e., the stop location. The performance data tested in the stop location is deemed to be the
accurate performance distribution of this function acquired with performance testing techniques.
We compare this distribution with the performance distribution of the ground truth of this function
using the following evaluation metrics.

• Accuracy: He et al. [36] define the accuracy of performance testing results as the similarity
between the performance distribution acquired with performance testing techniques and the
corresponding ground truth distribution. The value of the similarity metric ranges from 0 to 100%,
where 100% indicates the same distribution. We calculate the mean accuracy of the testing results
obtained for all tested functions.

• Reliability: Previous work [70] defines the reliability of the obtained performance result as
whether its specific percentile performance is accurate. When a percentile performance obtained
from the performance distribution acquired with performance testing techniques falls within
the 95% confidence interval for this percentile obtained from the corresponding ground truth
distribution, it indicates a 95% probability that this percentile performance is reliable [70]. It also
indicates that the performance testing techniques enable the tested serverless function to get this
reliable percentile performance. This previous work [70] has focused on the performance at the
50th and 90th percentiles to assess the result reliability. To obtain more comprehensive results, we
investigate the reliability of testing results from different performance perspectives by extending
the percentiles to include the 25th, 50th, 75th, and 90th percentiles. We respectively calculate the
percentage of the serverless functions with reliable performance at different percentiles.
Experimental environment. We implemented and ran SCOPE, PT4Cloud, Metior , CONFIRM and
the invocation scripts for serverless functions on an Ubuntu 18.04.4 LTS server with an Intel Xeon
(R) 4-core processor and 24GiB of memory.

5 RESULTS
5.1 RQ1: General Effectiveness of SCOPE
This section explores the general effectiveness of SCOPE compared to PT4Cloud, Metior , and
CONFIRM when testing serverless function performance. Results show that SCOPE is highly
effective. Table 1 shows the results of three variants of SCOPE and state-of-the-art techniques
in cold-start and warm-start performance testing for serverless functions. On average, the mean
accuracy obtained by SCOPE 1, SCOPE 2, and SCOPE 3 is 97.25%, 95.07%, and 94.13%, respectively.
PT4Cloud, Metior , and CONFIRM provide testing results with 52.28%, 63.42%, and 60.42% mean
accuracy, respectively. Compared to PT4Cloud,Metior , and CONFIRM , SCOPE can improve the mean
accuracy by 44.97, 33.83, and 36.83 percentage points, respectively. Moreover, SCOPE outperforms
PT4Cloud, Metior , and CONFIRM on all serverless functions that we consider, thus indicating the
feasibility and effectiveness of SCOPE.

For the reliability, SCOPE 1 provides the reliable 25th, 50th, 75th, and 90th percentile performance
for 87.69%, 93.08%, 92.31%, and 90.77% of the serverless functions, respectively. SCOPE 2 provides
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Table 1. RQ1: The results of performance testing for 65 serverless functions using SCOPE , PT4Cloud , Metior ,
and CONFIRM.

Mean accuracy #Functions: reliability at 25th/50th/75th/90th percentile
SCOPE 1 - cold start 97.39% 89.23% 93.85% 90.77% 92.31%
SCOPE 1 - warm start 97.12% 86.15% 92.31% 93.85% 89.23%
SCOPE 1 (Mean) 97.25% 87.69% 93.08% 92.31% 90.77%

SCOPE 2 - cold 95.94% 84.62% 86.15% 73.85% 73.85%
SCOPE 2 - warm 94.19% 75.38% 80.00% 75.38% 84.62%
SCOPE 2 (Mean) 95.07% 80.00% 83.08% 74.62% 79.23%

SCOPE 3 - cold start 95.05% 84.62% 78.46% 70.77% 67.69%
SCOPE 3 - warm start 93.22% 66.15% 78.46% 81.54% 83.08%
SCOPE 3 (Mean) 94.13% 75.38% 78.46% 76.15% 75.38%

PT4Cloud - cold 61.12% 12.31% 10.77% 18.46% 29.23%
PT4Cloud - warm 43.45% 16.92% 20.00% 18.46% 12.31%
PT4Cloud (Mean) 52.28% 14.62% 15.38% 18.46% 20.77%

Metior - cold start 69.38% 26.15% 21.54% 20.00% 27.69%
Metior - warm start 57.47% 24.62% 23.08% 23.08% 21.54%
Metior (Mean) 63.42% 25.38% 22.31% 21.54% 24.62%

CONFIRM - cold start 68.93% 24.62% 21.54% 23.08% 16.92%
CONFIRM - warm start 51.91% 13.85% 16.92% 29.23% 21.54%
CONFIRM (Mean) 60.42% 19.23% 19.23% 26.15% 19.23%

the reliable 25th, 50th, 75th, and 90th percentile performance for 80.00%, 83.08%, 74.62%, and 79.23%
of the functions, respectively. SCOPE 3 provides similar reliability to SCOPE 2. For PT4Cloud, on
average, it enables 14.62%, 15.38%, 18.46%, and 20.77% of the functions to get the reliable 25th, 50th,
75th, and 90th percentile performance, respectively. Compared to PT4Cloud, SCOPE provides the
reliable 25th, 50th, 75th, and 90th percentile performance for an additional 87.69% - 14.62% = 73.07%,
93.08% - 15.38% = 77.70%, 92.31% - 18.46% = 73.85%, and 90.77% - 20.77% = 70.00% of the functions,
respectively. For Metior , it provides the reliable 25th, 50th, 75th, and 90th percentile performance
for 25.38%, 22.31%, 21.54%, and 24.62% of the functions, respectively. Compared to Metior , SCOPE
provides the reliable 25th, 50th, 75th, and 90th percentile performance for an additional 87.69% -
25.38% = 62.31%, 93.08% - 22.31% = 70.77%, 92.31% - 21.54% = 70.77%, and 90.77% - 24.62% = 66.15% of
the functions, respectively. For CONFIRM , it provides the reliable 25th, 50th, 75th, and 90th percentile
performance for 19.23%, 19.23%, 26.15%, and 19.23% of the functions, respectively. Compared to
CONFIRM , SCOPE provides the reliable 25th, 50th, 75th, and 90th percentile performance for an
additional 87.69% - 19.23% = 68.46%, 93.08% - 19.23% = 73.85%, 92.31% - 26.15% = 66.16%, and 90.77%
- 19.23% = 71.54% of the functions, respectively. These results show that most of the testing results
produced with SCOPE are accurate and reliable.
For three implementations of SCOPE, we summarize the following points. (1) SCOPE 1 outper-

forms the other two, indicating that the CI calculation method of SCOPE 1 has high accuracy on
performance testing for serverless functions. This could be because the other two implementations
use bootstrapping methods, which adopt the resampling strategy. The resampling process may
break the original data distribution and introduce potential noises. In contrast, SCOPE 1 is based
on the original performance data to calculate CI. (2) SCOPE 2 and SCOPE 3 show comparable
effectiveness. This indicates that our approach design is insensitive to internal data dependency
and has a similar effectiveness for the same type of CI calculation method. (3) All implementations
show comparable effectiveness in both cold and warm starts, indicating the stability of SCOPE in
performance testing for serverless functions.
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Fig. 3. RQ2: Changes in metric values under different constraints 𝑟% for SCOPE 1 (mean results in cold and
warm starts for tested functions).

Result discussion. We observe that state-of-the-art techniques (PT4Cloud, Metior , and CONFIRM)
perform poorly in evaluating serverless functions. This ineffectiveness stems from fundamental
differences in their approach: these techniques rely on stability or correctness assessments for
specific performance. However, serverless functions, characterized by short durations and small
run intervals, make it difficult for these methods to detect significant stability changes or undesired
confidence intervals. The minor fluctuations exhibited in performance distributions cause these
methods to reach their stopping criterion too early, undermining their ability to accurately assess
the need for additional repetitions. This limitation highlights the need for a novel performance
testing approach tailored to serverless functions that allows for finer-grained analysis.
However, the assessment strategy of PT4Cloud, Metior , and CONFIRM may be effective for

traditional cloud applications or environments [35, 36, 57]. This may be because, traditional cloud
applications or task executions have long-lived and minute-level duration, and previous work in
cloud computing [23, 35, 36] adopted a period of time of runs to constantly invoke them for execution.
This time is often several weeks or days, thus yielding a large number of performance results.
Therefore, in state-of-the-art techniques, these characteristics of traditional cloud applications
or environments lead to significant changes in stability or undesired confidence intervals on
performance distributions, making them effective.

Serverless functions have distinctive performance features from traditional cloud applications or
environments. Moreover, state-of-the-art techniques are not effective when applied to serverless
function performance. In this paper, we present SCOPE, which introduces a novel stopping criterion,
incorporating accuracy and consistency checks. These checks enable fine-grained analysis and
high accuracy guarantees for performance distributions with these characteristics of serverless
functions. This makes SCOPE more effective in the performance testing of serverless functions.

Ans. to RQ1: SCOPE provides testing results with 97.25% accuracy, 44.97, 33.83, and 36.83
percentage points higher than PT4Cloud, Metior , and CONFIRM , respectively. Moreover, SCOPE
outperforms all compared baselines on all serverless functions that we consider, thus indicating
its feasibility and effectiveness.

5.2 RQ2: Effectiveness under varying parameters
In this section, we investigate the effectiveness of SCOPE and state-of-the-art techniques under
varying parameters, including different constraints of the stopping criterion and different numbers
of repetitions within the run interval.

We compare the effectiveness of SCOPE and state-of-the-art techniques under different constraints
of the stopping criterion. For SCOPE, evaluation metric values have improvements as 𝑟% is limited
from 5% to 1%. PT4Cloud, Metior , and CONFIRM have different sensitivities to the constraint of
their stopping criteria. While the effectiveness of PT4Cloud does not significantly improve with
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Fig. 4. RQ2: Changes in metric values under different constraints 𝑟% for SCOPE 2 (mean results in cold and
warm starts for tested functions).
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Fig. 5. RQ2: Changes in metric values under different constraints 𝑟% for SCOPE 3 (mean results in cold and
warm starts for tested functions).
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Fig. 6. RQ2: Changes in metric values under different 𝑝0 for PT4Cloud.
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Fig. 7. RQ2: Changes in metric values under different 𝑒0% forMetior.

increasing constraints,Metior and CONFIRM show improvement in accuracy from 54.47% to 87.60%
and from 55.33% to 82.41%, respectively. However, under the strictest constraint of Metior and
CONFIRM , the obtained accuracy does not exceed 90%, which can be obtained by SCOPE. Overall,
stopping criteria of state-of-the-art techniques may be insufficient for serverless computing.

Figs. 3, 4, and 5 show mean changes for three implementations of SCOPE under cold and warm
starts. The mean accuracy improves from 78.38% to 97.25% for SCOPE 1, from 63.23% to 95.07%
for SCOPE 2, and from 62.73% to 94.13% for SCOPE 3. For the reliability, with the use of SCOPE
1, the proportion of serverless functions that get the reliable 25th, 50th, 75th, and 90th percentile
performance increases from 34.62% to 87.69%, from 42.31% to 93.08%, from 39.23% to 92.31%, and
36.92% to 90.77%, respectively. SCOPE 2 and SCOPE 3 show the same trends for the reliability
as SCOPE 1. These results show that the effectiveness of SCOPE is influenced by the constraints
of the designed stopping criterion. Performance testing for serverless functions requires strict
error constraints due to the short duration of the test. Using a strict error constraint enhances
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Fig. 8. RQ2: Changes in metric values under different 𝑒0% for CONFIRM.

accuracy, but also may increase runtime costs. SCOPE offers the advantage of achieving accurate
performance without the need for excessive repetitions, thereby avoiding unnecessary runtime
costs. In real-world scenarios, SCOPE provides developers with the flexibility to adjust the error
constraint, allowing them to make desired trade-offs in line with specific requirements.

Fig. 6 illustrates the mean changes in metric values obtained by PT4Cloud when evaluating the
cold-start and warm-start performance of the serverless functions under varying 𝑝0. The mean
accuracy changes from 52.28% to 59.03%. Although PT4Cloud makes more functions to obtain
reliable percentile performance, the improvement is insignificant. Even if 𝑝0 is constrained to
98%, only 21.54%, 23.85%, 20.77%, and 24.62% of the serverless functions can get the reliable 25th,
50th, 75th, and 90th percentile performance, respectively. Thus, for PT4Cloud, we do not observe
significant improvement in evaluation metrics as 𝑝0 increases from 90% to 98%.

Fig. 7 shows the mean changes in metric values obtained byMetior under different 𝑒0%. The mean
accuracy improves from 54.47% to 87.60% as 𝑒0% becomes stricter, indicating that using a stricter
𝑒0% can improve the effectiveness of Metior . However, even if 𝑒0% is limited to 1%, the obtained
mean accuracy (87.60%) does not exceed 90%. Moreover, the percentage of serverless functions
with reliable performance is low. For example, for the 25th percentile performance, when 𝑒0% = 1%,
Metior enables 59.23% of the functions to get this reliable performance, while when 𝑒0% = 5%, only
20.00% of the functions get this reliable performance.

Fig. 8 shows the mean changes in metric values obtained by CONFIRM under different 𝑒0%. The
mean accuracy improves from 55.33% to 82.41% as 𝑒0% becomes stricter, indicating that using a
stricter 𝑒0% can improve the effectiveness of CONFIRM . However, even if 𝑒0% is limited to 1%, the
obtained mean accuracy (82.41%) does not exceed 90%. Moreover, the percentage of serverless
functions with reliable performance is low. For example, for the 90th percentile performance, when
𝑒0% = 1%, CONFIRM enables 53.08% of the functions to get this reliable performance, while when
𝑒0% = 5%, only 17.69% of the functions get this reliable performance.

We further investigate the effectiveness of SCOPE, PT4Cloud,Metior , andCONFIRM under varying
numbers of repetitions of the run interval. For SCOPE, evaluation results do not show significant
changes as the number of repetitions of the run interval increases from 3 to 20. SCOPE can obtain
accuracy results that remain between 96.96% and 97.53%, showing a small variation of about 0.50%.
For PT4Cloud, Metior , and CONFIRM , we observe a positive effect of the run interval on their
effectiveness. However, the accuracy never reaches 80%.
Figs. 9, 10, and 11 show the mean results obtained by SCOPE under cold and warm starts. The

mean accuracy obtained by SCOPE 1, SCOPE 2, and SCOPE 3 ranges from 96.96% to 97.53%, from
93.56% to 96.72%, and from 93.70% to 95.82%, respectively. This indicates a negligible change in
accuracy. The reliability at the percentile performance is also stable. As the number of repetitions
of the run interval increases, SCOPE 1 produces the reliable 25th, 50th, 75th, and 90th percentile
performance for the functions falling within the following ranges: 84.62% to 87.69%, 90.00% to
93.85%, 88.46% to 92.31%, and 85.38% to 91.54%. SCOPE 2 produces the reliable 25th, 50th, 75th, and
90th percentile performance for the functions falling within the following ranges: 78.46% to 83.08%,
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Fig. 9. RQ2: Changes in metric values under different numbers of repetitions of the run interval for SCOPE 1
(mean results in cold and warm starts for tested functions).
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Fig. 10. RQ2: Changes in metric values under different numbers of repetitions of the run interval for SCOPE
2 (mean results in cold and warm starts for tested functions).
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Fig. 11. RQ2: Changes in metric values under different numbers of repetitions of the run interval for SCOPE
3 (mean results in cold and warm starts for tested functions).
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Fig. 12. RQ2: Changes inmetric values under different numbers of repetitions of the run interval forPT4Cloud.

76.92% to 86.15%, 72.31% to 82.31%, and 73.08% to 86.92%. The reliability results of SCOPE 3 are
highly similar to SCOPE 2. Overall, the effectiveness of SCOPE is not affected by the number of
repetitions of the run interval.

Fig. 12 shows the mean changes obtained by PT4Cloud in cold-start and warm-start performance
testing. The obtained mean accuracy increases from 44.05% to 75.99%, as the number of repetitions
of the run interval increases from 3 to 20. This indicates a positive effect of the run interval on the
effectiveness of PT4Cloud. However, while increasing the number of repetitions of the run interval
enables more functions to get reliable performance, PT4Cloud still does not enable over 60% of the
serverless functions to achieve it.
Fig. 13 shows the mean results obtained by Metior in cold-start and warm-start performance

testing. As the number of repetitions of the run interval increases from 3 to 20, the obtained mean
accuracy increases from 54.09% to 77.15%. This also indicates a positive effect of the run interval

, Vol. 1, No. 1, Article . Publication date: February 2025.



SCOPE : Performance Testing for Serverless Computing

54.09% 59.40% 63.42% 68.65%
77.15%

0%

20%

40%

60%

80%

100%

0%

50%

100%

3 4 5 10 20

#F
un
ct
io
ns

Si
m
ila
ri
ty
pr
ob
ab
ili
ty

Mean accuracy Reliability at 25th percentile
Reliability at 50th percentile Reliability at 75th percentile
Reliability at 90th percentile

Fig. 13. RQ2: Changes in metric values under different numbers of repetitions of the run interval for Metior.
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Fig. 14. RQ2: Changes in metric values under different numbers of repetitions of the run interval for CON-
FIRM.

on the effectiveness of Metior . However, the accuracy of testing results is still no more than 80%,
similar to the results obtained by PT4Cloud. In terms of reliability, for example, Metior enables only
36.92% of the serverless functions to get the reliable 50th percentile performance when the number
of repetitions of the run interval is set to 20. As a result, 63.08% of the functions still cannot get this
reliable performance.
Fig. 14 shows the mean results obtained by CONFIRM . As the number of repetitions of the run

interval increases from 3 to 20, the obtained mean accuracy increases from 59.18% to 66.29%. This
also indicates a positive effect of the run interval on the effectiveness of CONFIRM . However, the
accuracy of testing results is still no more than 70%. In terms of reliability, for example, CONFIRM
enables only 26.92% of the serverless functions to get the reliable 75th percentile performance when
the number of repetitions of the run interval is set to 20. As a result, 73.08% of the functions still
cannot get this reliable performance.

The slight increase in the metric values for PT4Cloud, Metior , and CONFIRM may also be due to
the fact that when the number of repetitions in the run interval increases, the number of data points
in the performance distribution for the initial comparison also increases. Overall, the effectiveness of
baselines are sensitive to the number of repetitions of the run interval, with improved accuracy and
reliability as the number increases. However, even if the number of repetitions of the run interval
is set to 20, the maximum accuracy obtained by PT4Cloud, Metior , and CONFIRM is 75.99%, 77.15%,
and 66.29%, respectively. These results cannot reach 80%. Moreover, over 60% of the functions still
cannot get reliable percentile performance.

Ans. to RQ2: Using a strict error constraint as the stopping criterion can improve the accuracy
of SCOPE. Even when PT4Cloud,Metior , and CONFIRM apply the strictest constraints, the results
obtained are inferior to those of SCOPE. SCOPE is insensitive to the number of repetitions of
the run interval. As this number increases from 3 to 20, SCOPE can provide testing results
with accuracy ranging from 96.96% to 97.53%, exhibiting a trivial difference of about 0.50%.
PT4Cloud, Metior , and CONFIRM exhibit sensitivity to the number of repetitions of the run
interval. However, even with a large number, the maximum accuracy obtained by PT4Cloud,
Metior , and CONFIRM cannot reach 80%. Moreover, over 60% of the tested serverless functions
cannot get reliable percentile performance.
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Fig. 15. The comparison of the strategy of blindly setting a uniform number of repetitions and SCOPE in
each tested serverless function (cold starts).

5.3 RQ3: Flexibility of SCOPE
We compare SCOPE with the strategy of indiscriminately setting a fixed number of repetitions for
all evaluated serverless functions. The results show that SCOPE is more flexible and effective than
this strategy in determining the accurate performance and providing repetitions across various
serverless functions.
Fig. 15 shows their comparison results in each tested serverless function under cold starts.

Multiple polylines represent the accuracy results obtained on each serverless function when using
the strategy of indiscriminately setting a fixed number of repetitions and SCOPE. Specifically, when
the fixed number of repetitions is blindly set to 20, 50, and 100, the obtained accuracy for more than
95% of serverless functions is not as high as the accuracy obtained by SCOPE for these serverless
functions. When this fixed number is set to 300, the accuracy results (green polyline) are comparable
to those of SCOPE. When this fixed number is set to 500, the accuracy results (blue polyline) may
be higher than those of SCOPE for most serverless functions.

However, the requirement for repetitions to achieve accurate performance can vary significantly
among serverless functions. The bars in the figure represent the stop location of each serverless
function determined by SCOPE. Some functions may achieve accurate performance with fewer than
100, while others might need over 300 repetitions. It indicates that each serverless function requires
a customized repetition to obtain accurate performance. It is impractical to rely on a fixed number of
repetitions (e.g., 300 or 500) for all evaluated functions. For example, serverless functions that do not
require 300 repetitions may require fewer repetitions to obtain accurate performance, then incurring
extra running overhead (e.g., 225 additional runs for Func22). Some functions may require more
than 300 repetitions, which makes the results less accurate (e.g., 79.96% accuracy at 300 repetitions
for Func37 ). For 500-fixed repetitions, although the accuracy results may be higher than those
of SCOPE on many functions, most serverless functions do not require 500 repetitions to obtain
accurate performance, thus incurring significant running overhead. We measure the overhead by
evaluating the total number of repetitions used, which directly correlates with overhead. In Fig. 15,
the strategy of 500 fixed repetitions necessitates 500*65 = 32,500 repetitions. SCOPE requires 18,345
repetitions. Thus, the 500-fixed repetition strategy uses 77.16% more repetitions of the running
overhead than SCOPE, which makes SCOPE become a cost-efficient option.

Ans. to RQ3: Contrasted with the strategy of indiscriminately setting a fixed number of
repetitions, SCOPE is more flexible and effective in determining specific repetitions and obtaining
accurate performance across various serverless functions.
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Table 2. The results of other situations using SCOPE .

Accuracy Reliability at 25th/50th/75th/90th percentile
Func4 - a mix of cold and warm starts 99.47% ✓ ✓ ✓ ✓

Func10 - a mix of cold and warm starts 95.85% ✓ ✓ ✓ ✓

App1 from AWS - cold start 99.43% ✓ ✓ ✓ ✓

App1 from AWS - warm start 98.82% ✓ ✓ ✓ ✓

App2 from Google - cold start 98.55% ✓ ✓ ✓ ×
App2 from Google - warm start 99.77% ✓ ✓ ✓ ✓

Func6 - multiple inputs 96.37% ✓ ✓ ✓ ✓

Func7 - multiple inputs 97.02% ✓ ✓ ✓ ✓

Func5 - file upload 98.98% ✓ ✓ ✓ ✓

Func34 - message queue 96.04% ✓ ✓ ✓ ×
Func61 - database insert 97.63% ✓ ✓ ✓ ✓

Func32 - bursty workloads 99.63% ✓ ✓ ✓ ✓

Func52 - bursty workloads 99.55% ✓ ✓ ✓ ✓

NewFunc1 - Azure - cold start 93.61% ✓ ✓ ✓ ✓

NewFunc2 - Azure - cold start 99.68% ✓ ✓ ✓ ✓

NewFunc3 - Alibaba - cold start 97.32% ✓ ✓ ✓ ×
NewFunc4 - Alibaba - cold start 96.68% ✓ ✓ × ✓

Cold start (Mean) 96.82% 4/4 4/4 3/4 3/4
NewFunc1 - Azure - warm start 93.48% ✓ ✓ ✓ ✓

NewFunc2 - Azure - warm start 97.01% ✓ ✓ ✓ ✓

NewFunc3 - Alibaba - warm start 95.31% ✓ ✓ ✓ ✓

NewFunc4 - Alibaba - warm start 97.09% ✓ ✓ ✓ ✓

Warm start (Mean) 95.72% 4/4 4/4 4/4 4/4

5.4 Effectiveness to other situations
In this section, we explore the effectiveness of SCOPE in other situations, including mixed cold and
warm conditions, serverless applications composed of multiple functions, varying input conditions,
functions with other types of triggers, highly bursty workloads, and functions executed across
different platforms. We also explore the effectiveness of SCOPE when incorporating additional
critical performance metrics, such as tail latency and outlier behavior.
We explore the effectiveness of SCOPE on performance data from serverless functions under

mixed cold andwarm start conditions. For this purpose, we select two serverless functions: Func4 and
Func10. Each function is invoked, with the next invocation occurring after a randomly determined
time, producing a mix of cold and warm starts, as typically observed in production applications.
To establish the ground truth, we collect performance data for each function under 1,000 random
executions, thereby capturing a realistic blend of cloud and warm start behavior. Table 2 shows the
results. Specifically, SCOPE achieves an accuracy of 99.47% for Func4 and 95.85% for Func10, showing
high accuracy. Further, SCOPE provides reliable 25th, 50th, 75th, and 90th percentile performance
for these functions. These results demonstrate the effectiveness of our approach in handling mixed
cold and warm start performance data for serverless functions.

We explore the effectiveness of SCOPE in analyzing serverless applications composed of multiple
functions that interact with each other. For this purpose, we implement two serverless applications
based on examples provided in the platforms’ official documentation. The first serverless application,
from the AWS platform [7], consists of five interacting functions, while the second application,
from the Google platform [18], is composed of three functions. These applications are numbered as
App1 and App2. We analyze their cold-start and warm-start response latencies using SCOPE. To
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evaluate the effectiveness of SCOPE, we collect cold-start and warm-start performance data for each
application under 1,000 executions, which serves as the ground truth. Table 2 shows their results.
For cold starts, SCOPE achieves an accuracy of 99.43% for App1 and 98.55% for App2. Furthermore,
SCOPE reliably estimates performance at 25th, 50th, and 75th percentile performance for both
applications. For warm starts, SCOPE achieves an accuracy of 98.82% for App1 and 99.77% for App2,
demonstrating reliable performance at the 25th, 50th, 75th, and 90th percentile percentiles. This
illustrates that SCOPE can achieve similar effectiveness for serverless application performance.
We explore the effectiveness of SCOPE under varying input conditions for serverless functions.

For this purpose, we select two serverless functions: Func6 and Func7, which allow for flexible
adjustment of input to alter the computation scale. We generate three distinct inputs for each
function to ensure a broader evaluation, rather than relying on a single input. Although three
inputs provide a reasonable balance between diversity and experimental feasibility, our approach
is not limited to this number and can be extended to more inputs if needed. For example, Func7
solves linear equations with input 𝑛 representing the matrix size. We generate three sizes, e.g.,
15, 18, and 20. During each warm-start invocation, one of these inputs is randomly selected to
produce the corresponding performance data. To evaluate SCOPE, we collect performance data for
each function over 1,000 executions with these varying inputs, which serves as the ground truth.
Table 2 shows their results. SCOPE can achieve an accuracy of 96.37% for Func6 and 97.02% for
Func7. Moreover, SCOPE reliably estimates performance at the 25th, 50th, 75th, and 90th percentiles
for both functions, demonstrating its effectiveness in handling diverse input conditions.
We explore the effectiveness of SCOPE under serverless functions with other types of triggers.

For this purpose, we select three functions (Func5, Func34, and Func61) from our set of 65 serverless
functions. Then, we modify them to use file uploads, message queues, and database inserts as their
triggers by incorporating Amazon S3, Amazon SQS, and Amazon DynamoDB, respectively. We
analyze their warm-start response latencies using SCOPE. To obtain the end-to-end response time,
we calculate the time difference between the initiation of the triggering event and the completion
of the function execution. This measurement is consistently performed by recording the event’s
start time and the function’s end time within the function code and then logging the computed
time difference. The resulting time difference, referred to as the end-to-end response time, includes
both the cloud infrastructure overhead and the function execution time. We collect performance
data for each function across 1,000 executions, which serves as the ground truth. The results are
presented in Table 2. SCOPE achieves an accuracy ranging from 96.04% to 98.98%. Moreover, SCOPE
reliably estimates the performance at 25th, 50th, 75th, and 90th percentiles for Func5 and Func61.
Furthermore, SCOPE provides reliable 25th, 50th, and 75th percentile performance for Func34. These
results highlight the effectiveness of SCOPE in assessing the performance of serverless functions
triggered by various event types.

We investigate the effectiveness of SCOPE under highly bursty workloads for serverless functions.
To this end, we select two serverless functions: Func32 from AWS Lambda and Func52 from Google
Cloud Functions. These functions are subjected to a series of random burst invocations after
prolonged periods of inactivity. The bursty invocations consist of randomly generated concurrent
requests. We respectively collect 1,000 performance data triggered by these bursty invocations for
both Func32 and Func52, which serve as the ground truth for evaluating the accuracy and reliability
of the results produced by SCOPE. As shown in Table 2, SCOPE achieves an accuracy of 99.63% for
Func32 and 99.55% for Func52. Additionally, SCOPE provides reliable performance across the 25th,
50th, 75th, and 90th percentiles for both functions. This illustrates that SCOPE effectively handles
serverless function performance with highly bursty workloads.
We investigate the effectiveness of SCOPE on performance data from serverless functions exe-

cuted on different platforms. Specifically, we conduct experiments on serverless functions deployed
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Table 3. The results of SCOPE considering other performance metrics.

Accuracy #Functions: reliability at 25th/50th/75th/90th percentile
SCOPE 97.25% 87.69% 93.08% 92.31% 90.77%
SCOPE + Tail 98.84% 91.54% 96.92% 94.62% 93.08%
SCOPE + Outlier 97.61% 88.46% 93.08% 92.31% 90.00%

on Microsoft Azure Functions and Alibaba Function Compute. Four serverless functions are im-
plemented: two from Microsoft Azure Functions (denoted as NewFunc1 and NewFunc2) and two
from Alibaba Function Compute (denoted as NewFunc3 and NewFunc4). We analyze their cold-start
and warm-start response latencies using SCOPE. To evaluate the effectiveness of SCOPE, we col-
lect cold-start and warm-start performance data for each function over 1,000 executions, which
serve as the ground truth for comparison. The results are presented in Table 2. For cold starts,
SCOPE achieves a mean accuracy of 96.82% across these functions. Additionally, SCOPE reliably
captures performance at the 25th, 50th, 75th, and 90th percentiles for four, four, three, and three
functions, respectively. For warm starts, SCOPE achieves a mean accuracy of 95.72%, with reliable
performance at the 25th, 50th, 75th, and 90th percentiles for all four functions, respectively. These
results demonstrate the effectiveness and generalizability of SCOPE in assessing the performance
of serverless functions executed on different serverless platforms.
We explore the effectiveness of SCOPE when incorporating additional critical performance

metrics, such as tail latency and outlier behavior. Specifically, we consider the tail latency of the
95th percentile performance in SCOPE and check whether its confidence interval falls within
a defined error margin (e.g., 3%) of the observed true percentile performance. Since enforcing
constraints on tail latency is even more difficult to achieve, the error threshold may need to be
relaxed compared to the original constraint settings for non-tail latency. This is because tail latency
is inherently more variable and sensitive, making strict enforcement more challenging in practice.
Additionally, we investigate the inclusion of outlier behavior in SCOPE. Outliers are determined
using the Interquartile Range (IQR) method, a statistical approach for detecting outliers. In this
method, outliers are identified as data points that fall outside the range defined by the first and third
quartiles, typically beyond 1.5 times the IQR. If the number of outliers does not exceed a predefined
threshold (e.g., 10% of the total test data), the outlier behavior is considered negligible in our
study. Table 3 shows the mean results of two new versions of SCOPE in cold-start and warm-start
performance testing for serverless functions. The mean accuracy achieved by SCOPE considering
tail latency is 98.84%, and 97.61% for outlier behavior. Regarding reliability, SCOPE with tail latency
provides reliable 25th, 50th, 75th, and 90th percentile performance for 91.54%, 96.92%, 94.62%, and
93.08% of the serverless functions, respectively. Similarly, SCOPE with outlier behavior provides
reliable 25th, 50th, 75th, and 90th percentile performance for 88.46%, 93.08%, 92.31%, and 90.00%
of the functions, respectively. From these results, adding other critical performance metrics, such
as tail latency or outlier behavior, can improve the effectiveness of SCOPE. It is important to note
that even without the integration of these critical metrics, our approach maintains consistency and
high effectiveness. This suggests that while adding tail latency and outlier behavior improves the
robustness and comprehensiveness of the analysis, SCOPE already performs well across different
serverless functions.

6 DISCUSSION
6.1 Why SCOPE?
Similar to PT4Cloud, Metior , and CONFIRM , SCOPE efficiently determines the number of repeti-
tions for each serverless function, ensuring accurate and reliable performance testing outcomes.
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Notably, SCOPE achieves an impressive accuracy rate of 97.25%, outperforming PT4Cloud, Metior ,
and CONFIRM by 44.97, 33.83, and 36.83 percentage points, respectively. The ineffectiveness of
baselines stems from fundamental differences in approach, which fail to accommodate the unique
characteristics of serverless functions.
The question then arises: does SCOPE’s success solely depend on mandating a higher number

of repetitions? The answer is no. While heightened accuracy in performance testing inherently
demands increased repetitions, SCOPE refines this approach by ensuring the effective determination
of additional repetitions. This is evidenced by our analysis in RQ3. Specifically, in RQ3, we adopt
a fixed number of 300 repetitions per serverless function, which maintains a comparable total
volume of repetitions to SCOPE across all functions considered and achieves a similar overall
accuracy. However, this comparison exposes the inefficiencies inherent in employing a fixed
number. Employing a rigidly high fixed repetition number for serverless functions that do not
require 300 repetitions produces unnecessary resource usage and prolonged testing times, without
a commensurate increase in result precision. Conversely, this fixed approach proves inadequate for
functions that may require more repetitions, risking insufficient coverage and potentially failing to
guarantee the accuracy and reliability of serverless function performance.
Therefore, while high-accuracy performance testing inherently demands a greater number of

repetitions, SCOPE surpasses this requirement by adopting a strategy that does not just increase
repetitions but does so with discerning efficiency. This strategy ensures SCOPE’s efficacy across
a diverse array of serverless functions, validating its effectiveness. Thus, SCOPE’s superior ef-
fectiveness is not merely a product of increased testing iterations but results from a strategic
and judicious application of those additional repetitions, tailored to the unique demands of each
serverless function it evaluates.

6.2 Validity of ground truth performance
We use 1,000 repetitions as the ground truth performance for each serverless function to identify
the technique’s effectiveness. This may raise the question of whether a sufficiently large number
of repetitions are chosen for ground truth performance. To address it, we execute each serverless
function for an additional 500 runs. When using execution results of 1,000, 1,100, 1,200, 1,300, 1,400,
and 1,500 repetitions of the ground truth, the mean accuracy of SCOPE is between 96.18% and
97.25%, a difference of about one percentage point. The consistent results indicate that using 1,000
executions has established a trustworthy ground truth. An additional 500 runs are added to our
online repository [17].

6.3 Discussion of different design, data, and parameter choices
SCOPE is built with a flexible, effective, and adaptable design aimed at providing accurate perfor-
mance analysis across a wide range of serverless functions. Central to the design is the stopping
criterion, which evaluates the tested performance data of serverless functions. This criterion is
based on non-parametric confidence interval (CI) calculations, and we support three mainstream CI
calculation methods to demonstrate the flexibility, applicability, and effectiveness of our approach.
Furthermore, as discussed in Section 5.4, we explore the inclusion of additional critical performance
metrics, such as tail latency and outlier behavior, into the design of SCOPE. The results demonstrate
that while incorporating these metrics improves the results of the analysis, SCOPE performs well
across different serverless functions, achieving an accuracy of 97.25%. This indicates that even
without these additional metrics, SCOPE remains highly effective for performance testing.

SCOPE is evaluated using a diverse dataset that includes 25 distinct task types. These tasks cover
a broad array of applications, including mathematical operations, image processing, face detection,
graph network analysis, video processing, and natural language processing. This diverse set of
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functions ensures that our evaluation reflects a wide range of real-world serverless computing
workloads, enabling us to assess the generalizability of SCOPE across different domains and use
cases, both in cold-start and warm-start scenarios. The additional situations explored in Section 5.4
further confirm its applicability across various situations, such as mixed cold and warm conditions,
serverless applications composed of multiple functions, varying input conditions, functions with
other types of triggers, highly bursty workloads, and functions executed across different platforms.
Additionally, we use a trustworthy ground truth to validate the performance of SCOPE. To assess
the sufficiency of 1,000 repetitions as the ground truth, we conduct an additional 500 runs for each
function, as discussed in Section 6.2. The results show that the effectiveness of SCOPE remains
consistent when compared to the 1,500 repetitions.
SCOPE’s evaluation also includes a thorough investigation of parameter choices. In RQ2, we

examine the impact of varying key parameters, such as different constraints for the stopping
criterion and varying the number of repetitions within each run interval. The results demonstrate
that SCOPE continues to maintain high effectiveness regardless of these parameter variations.
Additionally, we assess SCOPE by comparing how well the estimated performance aligns with the
true performance across different percentiles (25th, 50th, 75th, 90th). This analysis highlights the
ability of SCOPE.

In summary, the design, data, and parameter choices of SCOPE are carefully tailored to provide
an effective performance testing approach across a variety of serverless functions.

6.4 Discussion of implications
Our work provides several key implications for the design and implementation of performance
testing approaches, spanning the pre-design, design, and post-design phases. These implications
are outlined as follows: (1) When designing a performance testing approach, it is essential to
assess the magnitude of the performance data in order to determine the most appropriate level
of granularity for analysis. If the magnitude is large, a coarse-grained analysis might be more
efficient, as it provides a broader overviewwith less computational overhead. Conversely, for smaller
magnitude, a fine-grained analysis may be necessary to capture subtle variations in performance.
This consideration helps to target the accuracy in the performance evaluation process. (2) Another
critical consideration is the distribution of the performance data. Different analysis methods are
suitable depending on whether the data follows a normal or non-normal distribution. In cases
where performance data exhibits a non-normal distribution, non-parametric methods are the most
appropriate choice. These methods do not assume any specific data distribution, making them
more robust for handling irregular data patterns. This underscores the need for careful method
selection to ensure reliable and valid performance analysis. (3) Performance characteristics can
vary significantly depending on the task type being executed. Therefore, any performance testing
approach must incorporate a diverse set of task types to ensure a comprehensive evaluation. By
testing across a wide range of tasks, one can ensure that the approach remains effective in a variety
of real-world tasks. This variability in performance highlights the importance of adapting the
performance testing approach to different contexts and workloads to ensure generalizability.

6.5 Threats to validity
Selection of baseline methods. Embracing serverless computing enables developers to create
cloud applications in a new programming paradigm. However, the literature on serverless computing
lacks dedicated performance testing approaches. As a result, baselines specifically designed for
serverless performance testing are not currently available. To address this, we evaluate serverless
function performance using performance testingmethods designed for traditional cloud applications.
This may raise a threat to the representativeness of baseline methods. To mitigate this threat,
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we select three state-of-the-art performance testing methods: PT4Cloud, Metior , and CONFIRM .
They have demonstrated superiority over previous performance testing techniques for cloud
applications [35, 36]. These methods are detailed in Section 4.2 and Section 7. Therefore, our
selected baseline methods are representative of the state-of-the-art.
Conclusion of technical effectiveness. We evaluate the effectiveness of SCOPE and state-of-
the-art techniques on the performance results of serverless functions. Technical effectiveness
may vary depending on the types of serverless functions. This may potentially influence the
experimental conclusions that we summarize herein. To mitigate it, we investigate the performance
of 65 serverless functions from a publicly available dataset curated in previous work [76], which
covers a variety of tasks, e.g., video processing, machine learning, and natural language processing.
Thus, the conclusion of technical effectiveness is based on testing results for various types of
serverless functions. Although we cannot generalize our results to all serverless functions, the ones
used herein are representative of those widely used in previous work.

6.6 Limitations of SCOPE
While SCOPE provides accurate and effective performance evaluations, it currently does not delve
into specific distribution characteristics, such as identifying patterns, which could further enhance
the depth of performance assessment. SCOPE employs a non-parametric approach for evaluating
serverless function performance. This method is advantageous as it makes minimal assumptions
about the underlying probability distribution of performance data, making it well-suited for scenar-
ios where the distribution is unknown or highly variable. However, if the performance distribution
of serverless functions is explicitly determined and incorporated into the analysis, it could enable
SCOPE to provide even more nuanced insights and potentially improve its evaluation effectiveness.

6.7 Challenges of SCOPE
In the process of designing SCOPE, we face several key challenges related to selecting appropriate
checks, statistical methods, and performance metrics for analysis. First, in serverless computing, it
is crucial to determine the appropriate level of granularity for performance analysis. Due to the
latency characteristics of serverless functions, a fine-grained approach is necessary to capture subtle
changes in performance data and ensure effective analysis. Second, serverless functions generally
exhibit irregular performance patterns. This variability necessitates careful consideration of which
statistical methods are most appropriate. Since the performance data of many serverless functions,
both in cold and warm starts, follows a non-normal distribution, non-parametric methods are more
suitable for accurate performance analysis because they require fewer distribution assumptions. Fi-
nally, once the appropriate statistical methods are identified, we must determine which performance
metrics should be analyzed. A critical aspect of our approach is assessing whether the performance
metric falls within a desired confidence interval. Given the fine-grained nature of our analysis, we
extend our checks to cover a broader range of the performance distribution—specifically from the
25th percentile to the 75th percentile. This ensures that results are reliable and accurate.

6.8 Future work
In future work, we aim to extend the capabilities of SCOPE by testing a wider variety of serverless
functions and applications across different serverless providers. This will involve conducting per-
formance evaluations in diverse real-world scenarios, such as hybrid cold-warm start environments,
variations in input types, and different event triggers. Additionally, we plan to integrate SCOPE
with various monitoring and profiling tools to gain deeper insights into the runtime behavior of
serverless functions, enhancing the diagnostic and optimization capabilities of our approach.
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Furthermore, we intend to develop SCOPE into a serverless API, making it easily accessible
for developers and researchers to perform performance evaluations of serverless functions and
applications. The API will provide customizable testing parameters, allowing for flexible perfor-
mance analysis in various contexts. By providing seamless access to SCOPE, we hope to promote
its wider adoption and support the continuous evolution of performance testing techniques within
the serverless computing domain.

7 RELATEDWORK
Performance of serverless computing. Performance is the most studied topic in the serverless
computing literature [45, 66, 74]. On one hand, researchers have proposed novel solutions for
optimizing the performance of serverless functions [39, 47–49, 53, 58, 62, 65, 68]. For example,
FaaSLight [49] loaded only indispensable code for serverless functions to improve overall per-
formance. SOCK [62] cached commonly used libraries to speed up the cold-start performance of
serverless functions. A management layer called SONIC [53] was designed to improve the communi-
cation performance between serverless functions. On the other hand, empirical studies have delved
into characterizing the performance of serverless computing. For instance, Eismann et al. [28]
utilized a case study on AWS Lambda to investigate the stability of performance measurements by
exploring the impact of various configuration settings. McGrathet al. [58] designed a performance-
oriented serverless platform and evaluated the performance characteristics of serverless platforms.
Wen et al. [79] conducted a thorough measurement study to characterize the performance of
serverless functions executed on different commodity serverless platforms. However, there is no
performance testing approach specifically tailored to serverless computing to help researchers and
engineers determine accurate and reliable performance for serverless functions. To fill the gap, we
propose SCOPE.
Performance testing of cloud applications. Researchers have proposed the related performance
testing work for traditional cloud applications [35, 36, 43, 51, 57, 73]. Laaber et al. [43] explored
the impact of cloud environments on the variability of performance test results and assessed
the reliability of detecting slowdowns. Eismann et al. [26] primarily conducted a measurement
study of microservices’ performance and discussed related challenges without proposing a specific
performance testing approach to determine the accurate performance. Wang et al. [73] proposed
a non-parametric approach for cloud performance testing, based on basic bootstrapping tech-
niques. Similarly, Maricq et al. [57] introduced CONFIRM, a non-parametric method that employed
bootstrapping for cloud performance testing. However, He et al. [35] demonstrated that the boot-
strapping method lacks the consideration of internal data dependency, causing a low accuracy
in cloud application performance. To address this limitation, He et al. [35] improved this kind of
approach by incorporating the block bootstrapping method, which accounted for the internal data
dependency.
For the stopping criterion of performance testing, Alghmadi et al. [21] measured the degree of

repetition of data in performance results. However, previous work [36] showed that this stopping
criterion was not appropriate for performance testing of cloud applications. PT4Cloud [36] and
Metior [35] have considered the stability of performance distributions to terminate the repeated
runs, and have been evaluated to be the state-of-the-art in performance testing for cloud applica-
tions [26, 35]. However, our evaluation uncovers that PT4Cloud and Metior show low effectiveness
in serverless computing. This paper proposes SCOPE with a novel stopping criterion, which consid-
ers accuracy and consistency checks and outperforms PT4Cloud and Metior in the performance
testing for serverless functions.

, Vol. 1, No. 1, Article . Publication date: February 2025.



Wen et al.

8 CONCLUSION
This paper explores performance testing in the serverless computing domain. We proposed SCOPE,
the first performance testing approach specifically tailored for serverless computing, which included
accuracy and consistency checks. SCOPE emphasized the need for accuracy for most performance of
serverless functions to determine accurate and reliable performance. We investigated 65 serverless
functions and used their performance results to evaluate the effectiveness of SCOPE and state-of-
the-art techniques. The results showed that SCOPE provided testing results with 97.25% accuracy,
33.83 percentage points higher than the best currently available technique.
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