
Fairness Testing: A Comprehensive Survey and Analysis of

Trends

ZHENPENG CHEN, University College London, London, United Kingdom

JIE M. ZHANG, King’s College London, London, United Kingdom

MAX HORT, Simula Research Laboratory, Oslo, Norway

MARK HARMAN, University College London, London, United Kingdom

FEDERICA SARRO, University College London, London, United Kingdom

Unfair behaviors of Machine Learning (ML) software have garnered increasing attention and concern among
software engineers. To tackle this issue, extensive research has been dedicated to conducting fairness testing
of ML software, and this article offers a comprehensive survey of existing studies in this field. We collect 100
papers and organize them based on the testing workflow (i.e., how to test) and testing components (i.e., what
to test). Furthermore, we analyze the research focus, trends, and promising directions in the realm of fairness
testing. We also identify widely adopted datasets and open-source tools for fairness testing.

CCS Concepts: • Software and its engineering → Software creation and management; • Computing

methodologies → Machine learning;

Additional Key Words and Phrases: Machine learning, fairness testing, survey, analysis, trends

ACM Reference Format:

Zhenpeng Chen, Jie M. Zhang, Max Hort, Mark Harman, and Federica Sarro. 2024. Fairness Testing: A Com-
prehensive Survey and Analysis of Trends. ACM Trans. Softw. Eng. Methodol. 33, 5, Article 137 (June 2024),
59 pages. https://doi.org/10.1145/3652155

1 INTRODUCTION

Machine Learning (ML)-enabled software, commonly referred to as ML software, has gained
widespread adoption in critical areas of society, including hiring [131], credit assessment [119],
and criminal justice [113]. However, the use of such software has also led to instances of unfair
decision-making, particularly when sensitive attributes such as sex, race, age, and occupation
are involved [121]. For instance, an ML-enabled recidivism assessment system employed by US
courts was found to incorrectly label black defendants as higher-risk individuals compared to
white defendants [25].

Zhenpeng Chen, Federica Sarro, and Mark Harman are supported by the ERC Advanced Grant No.741278 (EPIC: Evolution-
ary Program Improvement Collaborators). Max Hort is supported by the Research Council of Norway through the secureIT
project (IKTPLUSS #288787).
Authors’ addresses: Z. Chen, M. Harman, and F. Sarro, Department of Computer Science, University College London, Gower
Street, London WC1E 6BT, United Kingdom; e-mails: zp.chen@ucl.ac.uk, mark.harman@ucl.ac.uk, f.sarro@ucl.ac.uk;
J. M. Zhang (Corresponding author), Department of Informatics, King’s College London, 30 Aldwych, London WC2B 4BG,
United Kingdom; e-mail: jie.zhang@kcl.ac.uk; M. Hort, Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo,
Norway; e-mail: maxh@simula.no.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 1049-331X/2024/06-ART137
https://doi.org/10.1145/3652155

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

https://orcid.org/0000-0002-4765-1893
https://orcid.org/0000-0003-0481-7264
https://orcid.org/0000-0001-8684-5909
https://orcid.org/0000-0002-5864-4488
https://orcid.org/0000-0002-9146-442x
https://doi.org/10.1145/3652155
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3652155
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652155&domain=pdf&date_stamp=2024-06-04

137:2 Z. Chen et al.

The unfair behaviors exhibited by ML software can have profound ethical implications, result-
ing in unacceptable outcomes, particularly by disadvantaging minority groups and protected cat-
egories. Consequently, there is a growing concern and heightened awareness within the research
community regarding the issue of unfairness and its impact.

The exploration of fairness issues gained significant momentum in the late 1960s [187], when
psychometricians began investigating the fairness of educational tests [142, 143]. In the 1980s,
researchers delved into the social impact of technology [206]. Subsequently, the study of fairness
expanded to include the domains of ML [240] and Software Engineering (SE) [159], beginning
around 2008, in response to the rapid adoption of ML in software applications supporting decision-
making processes.

From the SE perspective, fairness is a non-functional software property that should be treated
as a first-class entity throughout the entire SE process [104, 121]. Ahmad et al. [98] emphasized the
increasing importance of fairness as a requirement that should be considered during the require-
ments engineering phase of ML software development. Alidoosti [100] argued for the inclusion
of fairness considerations in the design process of software architecture. Albarghouthi et al. [99]
framed fairness as correctness properties for ML program verification. Zhang et al. [304] described
fairness as a significant testing property for ML software. Additionally, Zhang et al. [300] viewed
fairness as the objective of repairing ML software.

In this article, we also approach fairness from the SE perspective and define imperfections in
software systems that result in a misalignment between desired fairness conditions and actual out-
comes as fairness bugs. Our focus is on fairness testing of ML software, which aims to uncover fair-
ness bugs through code execution. Fairness testing represents an important aspect of software fair-
ness research and is closely intertwined with other activities in the SE process. It verifies whether
software systems meet fairness requirements, exposes fairness bugs introduced during software
implementation, and guides software repair efforts to address fairness issues, among other related
SE activities.

Compared to traditional software testing, fairness testing presents distinct challenges. For exam-
ple, in traditional software testing, a test oracle typically relies on the output of a single input. In
fairness testing, the oracle problem is more challenging, because inputs and outputs from different
demographic groups need to be considered simultaneously. Additionally, there are diverse fairness
definitions, some of which may even conflict with each other or be mathematically impossible to
satisfy concurrently [123, 282]. Since different definitions can require different test oracles, design-
ing fairness testing techniques to accommodate this multitude of definitions poses a significant
problem as well.

The significance of fairness testing and its associated challenges has led to a notable increase
in research efforts in this field. Figure 1 illustrates the cumulative number of publications on fair-
ness testing until 2023, revealing a growing interest and emphasizing the relevance of this survey.
Notably, 89% of fairness testing publications have emerged since 2019, indicating the emergence
of this new domain of software testing.

This article offers a comprehensive survey of fairness testing in ML software. The collected
papers are sourced from various venues including SE, artificial intelligence, computer security, and
human-computer interaction. We categorize these papers based on two key aspects: the fairness
testing workflow (i.e., how to test) and fairness testing components (i.e., what to test). Furthermore,
we conduct an analysis of research trends and identify potential research opportunities for the
fairness testing community. Additionally, we provide an overview of publicly accessible datasets
and open-source tools available for fairness testing.

Previous surveys have explored various aspects of fairness in ML and related fields. Mehrabi
et al. [224] and Pessach and Shmueli [243] surveyed fairness research on ML algorithms, while

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:3

Fig. 1. Cumulative number of publications on fairness testing.

Hort et al. [181] focused on bias1 mitigation methods for ML classifiers. Sun et al. [267], Berk
et al. [113], and Pitoura et al. [245] surveyed techniques for improving fairness in specific ML
tasks, such as natural language processing, criminal justice risk assessment, and ranking. Tushev
et al. [277] surveyed software design strategies for fairness in digital sharing economy applications.
Hutchinson and Mitchell [187] provided a historical perspective on fairness assessment tests across
disciplines, including education and hiring. Zhang et al. [304] conducted a broader survey on ML
testing, considering fairness as one of several testing properties. A recent systematic literature
review [263] focused on software fairness, covering only 20 fairness testing papers. In contrast, our
survey specifically concentrates on fairness testing of ML software. To the best of our knowledge,
this is the first comprehensive survey specifically dedicated to the literature on fairness testing.

To summarize, this work makes the following contributions:
— It provides a comprehensive survey of 100 fairness testing papers, encompassing diverse

research communities.
— It defines fairness bug and fairness testing and provides an overview of the testing workflow

and testing components related to fairness testing.
— It compiles a summary of public datasets and open-source tools for fairness testing, provid-

ing a navigation for researchers and practitioners interested in the field.
— It analyzes research trends and identifies promising research opportunities in fairness test-

ing, aiming to foster further advancements in this area.

The structure of the article is illustrated in Figure 2, and the detailed survey methodology is
presented in Section 3.

2 PRELIMINARIES

In this section, we begin by presenting widely adopted fairness definitions. Subsequently, we offer
a definition of fairness bug and fairness testing from the perspective of SE. We further outline the
testing workflow and testing components of fairness testing.

2.1 Definition of Fairness

The definition of fairness plays a crucial role in establishing the fairness conditions that software
systems are expected to meet. Over the years, researchers and practitioners have proposed and

1The terms “bias” and “unfairness” are often used interchangeably in the literature, as they both denote deviations from
“fairness” [224].

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:4 Z. Chen et al.

Fig. 2. Structure of this article.

Table 1. Widely Adopted Fairness Definitions

Name Fairness type
Fairness through unawareness [171] Individual fairness
Fairness through awareness [154] Individual fairness
Counterfactual fairness [202] Individual fairness
Causal fairness [160] Individual fairness
Statistical parity [109] Group fairness
Equalized odds [176] Group fairness
Equal opportunity [176] Group fairness

explored various fairness definitions [123, 179, 225]. This section aims to present the fairness defi-
nitions that have received widespread adoption in the literature [304], as listed in Table 1.

These definitions primarily fall into two categories: individual fairness and group fairness [224].
Individual fairness requires that software should produce similar predictive outcomes for similar
individuals, while group fairness requires software to treat different demographic groups in a sim-
ilar manner. Fairness assessment in the context of ML software often relies on sensitive attributes,
also known as protected attributes, which represent characteristics that require protection against
unfairness, such as sex, race, age, and physical ability. By considering sensitive attributes, the pop-
ulation can be categorized into privileged groups and unprivileged groups.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:5

To facilitate the formalization of fairness, we introduce the necessary notations:

—X : Denotes the input feature vector of ML software, excluding sensitive attributes. X (i) de-
notes the feature vector for individual i .

—A: Denotes sensitive attributes, where A(i) denotes the sensitive attributes for individual i .
—Y : Denotes the actual outcome of ML software.
— Ŷ : Denotes the predicted outcome, with Ŷ (X (i),A(i)) indicating the predicted outcome for

individual i .
— P(·): Denotes the probability function.

For Y and Ŷ , we use F to denote a favorable outcome andUF to denote an unfavorable outcome.
Given that ML inputs of diverse data types can be encoded as vectors, these definitions of fairness
are applicable to a wide range of data types.

2.1.1 Individual Fairness. We first introduce four widely adopted definitions of individual
fairness.

Fairness through unawareness [171] assumes that a software system can achieve fair out-
comes by refraining from explicitly using sensitive attributes in the decision-making process. By
excluding these attributes, the system cannot rely on them and is thus expected to produce the
same outcome for individuals with identical non-sensitive features. Formally, fairness through
awareness assumes that, for individuals i and j, if X (i) = X (j), then Ŷ (X (i)) = Ŷ (X (j)).

Fairness through awareness [154] requires a software system to produce similar outcomes for
similar individuals. To achieve this, two distance metrics are employed: d(·, ·) measures the similar-
ity of individuals for a specific task, and D(·, ·) measures the similarity of probability distributions
over outcomes. Formally, fairness through awareness dictates that D(Ŷ (X (i),A(i)), Ŷ (X (j),A(j))) ≤

d((X (i),A(i)), (X (j),A(j))). In other words, the distributions over predicted outcomes for two individ-
uals should be indistinguishable within their measured similarity/distance. Thus, if two individuals
are similar, then they should receive similar predicted outcomes.

Counterfactual fairness [202] states that an individual’s prediction should remain the same
in the real world as well as in a counterfactual world where the individual belongs to a different
demographic group (i.e., the sensitive attribute is different). In practical applications, the input
X may contain features that have a causal relationship with the sensitive attribute A. Therefore,
when the attribute A = a is changed to the counterfactual value A = a′, the input X = x will
also be transformed to X = x ′, where features causally linked to the sensitive attribute will be
altered accordingly. Formally, under any context X = x and A = a: P(Ŷ (x ,a) = y |X = x ,A = a) =
P(Ŷ (x ′,a′) = y |X = x ,A = a), for all y and for any value a′ attainable by A.

Causal fairness [160] captures the causal relationship between sensitive attributes and out-
comes. It involves running a software system on an input, modifying the sensitive attribute(s), and
checking whether this modification leads to a change in the output. Formally, causal fairness re-
quires that for any individual i , there should be no other instance j that simultaneously satisfies
the following conditions: (1) X (i) = X (j); (2) A(i) � A(j); (3) Ŷ (X (i),A(i)) � Ŷ (X (j),A(j)).

A notable distinction between fairness through unawareness and other fairness definitions lies
in its deliberate exclusion of sensitive attributes from the decision-making process. In contrast, fair-
ness through awareness incorporates sensitive attribute information depending on the definition
of individual similarity; counterfactual fairness and causal fairness make use of sensitive attributes
to comprehend their relationship with outcomes.

Next, we discuss the difference among fairness through awareness, counterfactual fairness, and
causal fairness. Fairness through awareness is a more general concept compared to counterfac-
tual fairness and causal fairness. The alignment between fairness through awareness and coun-
terfactual fairness emerges when the similarity metric is crafted by contemplating the likeness of

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:6 Z. Chen et al.

Table 2. Advantages and Disadvantages of Different Individual Fairness Definitions

Name Advantages Disadvantages
Fairness through
unawareness

Straightforward solution by avoiding explicit use of
sensitive attributes.

Ignores correlations between non-sensitive features
and sensitive attributes.

Fairness through
awareness

(1) Considers both the similarity of individuals and the
similarity of outcome distributions. (2) Flexible
similarity definition for different scenarios.

(1) Choice of distance metrics can impact results and
may require fine-tuning. (2) Sensitivity to the
definition of similarity, which can vary across
scenarios.

Counterfactual
fairness

(1) Incorporates causal reasoning to identify
discriminatory effects. (2) Considers an impact of
changes in sensitive attributes on both non-sensitive
features and predictions.

(1) Requires knowledge of causal relationships
between non-sensitive features and sensitive attributes.
(2) Practical implementation may be challenging,
especially when causal relationships are complex.

Causal fairness (1) Incorporates causal reasoning to identify
discriminatory effects. (2) Easy to implement
compared to counterfactual fairness.

Ignores potential relationships between non-sensitive
features and sensitive attributes.

samples in counterfactual worlds [202]. However, when the similarity metric is grounded in the
similarities of non-sensitive attributes, fairness through awareness can be likened to causal fair-
ness [282]. While counterfactual fairness and causal fairness share similarities in their approach to
individual fairness—both adopting a causal standpoint that evaluates fairness by manipulating sen-
sitive attribute information—they diverge in certain aspects. Specifically, causal fairness simplifies
this perspective by modifying only sensitive attribute information without considering the causal
relationships among sensitive attributes and other features. In contrast, counterfactual fairness
changes both sensitive attribute information and non-sensitive features that are causally linked to
sensitive attributes.

Table 2 summarizes advantages and disadvantages of different individual fairness definitions.

2.1.2 Group Fairness. We introduce three widely adopted definitions of group fairness. To bet-
ter illustrate the distinctions between these definitions, we use a credit score software system as
an example, with sex as the protected attribute of applicants.

Statistical parity [109], also known as demographic parity, requires the probability of a
favorable outcome to be the same among different demographic groups. In other words, a software
system satisfies statistical parity if, for any two possible values (denoted as a and a′) of the sensitive
attribute set, the probability of obtaining favorable outcomes is the same: P[Ŷ = F |A = a] = P[Ŷ =
F |A = a′]. For instance, the credit score system should assign a good score to male and female
applicants in equal proportions.

Equalized odds [176] requires that the privileged and the unprivileged groups have equal true
positive rates and equal false positive rates. In other words, the prediction is independent of sensi-
tive attributes when the target label Y is fixed. For any two possible values (denoted as a and a′) of
the sensitive attribute set, P[Ŷ = F |A = a,Y = y] = P[Ŷ = F |A = a′,Y = y] for y ∈ {F ,UF }. In our
example, the probability of correctly assigning a good predicted credit score to an applicant with an
actual good credit score, and the probability of incorrectly assigning a good predicted credit score
to an applicant with an actual bad credit score, should be equal for male and female applicants.

Equal opportunity [176] states that the privileged and the unprivileged groups have equal true
positive rates. In other words, the prediction is independent of sensitive attributes when the target
label Y is fixed as F : For any two possible values (denoted as a and a′) of the sensitive attribute set,
P[Ŷ = F |A = a,Y = F] = P[Ŷ = F |A = a′,Y = F]. In our example, the probability of accurately
assigning a good predicted credit score to an applicant with an actual good credit score should be
the same for male and female applications.

Table 3 summarizes advantages and disadvantages of different group fairness definitions.
More about fairness definitions can be found in recent work on surveying, analyzing, and com-

paring them. Mitchell et al. [225] compiled a comprehensive catalog of fairness definitions found

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:7

Table 3. Advantages and Disadvantages of Different Group Fairness Definitions

Name Advantages Disadvantages
Statistical parity (1) Easy to understand and implement. (2) Promotes

fairness at a high level, focusing on overall outcome
balance.

(1) May not address nuanced biases in specific
performance metrics. (2) Ignores variations in
predictive performance between groups.

Equalized odds (1) Considers both positive and negative predictive
performance. (2) Addresses potential disparities in
error rates between groups.

(1) Stricter conditions may be challenging to satisfy in
practice. (2) May be sensitive to class imbalances and
prevalence differences.

Equal
opportunity

(1) Focuses specifically on fairness in positive
predictions. (2) Emphasizes equal opportunities for
positive outcomes.

(1) Does not consider false positive rates, potentially
overlooking negative consequences. (2) Similar to
equalized odds, may face challenges in practical
implementation.

in the literature, offering a valuable resource for understanding different perspectives. Verma and
Rubin [282] provided insights into the rationale behind existing fairness definitions and examined
their relationships through a detailed case study. Castelnovo et al. [123] delved into the differences,
implications, and orthogonal aspects of various fairness definitions, shedding light on their distinct
characteristics. Additionally, Mehrabi et al. [224] developed a taxonomy of fairness definitions pro-
posed specifically for ML algorithms.

2.2 Definition of Fairness Bug and Fairness Testing

A software bug is an imperfection in a computer program that causes a discordance between ex-
isting and required conditions [9]. Based on this definition, prior research [304] defines “ML bug”
as any imperfection in an ML item that causes a discordance between the existing and the re-
quired conditions and “ML testing” as any activity designed to reveal ML bugs. Aligning with the
terminology used in SE, we define fairness bug and fairness testing as follows:

— Definition (Fairness Bug). A fairness bug refers to any imperfection in a software system
that causes a discordance between the existing and required fairness conditions.

The required fairness conditions depend on the fairness definition adopted by the develop-
ers of the software under test. The imperfections can manifest as unfair predictions that vi-
olate individual fairness or discrepancies in outcomes among different demographic groups
that surpass a predetermined threshold for group fairness. Previous studies have also re-
ferred to such imperfections as fairness defects [121] or fairness issues [159]. In this article,
we adopt the term “fairness bug” as a representative of these related concepts, as “bug” car-
ries a broader meaning [9].

The presence of fairness bugs has spurred research efforts towards developing automated
testing techniques to detect these bugs, i.e., fairness testing.

— Definition (Fairness Testing). Fairness testing refers to any activity designed to reveal fair-
ness bugs through code execution. Formally, consider a software system S under test, a set
of inputs I , the required fairness condition C , and the existing fairness condition C ′. Fair-
ness testing refers to any activity involving the execution of I on S to identify a discordance
between C and C ′.

This definition categorizes fairness testing as a subset of software testing, specifically excluding
manual inspection and formal verification methods. Since we focus on fairness testing of ML soft-
ware, we follow the recent ML testing survey [304] to consider two key aspects of this emerging
testing domain: testing workflow and testing components.

2.3 Fairness Testing Workflow

The fairness testing workflow refers to how to conduct fairness testing with different testing ac-
tivities. This section outlines its key activities.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:8 Z. Chen et al.

Fig. 3. Workflow of fairness testing.

Figure 3 presents an overview of the fairness testing workflow for ML software, which builds
upon the established ML testing workflow in previous work [304]. In this process, software en-
gineers establish and specify the desired fairness conditions (also often referred to as fairness
requirements) for the software under test. These fairness conditions primarily stem from individ-
ual fairness or group fairness definitions. Based on the defined fairness conditions, test oracles are
identified and created. Test inputs are obtained either through sampling from collected data or gen-
eration. The test inputs are then executed on the software under test to determine if any violations
of the fairness conditions occur. Engineers assess the adequacy of the tests, evaluating their effec-
tiveness in uncovering fairness bugs. Simultaneously, the results of the test execution provide a bug
report that assists engineers in reproducing, locating, and resolving any identified fairness bugs.
The fairness testing process can be iterated to ensure that the repaired software aligns with the
desired fairness conditions. Upon satisfying the fairness conditions, the software can be deployed
for use. Following deployment, engineers can employ runtime monitoring to continually test the
software using new real-world inputs, ensuring ongoing adherence to the fairness conditions.

Note that, as in ML testing [304], test inputs in fairness testing can take diverse forms based on
the testing components of ML software. Common testing components include data, ML programs,
and ML models, as described in Section 2.4. For testing data, test inputs can be programs capable
of detecting data bias [304]; for testing ML programs and models, test inputs typically involve data
instances used to validate ML behaviors [304]. Unlike traditional software testing, which can rely
on a single data instance as the test input, fairness testing of ML programs and models typically
uses pairs of data instances (for individual fairness testing) or a set of data instances with diverse
demographic information (for group fairness testing).

Section 4 organizes fairness testing papers based on the testing workflow perspective. The exist-
ing fairness testing literature primarily addresses test input generation (Section 4.1) and test oracle
identification (Section 4.2), while other testing activities remain open challenges and present re-
search opportunities for the community (discussed in Section 8).

2.4 Fairness Testing Components

Software testing can be conducted for different testable parts within a software system [203]. In
the context of fairness testing, this section focuses on introducing the testable components within
ML software.

We denote the entire ML software used by end-users as S , where S encompasses both ML com-
ponents and non-ML components [216, 230], as illustrated in Figure 4. In the ML components, an
ML model M is trained using large-scale data D, comprising sensitive attributes A, remaining fea-
ture vectors X , and data labels Y . An ML program G is implemented based on ML frameworks F
(e.g., scikit-learn [239], TensorFlow [96], and Keras [172]) [134, 304], and it specifies the structure

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:9

Fig. 4. Components to test in ML software.

of the desired ML model and the process of obtaining it through the training data [134]. To trans-
late ML components into a functional software system, various non-ML components denoted as
C are necessary, such as data storage, user interfaces, and monitoring infrastructures. All these
components are interconnected and work together to achieve the software’s objective.

In Section 2.2, we define fairness testing as any activity aimed at uncovering fairness bugs in
the ML software S . According to this definition, fairness testing for S should encompass testing
activities on each component, including the training data D, ML program G, ML frameworks F ,
ML model M , and non-ML components C . This layered approach to fairness testing addresses
diverse aspects of the ML software S , facilitating a comprehensive evaluation that identifies and
rectifies biases at various stages. The collaboration of these testing components collectively fulfills
the mission of fairness testing in the ML software.

Data Testing. ML follows the data-driven programming paradigm. Training data D determines
the decision logic of ML models M to a large extent [304]. Therefore, training data is considered
as an important component to test in the ML testing literature [120, 304]. Since bias in training
data is demonstrated to be a main root cause of ML software unfairness [125], training data is
also an important component for fairness testing. In the fairness literature, data testing aims to
identify bias within the training data D. As elucidated in Section 2.3, data testing involves the use
of programs as test inputs, designed to specifically detect three types of data bias: feature bias, label
bias, and selection bias. Feature bias detection focuses on identifying whether the features X of
training data contain bias [210]. Label bias detection aims to identify whether factors unrelated to
label determination influence the label generation process, resulting in biased data labels Y [127].
Selection bias detection targets the identification of unexpected correlations between sensitive
attributes A and data labels Y within the distribution of training data [293].

ML Program Testing. An ML program G encodes the process by which an ML model M is
obtained based on the training data. It has been an important fairness testing component of ML
software [304]. A fairness bug may arise as improper data processing [116], training algorithm
selection [183], and hyper-parameter settings (i.e., configuration options that control the learning
process) [274] in ML programs. In the fairness literature, ML program testing aims to uncover
issues within the implementation of the ML program G that contribute to the unfairness of the
ML software S .

Framework Testing. ML frameworks F (also called ML libraries) implement ML algorithms
internally and provide high-level Application Programming Interfaces (APIs) for developers

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:10 Z. Chen et al.

to build ML models without knowledge of the inner working of these algorithms. The ML testing
literature [228, 233, 244, 289, 292] has considered ML frameworks as an important testing compo-
nent and detected bugs inside ML frameworks that lead to accuracy problems in the final ML model
M . Nevertheless, existing framework testing studies are primarily related to ML performance (e.g.,
accuracy). In contrast, framework testing for fairness aims to detect issues inside ML frameworks
F that result in unfairness of the ML software S . To the best of our knowledge, to date, there has
been no framework testing work for detecting fairness bugs.

Model Testing: Most fairness testing techniques are model-centric [97, 156, 160, 278, 295, 310,
313, 318]. They consider the ML model M as the testing component and aim to reveal fairness bugs
based on the input-output behaviors of M . Fairness testing of ML models can be performed in a
white, black, or gray-box manner [274]. Black-box testing is a technique of testing without having
any knowledge of the internal working of ML software (e.g., code and data); white-box testing
tests an ML software system taking into consideration its internal working; gray-box testing is to
test with limited knowledge of the internal working of the software under test [194].

Non-ML component testing: From the SE perspective, ML software is beyond the ML models
and also includes non-ML components C [215]. These non-ML components may also affect the
fairness of ML software. For instance, data storage practices that result in the exclusion or under-
representation of specific demographic groups can lead to biased training data, subsequently re-
sulting in biased ML models. Similarly, biased user interfaces may inadvertently exhibit favoritism
or bias against particular user groups. Testing non-ML components for fairness seeks to identify
any unfairness within the ML software S attributable to the non-ML components C . However, to
the best of our knowledge, there has been no non-ML component testing work in the fairness
testing literature.

Section 5 organizes the related papers from the testing component perspective. The existing
literature primarily focuses on data testing (Section 5.1), ML program testing (Section 5.2), and
model testing (Section 5.3).

3 SURVEY METHODOLOGY

This section introduces the scope and the paper collection process of our survey.

3.1 Survey Scope

We aim to define, collect, and curate the disparate literature, arguing and demonstrating that there
does, indeed, exist a coherent area of research in the field that can be termed “fairness testing.”

We apply the following inclusion criteria when collecting papers. The papers that satisfy any of
these criteria are included in this survey.

— The paper introduces the general idea or one of the related aspects of fairness testing of ML
software.

— The paper presents an approach, study, framework, or tool that targets at fairness testing of
ML software.

We do not include papers about the issues of fairness in network systems and hardware systems.
Moreover, we filter out papers that are about fairness definitions but do not consider them in the
context of testing. We also do not include papers about gender diversity/inclusion and cognitive
bias in software development, because our survey focuses on SE product fairness, not SE process
fairness.

3.2 Paper Collection

We first collected papers by keyword searching on the DBLP publication database [73], which
covers arXiv (a widely used open-access archive), more than 1,800 journals, and 5,800 academic

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:11

conferences and workshops in computer science [87]. DBLP has been extensively used in previous
surveys in SE [132, 162, 221, 304, 305], and a recent ML testing survey [304] demonstrates that pa-
pers collected from other popular publication databases are a subset of those collected from DBLP.

We developed the search keywords through an iterative trial-and-error procedure [212] con-
ducted by the first two authors, with input and discussion from the other authors. Initially, we
started with a general search string “fairness testing” to gather initial relevant papers. Subse-
quently, we carefully examined the titles, abstracts, and keywords of these papers to identify addi-
tional keywords and phrases. Through brainstorming sessions, we expanded and refined the list
of search strings by incorporating related terms, synonyms, and variations. The iterative process
allowed us to continuously improve the search keyword list based on the outcomes of the searches,
ensuring that it accurately captured the relevant literature on fairness testing.

The final keywords used for searching included (“fair” OR “bias” OR “discrimination”) AND
(“software” OR “learning” OR “bug” OR “defect” OR “fault” OR “algorithm” OR “test” OR “de-

tect” OR “evaluat” OR “discover” OR “identify” OR “find” OR “uncover” OR “reveal” OR “recog-

niz” OR “unveil”). As a result, we conducted a total of 3 × 16 = 48 searches on DBLP on March
12, 2023, and obtained 7,674 hits. Then, the first two authors manually inspected each hit paper to
check whether it was in the scope of our survey and selected 67 relevant papers.

The fairness testing community is diverse, with publications appearing in various venues and
adopting different terminologies. To capture papers that might have been overlooked by our key-
words and ensure a comprehensive coverage of the field, we further employed a snowballing ap-
proach. This process, conducted in April and May 2023, aimed to identify transitively dependent
papers and expand our paper collection. Both backward and forward snowballing approaches [188]
were employed. In backward snowballing, we examined the references in each collected paper and
identified those lying in our scope; in forward snowballing, we used Google Scholar to identify
papers of our interest from those that cited the collected papers. We iteratively repeated the snow-
balling process until we reached a fixed point, where no new relevant papers were identified.
Through this process, we were able to retrieve an additional 25 papers, contributing to a more
comprehensive coverage of the fairness testing literature.

To ensure that our survey is comprehensive and accurate, we also contacted the authors of the
papers that we collected via keyword searching and snowballing. We provided them with our pa-
per and asked them to check whether our description of their work was correct. This interaction
allowed us to refine our understanding of their contributions and make necessary revisions to our
descriptions. Furthermore, during these communications, authors directed our attention to 15 ad-
ditional papers that we had not initially included in our collection. Among the suggested papers,
8 met our inclusion criteria and were deemed relevant to our survey. These 8 papers were subse-
quently added to our repository, further enhancing the coverage of the fairness testing literature
in our survey.

Table 4 shows the statistics of the paper collection process. In summary, we consider 67 + 25 +
8 = 100 papers for this survey.

3.3 Paper Analysis

To ensure a rigorous analysis of the collected papers and to enhance the quality and accuracy of the
survey, we employed thematic synthesis, a well-established method in SE literature reviews [186].
This method allowed us to systematically organize and analyze the papers in a structured manner.

The analysis process was led by the first two authors, who extensively read and examined the
full text of each paper. Their objective was to develop a comprehensive understanding of the test-
ing workflow and test components described in the papers. Through meticulous manual analysis,

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:12 Z. Chen et al.

Table 4. Statistics of the Collected Papers

Keyword Hits
fair | bias | discrimination + software 236
fair | bias | discrimination + learning 2,399
fair | bias | discrimination + bug 20
fair | bias | discrimination + defect 41
fair | bias | discrimination + fault 94
fair | bias | discrimination + algorithm 2,121
fair | bias | discrimination + test 409
fair | bias | discrimination + detect 1,013
fair | bias | discrimination + evaluat 838
fair | bias | discrimination + discover 172
fair | bias | discrimination + identify 119
fair | bias | discrimination + find 96
fair | bias | discrimination + uncover 33
fair | bias | discrimination + reveal 60
fair | bias | discrimination + recogniz 12
fair | bias | discrimination + unveil 11
After manual inspection 67
After snowballing 92
After collecting author feedback 100

they extracted relevant information, identified common patterns and discerned major themes that
emerged across the collection of papers.

Using these identified themes as a framework, the authors categorized and organized the related
papers under different thematic headings. This approach facilitated a coherent and structured rep-
resentation of the survey’s content, enabling readers to easily navigate and comprehend the key
insights and findings from the analyzed papers.

During the analysis, in instances where disagreements arose, the first two authors held discus-
sion meetings involving other co-authors. These meetings served as a platform to address conflicts
and reach a consensus on the extracted data and the placement of papers within the identified
themes. The co-authors, all of whom have published fairness-related papers in top-tier venues,
contributed their expertise and acted as arbitrators, ensuring the resolution of any disagreements
and maintaining the integrity of the analysis.

Finally, to ensure the integrity and reliability of the survey’s findings, all authors independently
double-checked the content. This review process aimed to identify any potential errors, inconsis-
tencies, or omissions.

Additionally, as mentioned before, to further enhance the quality of the survey, we shared the
draft with the authors of the collected papers. This collaborative approach allowed us to gather
valuable input, feedback, and validation from experts in the field. By incorporating their insights,
we ensured that the survey accurately represented the original papers’ findings and perspectives,
strengthening the overall credibility and robustness of our analysis.

4 FAIRNESS TESTING WORKFLOW

We first introduce existing techniques that support the key activities involved in fairness testing,
i.e., test input generation and test oracle identification.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:13

Table 5. Test Generation Techniques and the Fairness Definitions Adopted

Category Authors [Ref], Year Venue Fairness definitions
Random
generation

Galhotra et al. [101, 160], 2017 ESEC/FSE causal fairness, statistical parity
Angell et al. [101], 2018 ESEC/FSE causal fairness, statistical parity

Search-based
generation

Udeshi et al. [278], 2018 ASE causal fairness
Sano et al. [252], 2022, SEKE causal fairness
Aggarwal et al. [97], 2019 ESEC/FSE causal fairness
Fan et al. [156], 2022 ICSE causal fairness
Ma et al. [218], 2022 arXiv causal fairness
Zhang et al. [313], 2020 ICSE causal fairness
Zhang et al. [315] 2021 IEEE TSE causal fairness
Zhang et al. [310], 2021 ISSTA causal fairness
Zheng et al. [318], 2022 ICSE causal fairness
Monjezi et al. [227], 2023 ICSE causal fairness
Xie and Wu [295], 2020 TrustCom causal fairness
Perera et al. [242], 2022 EMSE causal fairness
Tao et al. [270], 2022 ESEC/FSE causal fairness
Xiao et al. [294], 2023 ISSTA causal fairness
Patel et al. [237], 2022 ICST causal fairness
Haffar et al. [175], 2022 MDAI counterfactual fairness
Zhang et al. [312], 2023 ACM TOSEM statistical parity
Cabrera et al. [122], 2019 VAST group fairness

Verification-based
generation

Sharma and Wehrheim [255], 2020 ICTSS causal fairness
Sharma et al. [254], 2021 ICMLA causal fairness
Kitamura et al. [197], 2022 SSBSE causal fairness
Zhao et al. [317], 2022 SSBSE causal fairness

Template-based
generation

Díaz et al. [151], 2018 CHI causal fairness
Zhang et al. [312], 2023 ACM TOSEM statistical parity
Liu et al. [214], 2020 COLING causal fairness, statistical parity
Kiritchenko and Mohammad [196], 2018 NAACL workshop causal fairness
Mehrabi et al. [222], 2020 HT parity in performance across groups
Wang et al. [290], 2022 ACL parity in performance across groups
Sharma et al. [256], 2020 NeurIPS workshop causal fairness
Sheng et al. [257], 2019 IJCNLP causal fairness
Huang et al. [185], 2020 EMNLP causal fairness
Vig et al. [283], 2020 NeurIPS counterfactual fairness
Dhamala et al. [150], 2021 FAccT causal fairness
Smith et al. [261], 2022 EMNLP statistical parity
Ribeiro et al. [251], 2020 ACL causal fairness
Wan et al. [286], 2023 ESEC/FSE absolute fairness, relative fairness
Ma et al. [219], 2020 IJCAI counterfactual fairness
Asyrofi et al. [102], 2021 IEEE TSE counterfactual fairness
Yang et al. [299], 2021 ESEC/FSE distributional fairness
Sun et al. [268], 2020 ICSE counterfactual fairness
Sun et al. [269], 2022 ICSE counterfactual fairness

Grammar-based generation Ezekiel et al. [262], 2022 IEEE TSE counterfactual fairness

GAN-based generation

Denton et al. [149], 2019 CVPR workshop causal fairness
Joo and Kärkkäinen [191], 2020 arXiv causal fairness
Zhang et al. [314], 2021 arXiv causal fairness
Muthukumar [229], 2019 CVPR workshop causal fairness
Dash et al. [146] WACV counterfactual fairness
Balakrishnan et al. [106], 2020 ECCV parity in robustness across groups
Pu et al. [247], 2022 ICSE workshop parity in robustness across groups

Signal transformation
-based generation

Rajan et al. [250], 2022 FASE parity in robustness across groups

4.1 Test Input Generation

In the area of fairness testing, test input generation aims to automatically produce instances that
can induce discrimination and reveal fairness bugs in software systems. We organize relevant re-
search based on the techniques adopted, including random test input generation, search-based test
input generation, verification-based test input generation, and domain-specific test input genera-
tion. Table 5 summarizes these techniques and indicates the fairness definitions that they adopt.

4.1.1 Random Test Input Generation. Random testing evaluates a software system with inputs
randomly chosen from its input space, and it can be used to infer the quantitative estimate of a
system’s operational reliability [153].

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:14 Z. Chen et al.

Galhotra et al. [160] and Angell et al. [101] introduced Themis, a random test input generation
approach for fairness. Themis randomly assigns values to non-sensitive attributes and varies the
values of sensitive attributes. By observing the behavior of the system under test with these inputs,
Themis quantifies the occurrence of discriminatory instances in the input space. Discrimination
is measured using two frequency values. The first value represents the proportion of generated
inputs where altering the sensitive attributes leads to a change in the output (causal fairness). The
second value captures the disparity in receiving favorable outcomes among different demographic
groups within the generated inputs (statistical parity).

4.1.2 Search-based Test Input Generation. Despite the effectiveness of Themis, random gener-
ation can lead to a low success rate of discriminatory input generation [156], so the following
fairness testing work generates test inputs using search-based techniques. Search-based test gen-
eration uses meta-heuristic search techniques to guide the generation process and make this pro-
cess more efficient and effective [177, 178, 204]. It has been employed in an increasing number of
fairness testing techniques to explore the input space of the software under test.
Two-phase search-based techniques. In the realm of fairness testing, most search-based test
input generation techniques employ a two-phase approach for generating individual discrimina-
tory instances. These techniques operate based on the causal fairness definition, which implies
that altering sensitive attributes should not impact the outcomes.

The two phases involved are the global search and the local search:

— During the global search phase, the technique conducts an exploration of the input space to
identify an initial set of individual discriminatory instances. These instances consist of pairs
where altering the sensitive attributes results in divergent outcomes.

— During the local search phase, the technique focuses on searching for additional individual
discriminatory instances in the neighborhood of those found during the global search. This
phase is based on the hypothesis that if a discriminatory input exists in the input space,
then there exist more discriminatory inputs located closer to it [278]. The hypothesis draws
inspiration from the robustness property of ML models, where similar inputs should yield
similar outputs. Hence, the discriminatory inputs and their neighborhood are likely to be
similarly discriminatory, especially for robust models [278].

In the following, we introduce how existing search-based fairness testing techniques materialize
the two phases:

Udeshi et al. [278] introduced Aequitas, the first fairness testing approach based on a two-phase
search framework. In the global search phase, Aequitas randomly explores the input space to un-
cover discriminatory instances. In the local search phase, Aequitas perturbs the non-sensitive at-
tribute of the discriminatory instances found in the global phase to explore their neighboring
inputs and identify more discriminatory instances. Furthermore, Aequitas employs the generated
cases to estimate the proportion of inputs that violate causal fairness, offering statistical evidence
for fairness bugs. Sano et al. [252] proposed KOSEI, which modifies the local search of Aequitas
[278]. KOSEI individually applies perturbations to all non-protected attributes, in contrast to Ae-
quitas, which probabilistically selects one attribute at a time. Additionally, KOSEI enables users to
set an iteration limit for the perturbation process.

Aggarwal et al. [97] proposed SG, which combines symbolic generation and local explainability
for search-based discriminatory instance generation. In the global search phase, SG utilizes a local
model explainer to approximate the decision-making process of ML software by constructing a
decision tree. Symbolic execution is then employed to cover various paths in the decision tree,
aiming to search for discriminatory inputs. In the local search phase, SG perturbs the non-sensitive

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:15

attribute of these discovered inputs to explore their neighborhood within the input space, thereby
generating additional discriminatory inputs.

Fan et al. [156] introduced ExpGA, an explanation-guided approach for generating discrimina-
tory instances. Initially, ExpGA employs interpretable methods to identify seed instances that are
more likely to produce discriminatory instances when their feature values are slightly modified
compared to other instances. Subsequently, using these seed instances as inputs, ExpGA lever-
ages a genetic algorithm for local search, enabling efficient generation of a substantial number of
discriminatory instances.

Ma et al. [218] proposed I&D to enhance the initial seed selection for the global search of the two-
phase search-based generation approach. It achieves this by generating a chiral model, which alters
the protected attributes of the training data. This chiral model helps identify initial discriminatory
instances by detecting differences in predictions compared to the original model. I&D employs the
SHAP value [217], a game-theory-based approach, to explain the variation in prediction behavior
between the chiral and original models for each initial discriminatory instance. Moreover, it clus-
ters the initial discriminatory instances based on their SHAP values and selects diverse instances
from each cluster in a round-robin fashion for future use in the global search.

In addition to these general techniques, there have been several two-phase search-based genera-
tion techniques specifically proposed for Deep Neural Networks (DNNs), including ADF [313, 315],
EIDIG [310], NeuronFair [318], and DICE [227].

Zhang et al. [313, 315] proposed ADF, a gradient-guided generation approach for DNNs. In
the global search phase, ADF locates the discriminatory instances near the decision boundary by
iteratively perturbing a seed input towards the decision boundary with the guidance of gradient.
In the local search phase, ADF further uses gradients as the guidance to search the neighborhood
of the found individual discriminatory instances to discover more discriminatory instances.

Zhang et al. introduced EIDIG [310], which inherits and improves ADF by integrating a mo-
mentum term into the iterative search for identifying discriminatory instances. The momentum
term enables the memorization of the previous trend and helps to escape from local optima, which
ensures a higher success rate of finding discriminatory instances. In addition, EIDIG reduces the
frequency of gradient calculation by exploiting the prior knowledge of gradients to accelerate the
local search phase.

Zheng et al. [318] proposed NeuronFair, which uses the identified biased neurons to guide the
generation of discriminatory instances for DNNs. In the global search phase, NeuronFair identifies
the biased neurons that cause discrimination via neuron analysis and searches for discriminatory
instances with the optimization object of increasing the ActDiff (activation difference) values
of the biased neurons. In the local search phase, NeuronFair uses the generated discriminatory
instances as seeds and perturbs non-sensitive attributes of them to generate more discriminatory
instances.

Monjezi et al. [227] introduced DICE, an information-theoretic approach for fairness testing of
DNNs. In the global search phase, DICE uses gradient-guided clustering to explore the input space
and identify instances with the maximum quantitative individual discrimination. This discrimina-
tion is quantified as the dependence on sensitive attributes using information-theoretic principles.
In the local phase, promising instances from the global phase are used to generate additional dis-
crimination instances by exploring their neighborhood.
Other search-based techniques. Besides the two-phase approach, there are also other search-
based generation techniques that have been proposed in the fairness testing literature.

Xie and Wu [295] used reinforcement learning to develop a black-box search strategy for gener-
ating instances that violate causal fairness. Their approach frames the task of generating discrimi-
natory instances as a reinforcement learning problem, with the ML model under test treated as part

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:16 Z. Chen et al.

of the environment. The reinforcement learning agent interacts with the environment by taking
actions to search for discriminatory inputs while receiving feedback in the form of rewards and
observing the resulting state. Through iterative interactions, the agent learns an optimal policy for
efficiently generating discriminatory inputs.

Perera et al. [242] presented SBFT, a search-based fairness testing approach for regression-based
ML models. SBFT measures unfairness degree as the maximum difference in regression results
between pairs of instances that only differ in terms of their sensitive attributes (i.e., causal fairness).
SBFT begins with an initial set of randomly selected test inputs from the input space. Genetic
algorithms are then applied to these inputs, aiming to generate the next generation of test inputs
that exhibit the desired fairness degree.

Tao et al. [270] introduced RULER, a fairness testing technique that departs from the strict def-
inition of causal fairness. Unlike existing approaches that require coupling samples differing only
in sensitive attributes, RULER relaxes this constraint. It allows simultaneous perturbations on both
sensitive and non-sensitive attributes to search for more discriminatory instances, because there
may not exist discriminatory instances that strictly satisfy the causal fairness. RULER imposes
perturbation constraints: sensitive attributes must remain within their valid value ranges, while
non-sensitive attributes are bounded by a small range.

Xiao et al. [294] proposed LIMI, an approach for generating natural discriminatory instances
based on causal fairness. LIMI uses a generative adversarial network (GAN) to imitate the deci-
sion boundary of the model under test in the latent space. By approximating the decision boundary
with a surrogate linear boundary, LIMI can search for instances that closely align with the original
data distribution. LIMI performs vector manipulations on latent vectors to move them towards the
surrogate boundary. Vector calculations then identify two potential discriminatory candidates in
close proximity to the real decision boundary.

Patel et al. [237] applied combinatorial t-way testing [201] to fairness testing. Combinatorial
t-way testing is a coverage-based data sampling method that can generate diverse datasets by ap-
plying logical constraints to specify the sampling space. The approach creates an input parameter
model from the training dataset and uses the model to generate a t-way test set. For each test, it
mutates protected attributes to search for discriminatory instances.

Haffar et al. [175] introduced two distinct generation approaches for tabular data and images.
First, they employed guided adversarial generation on tabular data to search for counterfactuals.
Second, they employed GANs to generate counterfactuals for image data. The generation objective
is to modify the predicted label with minimal adjustments to the input. If one of the modified at-
tributes happens to be a protected attribute, then it suggests that the model is exhibiting unfairness
against that particular attribute.

Zhang et al. [312] introduced TestSGD, a group fairness testing approach for DNNs that specifi-
cally focuses on the statistical parity of subgroups defined by conjunctions of protected attributes.
TestSGD first generates rule sets to capture frequent subgroups. Each rule splits the input space
into two groups. To accurately measure group discrimination, TestSGD introduces small, uniform
perturbations to the original training samples to search for more samples. Then, it calculates the
demographic parity score based on the generated samples.

Cabrera et al. [122] also focused on fairness testing of subgroups and proposed a testing tool
named FAIRVIS. In real-world applications, the number of subgroups to analyze can be overwhelm-
ing. To address this challenge, FAIRVIS offers methods to search this large space and find potential
issues more efficiently. It introduces a subgroup generation technique that recommends intersec-
tional groups where a model may be underperforming. This technique involves clustering the
training dataset to identify statistically similar subgroups and using an entropy-based approach to

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:17

determine important features and calculate group fairness metrics for the clusters. Finally, FAIRVIS
presents generated subgroups sorted by their group fairness metrics.

4.1.3 Verification-based Test Input Generation. Since our survey focuses on fairness testing, we
do not discuss work focusing solely on formal verification of fairness properties (see, e.g., Refer-
ences [99, 111, 164, 165, 190, 265, 279]). Nevertheless, there is a research stream focusing on generat-
ing discriminatory test inputs through fairness verification using Satisfiability Modulo Theories

(SMT) solving. These techniques are called verification-based test input generation [254].
Sharma et al. [254, 255] introduced fairCheck and MLCheck, two verification-based techniques

for generating test inputs to assess fairness. These approaches approximate the black-box model
under test with a white-box model, leveraging its predictions. The fairness property and the white-
box model are translated into logical formulas using SMT solvers. Test cases are subsequently
automatically generated in an attempt to violate the specified fairness property, employing the Z3
SMT solver [147] to check for satisfiability.

Kitamura et al. [197] developed VBT-CT, a technique that integrates combinatorial t-way test-
ing into verification-based fairness testing. As described before, combinatorial t-way testing can
generate diverse datasets by applying logical constraints to specify the sampling space. By in-
corporating combinatorial t-way testing into the generation process of verification-based testing,
VBT-CT enhances the detection capability of discriminatory data.

Zhao et al. [317] introduced VBT-X, an approach that integrates hash-based sampling [130] into
the test generation phase of verification-based fairness testing. Hash-based sampling techniques
are capable of producing diverse solutions for a given logical formula, offering the advantage of
generating varied solutions with reasonable computational overhead. By leveraging the diverse
sampling capability of hash-based sampling, VBT-X enhances the effectiveness of test generation
in verification-based fairness testing.

4.1.4 Domain-specific Test Input Generation. Recently, an increasing number of approaches
have been proposed for test input generation in specific application domains. These approaches
aim to generate natural inputs that belong to the data distribution of a practical application sce-
nario. This section introduces such domain-specific test input generation in typical domains: nat-
ural language processing, computer vision, and speech recognition.
Natural language processing. Test input generation for Natural Language Processing (NLP)

systems is primarily based on that a fair NLP system should produce similar results for pairs of
similar texts.

Researchers can collect text data from the wild and then mutate words related to sensitive at-
tributes to generate test inputs. For example, Díaz et al. [151] conducted a study where they col-
lected sentences containing the word “old” from a blogger and replaced it with “young” to detect
age-related fairness issues in sentiment analysis systems. They also applied mutations to com-
mon adjectives instead of age-related words. By using word embeddings, they obtained analogs
for “older” and “younger” versions of these adjectives. These variants were used as test inputs to
identify fairness issues related to age. Zhang et al. [312] generated new samples by substituting
sensitive terms in the collected texts with alternative terms within the same sensitive attribute cat-
egory. For instance, for the gender category, the sensitive terms can be bisexual, female, gay, and so
on. Then they calculate the statistical parity based on the original samples and the generated ones.

Similarly, Liu et al. [214] conducted fairness testing on generative and retrieval dialogue models.
They created gender and race word lists, including male-female word pairs and African-American
English-Standard English word pairs. From a large dialogue corpus, they selected contexts
containing words from these lists and created parallel contexts by replacing the words with their
counterparts. The original and generated texts were then compared based on the response of

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:18 Z. Chen et al.

dialogue models using four measurements: diversity, politeness, sentiment, and attribute words.
The attribute word analysis involved comparing the probability of attribute words (e.g., career
and family-related) appearing in the responses across different groups’ contexts. This is a mixed
adoption of causal fairness and statistical parity.

Generation based on handcrafted templates: A large proportion of fairness testing studies
for NLP systems involve the use of handcrafted templates to generate test inputs. These templates
consist of short sentences with placeholders (e.g., “<person> goes to the school in our neighborhood”)
that can be filled with different words to test for violations of causal fairness. Due to the simplicity
of the handcrafted templates, most of such test generation studies adopt causal fairness that detects
whether NLP systems produced similar outcomes for texts that differ only in sensitive attributes.

Kiritchenko and Mohammad [196] created 11 templates focused on gender and race, using pre-
defined values for the placeholder <person> representing different names and noun phrases refer-
ring to females/males or African/European American. Then they compared emotion and sentiment
scores that the systems predict on pairs of sentences differ only in one word corresponding to race
or gender.2

Mehrabi et al. [222] created nine templates to compare the performance of name entity recog-
nition systems with respect to recognizing male and female names. Wang et al. [290] focused on
machine translation systems and developed 30 templates to test their ability to determine the cor-
rect gender of a name.

Sharma et al. [256] designed three templates specifically for gender-related fairness issues in nat-
ural language inference systems, with gender-specific hypotheses using the placeholder <gender>.

Similarly, other researchers have designed templates for detecting fairness bugs in natural
language generation and machine translation systems. Sheng et al. [257], Huang et al. [185], Vig
et al. [283], and Dhamala et al. [150] used templates with placeholders for sensitive attributes
such gender and race.

Smith et al. [261] developed a set of manually created templates covering 13 different demo-
graphic attributes. These templates were used to identify bias in language models by examining
statistical disparity, which measures the differences at the group level in the output or assigned
probabilities of the model, which arise due to the presence of different identity or demographic
information within the input text.

Another approach, CheckList [251], utilizes predefined templates to evaluate NLP systems on
various capabilities, including fairness.

Wan et al. [286] introduced BiasAsker, a test input generation approach aimed at measuring
absolute bias and relative bias of conversational systems towards various demographic groups.
Absolute bias refers to direct expressions of bias, such as statements like “Group A is smarter than
Group B,” while relative bias involves generating different responses to questions about different
groups. To obtain social groups and biased properties, they constructed a comprehensive social
bias dataset, which includes a total of 841 groups and 8,110 biased properties. To detect both types
of bias, they designed templates and rules for generating Yes-No Questions, Choice-Questions,
and Wh-Questions. These generated inputs serve as a means to evaluate and identify bias in
conversational systems.

Automated generation: While handcrafted templates have been effective in detecting fairness
issues in NLP systems, researchers argue that the generated test inputs relying on them may be
simplistic and limited [246]. Furthermore, the generated simplistic test inputs may overlook com-
plex scenarios where multiple words related to sensitive attributes are present, which is often the

2Sex and gender are different concepts that are often used interchangeably. We keep the original usage of the two words
in each paper to reserve fidelity.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:19

case in practical applications. To address this limitation, automated test generation techniques
should carefully consider each word that can rely on sensitive attributes and generate natural
counterfactual inputs that align with the counterfactual fairness definition.

To address the problem, Ma et al. [219] introduced the automated framework MT-NLP. It em-
ploys advanced NLP techniques to identify human-related tokens in the input text and utilizes
word analogy techniques to mutate these tokens, generating discriminatory test inputs. Language
fluency metrics are then used to filter out unrealistic inputs.

Asyrofi et al. [102] proposed BiasFinder, an automated approach for creating diverse and com-
plex test inputs to uncover fairness bugs in NLP systems. By leveraging NLP techniques such as
coreference resolution and named entity recognition, BiasFinder identifies words associated with
demographic characteristics and replaces them with placeholders to form templates. Concrete val-
ues are then filled into these templates, generating a large number of text mutants for testing
metamorphic relationships.

Yang et al. [299] proposed BiasRV, an approach for testing bias in deployed sentiment analysis
systems. By utilizing BiasFinder, they generate a template for a given text and create mutants
based on that template to assess if the system exhibits biased predictions. They define distribu-
tional fairness, which examines whether mutants from different demographic groups are treated
similarly. Specifically, they expect the distribution of predicted sentiments for these groups of
mutants to be closely aligned if the system is fair. Unlike traditional statistical parity, which
measures overall fairness, distributional fairness evaluates whether the system makes biased
predictions for specific inputs.

Ezekiel et al. [262] developed ASTRAEA, a grammar-based fairness testing approach for gen-
erating discriminatory inputs in NLP systems. ASTRAEA incorporates input grammars covering
various NLP tasks and biases. By randomly exploring the input grammars and mutating sensitive
attribute-related words using alternative tokens, ASTRAEA generates initial test inputs and checks
their satisfaction of metamorphic relations.

For fairness testing of machine translation systems, Sun et al. [268, 269] proposed TransRe-
pair and CAT. TransRepair conducts sentence mutations by replacing words with context-similar
alternatives, while CAT identifies and replaces words using isotopic replacement. The resulting
mutants, along with the original input sentence, serve as test inputs for evaluating the fairness of
machine translation.
Computer vision. To detect fairness issues in Computer Vision (CV) systems, researchers often
examine how the system’s output changes when the sensitive attribute of a person in the input
image is altered while keeping other factors constant (i.e., generating counterfactual images). This
idea forms the basis of test input generation for CV systems.

GANs [170] are commonly used for image transformations in ML testing [304]. However, con-
ventional GANs face challenges in generating precise changes required for fairness testing. For
example, changing hair color without affecting other facial features or hair style can be difficult.
To address this, recent efforts have adapted and improved conventional GANs for generating test
inputs in CV systems. Denton et al. [149] developed a face-generative model that maps latent codes
to images and inferred directions in latent code space to manipulate specific sensitive attributes.
Test inputs were generated by traversing these inferred directions. Joo and Kärkkäinen [191] em-
ployed the FaderNetwork architecture [205], where specific known attributes of an image are input
separately to the generator. Zhang et al. [314] utilized CycleGAN [319], which limits changes to
non-sensitive attributes, to generate discriminatory inputs.

Muthukumar [229] criticized GAN-based approaches for their inability to effectively modify
a single attribute while keeping other non-related attributes unchanged. This limitation makes it
challenging to identify the exact cause of unfair outcomes. For instance, in gender classification

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:20 Z. Chen et al.

where discrimination occurs between different skin types, it is possible that factors such as
hairstyle, facial structure, cosmetics, or clothing contribute to the disparity rather than skin
type alone. To address this issue, Muthukumar proposed a solution where face images were
represented in the YCrCb color space [184], and techniques such as luminance mode-shift and
optimal transport [158] were utilized to alter the skin type of a face.

However, these approaches may fail to account for causal relationships between attributes when
generating discriminatory images. Although they claim to produce counterfactual images, they of-
ten rely on a causal fairness definition rather than strict counterfactual fairness. To generate test
inputs that reflect real-world scenarios, it is crucial to consider the downstream effects resulting
from changes in sensitive attributes. For instance, in a chest MRI classification system, a patient’s
age can influence the relative size of their organs [146]. Therefore, altering the age without consid-
ering the causal relationship between age and organ size would lack realism. In response to this
limitation, Dash et al. [146] introduced ImageCFGen, a fairness testing method that incorporates
knowledge from a causal graph and utilizes an inference mechanism within a GAN-like frame-
work. This approach enables the generation of discriminatory images that adhere to the definition
of counterfactual fairness.

Unlike the aforementioned studies that employ individual fairness definitions, Balakrishnan et al.
[106] introduced a new concept of group fairness, investigating the parity in robustness against
transformations across various demographic groups. Specifically, they proposed an image gen-
eration method that produces synthesized samples considering multiple sensitive attributes and
compares error rates of gender classifiers across various subgroups before and after the synthesis.
For generation, the approach modifies multiple attributes simultaneously to create grid-like sets of
matched images called transects. This is achieved by navigating the latent space of the generator
in directions specific to each attribute.

Similarly, Pu et al. [247] investigated the parity in robustness of deepfake detectors by intro-
ducing makeup as a feature perturbation across various demographic groups. Specifically, they
employed common makeup alterations such as eyeshadows, eyeliners, lipstick, and blushes to per-
turb the face images before feeding these images to the deepfake detection models. Subsequently,
they compared the accuracy differences of the detectors in detecting deepfakes between original
and synthetic images for both male and female images, thus quantifying the extent of gender dis-
parity in the two accuracy differences. In addition, they discovered that salient regions near the
lips have the greatest impact on the fairness of the tested models.
Speech recognition. The fairness testing literature has dedicated less attention to speech recogni-
tion compared to NLP and CV. Rajan et al. [250] introduced AequeVox, a fairness testing approach
tailored for speech recognition systems. Similar to Balakrishnan et al. [106] and Pu et al. [247],
AequeVox measures group fairness as the parity in robustness against perturbations across demo-
graphic groups. It generates test inputs by applying eight common real-life metamorphic pertur-
bations to speech signals, such as noise, drop, and low/high pass filters. Then it calculates the error
rate increase in speech recognition for various demographic groups after applying these pertur-
bations. If the difference in error rate increase surpasses a predetermined threshold for different
groups, then the recognition system is considered to have fairness bugs.

4.1.5 Test Input for Data Testing. ML program testing and model testing typically rely on data
instances as test inputs, whose generation process has been detailed in the previous sections. For
data testing, test inputs are typically programs capable of detecting data bias, as described in Sec-
tion 2.3. Typically, researchers manually implement these programs based on testing objectives,
which include identifying feature bias, label bias, and selection bias.

To detect feature bias, Peng et al. [241] implemented logistic regression and decision tree
algorithms as models to infer relationships between sensitive attributes and non-sensitive

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:21

features. This approach facilitated the identification of non-sensitive features that are correlated
with sensitive attributes and contribute to fairness issues. Li et al. [210] implemented linear
regression models to analyze the association between non-sensitive features and sensitive
attributes to identify feature bias. Zhang et al. [306, 308, 309] implemented a causal graph to
identify features causally leading to unfair outcomes. Li and Xu [211] optimized a hyperplane
within the latent space of a generative model, offering a solution to detect unknown biased
attributes and enhance the understanding of feature bias. Black et al. [117] developed optimal
transport projection programs [284] to map data instances from the privileged/unprivileged
group to their counterparts in the unprivileged/privileged group, conducting analyses on these
flipsets to detect features contributing to unfairness.

To detect label bias, Chakraborty et al. [125–127] implemented situation testing programs to
uncover biased data instances. Additionally, Chen and Joo [133] tailored testing programs based
on facial action units to detect label bias in widely used datasets for facial expression recognition.

To detect selection bias, researchers [125, 126, 137] implemented programs to analyze the statis-
tical association between sensitive attributes and outcome labels in the training data. Simultane-
ously, some researchers [220] scrutinized dataset representation to ascertain potential underrepre-
sentation issues of demographic groups.

4.2 Test Oracle Identification

Given an input for a software system, the challenge of distinguishing the corresponding desired
behavior from the potentially incorrect behavior is called the “test oracle problem” [110]. Test oracle
identification is one of the key problems in ML testing [304]. The test oracle of fairness testing
determines whether the software is behaving as fairness requirements and enables the judgment
of whether a fairness bug exists. Existing work employs two types of test oracles for fairness
testing: metamorphic relations and statistical measurements.

4.2.1 Metamorphic Relations as Test Oracles. A metamorphic relation is a relationship between
the software input change and the output change that we expect to hold across multiple execu-
tions [110]. Suppose a system that implements the function sin(x), then sin(x) = sin(π + x) is a
metamorphic relation. This relation can be used as a test oracle to help detect bugs. If sin(x) differs
from sin(π + x), then we can conclude that the system under test has a bug without the need for
examining the specific values output by the system.

Metamorphic relation is a type of pseudo oracle commonly adopted to automatically mitigate
the oracle problem in ML testing. It has also been widely studied for fairness testing of ML software.
Specifically, existing work mainly performs fairness-related metamorphic transformation on the
input data or training data of ML software and expects these transformations to not change or yield
expected changes in the prediction. Next, we classify and discuss this work according to whether
the metamorphic transformations operate on sensitive attributes.
Metamorphic transformations through mutating sensitive attributes. The mutation of sen-
sitive attributes is a widely used technique for generating metamorphic relations in the context
of individual fairness. Assessing violations of individual fairness, such as counterfactual fairness
and causal fairness, typically requires the comparison of paired data instances that vary in their
sensitive attributes.

For ML software designed for classification tasks, a widely employed metamorphic relation for
fairness testing involves comparing pairs of instances with different sensitive attributes but similar
non-sensitive attributes, expecting them to yield the same classification outcome. For instance, a
fair loan application system should make identical decisions for two applicants who differ only in
their gender.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:22 Z. Chen et al.

This metamorphic relation has found extensive application in testing the fairness of software
systems and guiding the generation of fairness tests across various domains, including tabular data
classification [97, 101, 160, 278, 295, 310, 313, 315], text classification [102, 185, 196, 219, 251, 256,
262, 290], and image classification [146, 148, 149, 191, 314, 318], among others.

In the case of tabular data, researchers typically select the sensitive attributes of interest in the
dataset (e.g., gender and race) and modify the values of those attributes (e.g., from “male” to “fe-
male”) to assess if the software violates the fairness metamorphic relation for those instances (i.e.,
adopting the causal fairness definition). Tao et al. [270] proposed that altering only the sensitive
attributes can lead to unnatural test inputs and therefore relaxed this constraint by allowing small
permutations to be applied to non-sensitive attributes simultaneously. Similarly, counterfactual
fairness [202] necessitates modifying the non-sensitive attributes that are causally influenced by
the sensitive attributes whenever the sensitive attributes are modified.

For text data, researchers generate inputs by filling sensitive attribute-related placeholders in
predefined templates and mutating the sensitive attributes within these templates, or identify the
entities related to the sensitive attributes and simultaneously transform all the identified entities
to create valid test inputs that reflect real-world scenarios. For example, when dealing with gender,
researchers identify and modify person names, gender pronouns, gender nouns, and so on.

For image data, researchers predominantly rely on advanced deep learning techniques such
as GANs [170] to transform images across different sensitive attributes. The methodologies for
altering sensitive attributes in different types of data are extensively discussed in Section 4.1.

For ML software designed for regression tasks, the prediction outcomes are continuous values
rather than discrete labels, which poses a challenge in determining metamorphic relations for
assessing fairness. Specifically, it is difficult to ascertain whether two predicted continuous out-
comes are different enough to indicate fairness issues in the software under test. To address this
challenge, Udeshi et al. [278] introduced the use of a threshold to define metamorphic relations.
In this approach, the difference between the outcomes of two similar instances that vary only
in their sensitive attribute must be smaller than a manually specified threshold. Similarly, Perera
et al. [242] proposed the concept of fairness degree, which quantifies the maximum difference in
predicted values across all pairs of instances that are similar except for their sensitive attribute.
The fairness degree can be utilized and defined to construct metamorphic relations and guide the
generation of test inputs.

For ML software designed for generation tasks, it is also challenging to determine the meta-
morphic relations. In the case of natural language generation systems, it is particularly difficult to
evaluate the identity or similarity of generated text. To address this, researchers [150, 185, 214, 257]
have employed various existing natural language processing techniques to measure text similar-
ity. These techniques include sentiment classification, perplexity and semantic similarity measure-
ment, politeness measurement, diversity measurement, toxicity classification, and regard classifi-
cation applied to machine-generated text. As a result, metamorphic relations for text generation
systems require that pairs of inputs, which are identical except for the sensitive attribute, should
yield generated text with consistent sentiment polarity, perplexity, semantics, and regard. This
serves as a measure of similarity in the generated text. In the context of machine translation sys-
tems, where translations are generated based on input sentences, Sun et al. [268, 269] have pro-
posed generating test oracles based on the metamorphic relationship between translation inputs
and outputs. Specifically, they expect translation outputs for the original input sentence and its
mutants, considering sensitive characteristics, to exhibit a certain level of consistency modulo the
mutated words. To validate this consistency, similarity metrics are employed as test oracles to
measure the degree of agreement between translated outputs.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:23

Metamorphic transformations through mutating non-sensitive attributes. Some re-
searchers [247, 250] adopt a different approach to generate metamorphic relations for fairness
testing by focusing on the mutation of non-sensitive attributes. They employ metamorphic trans-
formations as perturbations applied to samples and subsequently assess the ML software’s robust-
ness to these perturbations across various demographic groups. This methodology can be viewed
as an implementation of group fairness, as it involves comparing the software’s performance across
different groups in response to the perturbations.

Balakrishnan et al. [106] produced synthesized samples taking multiple sensitive attributes into
account and compared error rates of gender classifiers across various subgroups before and after
the synthesis.

Pu et al. [247] employed makeup as a form of perturbation applied to face images. They then
compared the accuracy differences as bias factors between male and female individuals on both
the original face images and synthetic images generated by introducing these perturbations.

Rajan et al. [250] applied eight metamorphic transformations to speech signals and measured
the increase in error rates of speech recognition for different demographic groups after these
transformations.

4.2.2 Statistical Measurements as Test Oracles. Researchers have proposed various statistical
fairness measurements that align with different fairness definitions. While these measurements do
not serve as direct oracles for fairness testing, they provide a quantitative way to assess the fairness
of the software under test. For instance, in the case of statistical parity, researchers calculate the
favorable rate among demographic groups and identify fairness violations by comparing these
rates. This comparison involves measuring the difference between the rates, known as Statistical

Parity Difference (SPD), or computing the ratio of the rates, known as Disparate Impact (DI)

[303]. If the calculated SPD or DI exceeds a predefined threshold, then it indicates the presence of
fairness bugs in the software under test.

There is a wide array of statistical fairness measurements available, with the IBM AIF360 toolkit
[37] alone offering over 70 such measurements. Determining the appropriate measure of fairness
is a requirements engineering problem involving negotiation among various stakeholders and dif-
ferent interpretations [108]. For certain social-critical application scenarios, domain knowledge is
required for fairness testing and the prediction-modeler (e.g., data scientists and software engineers)
needs to work together with the decision-maker (e.g., product managers and business strategists)
[253]. How to achieve this is still an open challenge. However, once a fairness measure is deter-
mined, the actual statistical measurement used for testing is typically straightforward. Providing a
comprehensive description and comparison of each measurement is beyond the scope of this sur-
vey. Verma and Rubin [282] conducted a survey and categorized several widely adopted statistical
fairness measurements. In this survey, we expand upon their categorization based on our collected
papers and present representative measurements from each category.
Measurements based on predicted outcomes. Some measurements are calculated based on
the predicted outcomes of the software for privileged and unprivileged groups. For example, the
aforementioned Statistical Parity Difference (SPD) [109] measures the difference in favorable
rates among different demographic groups; DI [157] measures the ratio of the favorable rate of the
unprivileged group against that of the privileged group.
Measurements based on predicted and actual outcomes. Some measurements not only con-
sider the predicted outcomes for different demographic groups, but also compare them with the
actual outcomes recorded in the collected data. For example, the Equal Opportunity Differ-

ence (EOD) [176] measures the difference in the true-positive rates of privileged and unprivi-
leged groups, where the true-positive rates are calculated by comparing the predicted and actual

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:24 Z. Chen et al.

outcomes. Another widely adopted measurement that lies in this category is Average Odds Dif-

ference (AOD) [176], which refers to the average of the false-positive rate difference and the
true-positive rate difference between unprivileged and privileged groups.
Measurements based on predicted probabilities and actual outcomes. Some measurements
take the predicted probability scores and actual outcomes into account. For example, for any given
predicted score, the calibration measurement calculates the difference in the probability of having
a favorable outcome for privileged and unprivileged groups [141]; the measurement of balance
for positive class calculates the difference of average predicted probability scores in the favorable
class between privileged and unprivileged groups [198].
Measurements based on neuron activation. As DNNs are widely used in software systems to
support the decision-making process, researchers have started to leverage the internal behaviors
of DNNs to design statistical fairness measurements. Tian et al. [273] proposed a new statistical
measurement based on neuron activation for DNNs. First, they computed a neuron activation
vector for each label class based on the test inputs. Specifically, for a class c , each element of its
neuron activation vector represents how frequently a corresponding neuron is activated by all
members in the test inputs belonging to class c . Then they computed the distance between neuron
activation vectors of different classes as the fairness measurement. If two classes do not show a
similar distance with regards to a third class, then they consider that the DNN under test contains
fairness bugs.
Measurements based on situation testing. Some researchers designed statistical measurements
to approximate situation testing, which is a legal experimental procedure of seeking pairs of in-
stances that have similar characteristics apart from the sensitive attribute value but obtain dif-
ferent prediction outputs [272]. Thanh et al. [272] leveraged the k-nearest neighbor classification
to approximate situation testing. They first divided the dataset into the privileged group and the
unprivileged group based on the sensitive attribute. Then, for each instance r in the dataset, they
found the k-nearest neighbors in the two groups and denoted them as sets Kp and Ku , respectively.
Finally, they calculated the proportions of instances, for which the outcome is the same as r in Kp

and Ku , and measured the difference between the two proportions. If the difference is larger than
a given threshold, then the instance r is considered unfairly treated. Zhang et al. [307] improved
the measurement proposed by Thanh et al. [272]. They designed a new distance function that mea-
sures the distance between data instances to improve the k-nearest neighbor classification. Their
function considers only the set of attributes that are identified as the direct causes of the outcome
by Causal Bayesian Networks [238].
Measurements based on optimal transport projections. Several measurements [117, 258, 271]
are proposed based on optimal transport projections [284], which seek for a transformation map
between two probability measures. Black et al. [117] mapped the set of women in the data to
their male correspondents, with the optimal transport projection to minimize the sum of the dis-
tances between a woman and the man to which she is mapped (called her counterpart). Then
they extracted the positive flipset, which contained the women with favorable outcomes whose
counterparts did not. They also extracted the negative flipset, which was the set of women with
unfavorable outcomes whose counterparts are favorable. Finally, they calculated the size difference
of the positive and the negative flipsets to measure the unfairness of the system under test.
Measurements for ranking systems. Applying the aforementioned statistical fairness mea-
surements directly to ranking systems, which are extensively utilized in various domains
such as hiring and university admissions [163, 199], poses significant challenges. To address
this challenge, some researchers have tackled the ranking problem by transforming it into a
classification problem and subsequently applying existing statistical fairness measurements. For
example, researchers [259, 297] have used statistical parity difference as a fairness measurement,

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:25

assessing whether individuals from different groups have equal representation among desirable
outcomes, such as securing top positions in the ranking. Pairwise fairness is another common
statistical metric employed in the context of ranking systems [114, 200, 232]. It necessitates that a
ranking system ensures an equal likelihood of a clicked item being ranked above another relevant
unclicked item across different demographic groups. Recently, a fairness testing approach for
deep recommender systems, namely, FairRec [173], supports the measurement of differences in
evaluation metrics between demographic groups through three types of statistical measurements:
recommendation performance, alignment of recommended item popularity with user preferences,
and diversity in recommendations.
Measurements considering multiple subgroups. Some researchers extend their analysis to en-
compass a spectrum of subgroups, representing combinations of various sensitive attributes. This
approach allows for a more nuanced examination of fairness in ML software. The consideration of
multiple subgroups enhances the scope of fairness measurements, recognizing the diverse perspec-
tives and experiences within different segments of the population. For instance, Chen et al. [139]
used intersectional fairness as a measurement, calculating the maximum disparity between any
two subgroups. Similarly, Zhang et al. [312] proposed a group fairness testing approach that specif-
ically focuses on the SPD within subgroups.

It is difficult to determine the threshold for statistical measurements to detect the fairness bugs.
For example, for the aforementioned SPD, it would be too strict to consider the software under
test to be fair only when SPD equals to 0. In practice, practitioners can set a threshold for the
measurement under consideration [152]. If the measurement result for the software under test is
above or below the specified threshold, then the software is considered to have a fairness bug.
Although the threshold could be empirically specified by engineers, it is challenging to determine
the appropriate threshold for each fairness measurement.

To alleviate this problem, researchers attempt to use statistical testing based on the measure-
ments to detect fairness bugs. Tramèr et al. [276] proposed FairTest to analyze the associations
between software outcomes and sensitive attributes. The software under test is deemed to have a
fairness bug if the associations are statistically significant. Taskesen et al. [271] and Si et al. [258]
employed a statistical hypothesis test for the fairness measurements based on optimal transport
projection. DiCiccio et al. [152] presented a non-parametric permutation testing approach for as-
sessing whether a software system is fair in terms of a fairness measurement. The permutation test
is used to test the null hypothesis that a system has equitable performance for two demographic
groups (e.g., male or female) with respect to the given measurement. Gursoy et al. [174] used the
permutation test to detect whether prediction errors of a regression model are distributed in a sta-
tistically significant manner across demographic groups to determine whether the model under
test is unfair.

In addition, researchers construct the baseline for the fairness measurement and detect fairness
bugs by comparing the measurement value with the baseline. Zhao et al. [316] used the fairness
measurements calculated based on training data as their baseline against which to evaluate. Specif-
ically, they used the obtained ML model to annotate unlabeled data instances and revealed situ-
ations when the ML process amplified existing bias by comparing the fairness measurements on
training data and those on the annotated dataset. Wang and Russakovsky [288] showed that the
bias amplification measurement proposed by Zhao et al. [316] conflated different types of bias
amplification and failed to account for varying base rates of sensitive attributes. Then they pro-
posed a new, decoupled metric for measuring bias amplification, which takes into account the base
rate of each sensitive attribute and disentangles the directions of amplification. Wang et al. [291]
presented a fairness testing approach for visual recognition systems that predicted action labels
for images containing people. They trained two classifiers to predict gender from a set of ground

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:26 Z. Chen et al.

truth labels and model predictions. The difference in the predictability of the two models indicated
whether the ML process introduced fairness bugs.

4.2.3 Test Oracle for Data Testing. ML model testing relies on metamorphic relations and sta-
tistical measurements as test oracles. Moreover, all ML program testing papers that we collect use
statistical measurements (in Section 4.2.2) as test oracles. This section describes test oracles for
data testing of fairness. Specifically, we summarize the test oracles for detecting feature bias, label
bias, and selection bias, respectively.

Feature bias: Peng et al. [241] and Li et al. [210] assumed that feature bias is present when non-
sensitive attributes exhibit correlations with sensitive attributes. In contrast, some researchers [211,
306, 308, 309] argued that feature bias manifests if specific features establish causal relationships
with unfair outcomes. Black et al. [117] mapped data instances from the privileged/unprivileged
group to their counterparts in the unprivileged/privileged group and determined biased features
based on divergent outcomes among these counterparts.

Label bias: Chakraborty et al. [125–127] partitioned the training data into privileged and unprivi-
leged groups and then trained two models separately for each group. Subsequently, they employed
the two models to predict outcomes for each training data instance, identifying label bias if the
predicted outcomes differ.

Selection bias: Chen et al. [137] and Mambreyan et al. [220] assumed that selection bias is present
when a statistical association exists between a sensitive attribute and outcome labels in the training
data. In contrast, some researchers [192, 275, 287, 298] assumed that different demographic groups
should be equally represented in the dataset, implying an equal number of data instances for each
group. Some scholars combined both oracles, expecting fair training data to exhibit an equivalent
favorable rate between privileged and unprivileged groups (i.e., no statistical association between a
sensitive attribute and outcomes) and an equal number of data instances for both groups [125, 126].

5 FAIRNESS TESTING COMPONENTS

This section introduces the fairness testing literature from the perspective of “what to test.” Just as
traditional software testing can be conducted on different testable parts within a software system
[203], fairness testing can also be performed on different parts, including training data, ML pro-
grams, ML models, ML frameworks, and non-ML components. Figure 5 shows the categorization
of this section. Existing studies primarily focus on testing training data, ML programs, and ML
models.

5.1 Data Testing

ML models are developed following the data-driven paradigm. This paradigm makes ML mod-
els vulnerable to fairness bugs present in data. Specifically, fairness bugs in training data can be
learned and propagated throughout the ML model development pipeline, leading to the creation
of biased and unfair ML software systems. To tackle this problem, data testing approaches, which
detect bugs in ML training data [304], have been proposed for fairness testing. They detect the bias
in data features, data labels, and data distribution.

5.1.1 Detecting Feature Bias. Feature bias arises when certain features in the training data ex-
hibit a strong correlation with sensitive attributes, causing them to become the underlying source
of software unfairness [210]. Zhang and Harman [303] investigated the impact of the feature set
on the fairness of ML models. Their findings demonstrated that the selection of features has a
substantial influence on fairness, thereby highlighting the importance of considering testing data
features in fairness-related endeavors.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:27

Fig. 5. Testing components of fairness testing.

To identify the features responsible for fairness issues, it is natural to suspect that the software
exhibits discrimination against a particular demographic group due to its consideration of sensi-
tive attributes during both the training and prediction phases [127]. To investigate whether the
sensitive attribute serves as the underlying cause of fairness problems, Chakraborty et al. [127]
conducted an experiment where they removed the sensitive attribute information from the data
(i.e., fairness through unawareness). Surprisingly, they found that the resulting machine learning
software demonstrated a similar degree of unfairness as observed previously.

A similar discovery was made in a real-world case: Back in 2016, it was revealed that Ama-
zon’s same-day delivery service exhibited discriminatory behavior towards neighborhoods with
a disproportionately high population of Black residents [22]. Although the ML model behind the
service did not explicitly incorporate race information, the presence of correlated attributes in the
training data allowed for the possibility of bias. Specifically, it was found that the “Zipcode” in-
formation utilized during model training exhibited a strong correlation with race, causing the ML
model to indirectly infer race information from it.

To identify non-sensitive features that could potentially contribute to fairness issues, Peng et al.
[241] employed logistic regression and decision tree algorithms as models to infer the relation-
ships between sensitive attributes and non-sensitive features. Similarly, Li et al. [210] utilized lin-
ear regression to analyze the association between each feature and sensitive attributes, thereby
identifying features that may introduce bias.

In contrast, Zhang et al. [306, 308, 309] employed discrimination detection based on causal mod-
eling to detect both direct and indirect discrimination within datasets. They constructed a causal
graph to capture the causal relationships between attributes and outcomes. Direct discrimination
was modeled as the causal effect occurring along the direct path from sensitive attributes to the
outcome. However, indirect discrimination was represented by the causal effects along other paths
involving non-sensitive features.

Li and Xu [211] proposed a method to detect unknown biased attributes in a classifier that
predicts a target attribute, such as gender, based on input images. The biased attribute in question
is distinct from the target attribute. For instance, if a gender classifier exhibits varying predictions
for female images based on their skin tones, then the skin tone attribute would be considered

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:28 Z. Chen et al.

biased. To identify this unknown biased attribute, the authors optimized a hyperplane within the
latent space of a generative model. By analyzing the transformation of synthesized counterfactual
images generated by the model, human observers can interpret the semantic meaning of the biased
attribute hyperplane. For example, images transitioning from “light skin” to “dark skin” indicate
the presence of bias associated with skin color.

Black et al. [117] utilized optimal transport projections [284] to map data instances from the
unprivileged group to their counterparts in the privileged group. This allowed them to extract the
positive flipset, which consists of unprivileged group members with favorable outcomes whose
counterparts experienced unfavorable outcomes. Additionally, they computed the negative flipset,
consisting of unprivileged group members with unfavorable outcomes whose counterparts expe-
rienced favorable outcomes. By analyzing the members of these flipsets, they determined which
features contributed to inconsistent classifications.

5.1.2 Detecting Label Bias. Label bias occurs when factors unrelated to the determination of
labels influence the process that generates outcome labels [293]. ML models are often developed
using data collected over an extended period. During the data collection process, labels are typically
assigned by human annotators or algorithms, introducing the potential for human and algorithmic
biases to be encoded into the labels.

To detect label bias, Chakraborty et al. [125–127] employed situation testing to identify biased
data points and remove them from the training data. They divided the dataset into privileged and
unprivileged groups based on the sensitive attribute. Two separate models were then trained on the
data from each group. For each training instance, the predictions from both models were compared.
If the two models produced divergent results, then there was a probability that the label of that
data point was biased.

Chen and Joo [133] utilized facial action units, objective indicators of fundamental muscle ac-
tions associated with different facial expressions, to detect label bias in widely used datasets for
facial expression recognition. They demonstrated that many expression datasets exhibited signifi-
cant label bias between different gender groups, particularly concerning expressions of happiness
and anger. Furthermore, they found that conventional fairness repair methods were unable to com-
pletely mitigate such biases in trained models.

5.1.3 Detecting Selection Bias. Selection bias occurs when the process of sampling training data
introduces an unexpected correlation between sensitive attributes and the outcome [293]. For ex-
ample, the Compas dataset [23], widely studied in the fairness literature, has been shown to exhibit
unintended correlations between race and recidivism [293]. This dataset was collected during a spe-
cific time period (2013 to 2014) and from a particular county in Florida, with its inherent policing
patterns, making it susceptible to the introduction of unintentional correlations.

Researchers primarily employ distribution testing to detect selection bias in the data. Chen et al.
[137] tested whether the training data satisfied the “We Are All Equal” worldview, which assumes
that there should be no statistical association between the outcome and the sensitive attribute.
They specifically examined whether the favorable rates of privileged and unprivileged groups were
equal. Chakraborty et al. [125, 126] not only analyzed the disparity in favorable rates between priv-
ileged and unprivileged groups but also compared the numbers of data instances in the two groups.

Kärkkäinen and Joo [192] detected bias in public face datasets, revealing a strong bias toward
Caucasian faces while other racial groups (e.g., Latino) were significantly underrepresented. Such
biases increase the risk of introducing fairness issues in facial analytic systems and limit their
applicability.

Similarly, Torralba and Efros [275] investigated computer vision datasets to evaluate whether
existing datasets genuinely represent unbiased representations of the real world. They assessed

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:29

how well an object detector trained on one dataset generalized when tested on a representative
set of other datasets.

Yang et al. [298] collected perceived demographic attributes on a popular face detection dataset
[86] and observed skewed demographic distributions. Face detectors trained on this dataset exhib-
ited demographic bias, as measured by performance disparities among different groups.

Wang et al. [287] detected selection bias in visual datasets across three dimensions: object-based
bias, gender-based bias, and geography-based bias. Object-based detection considered statistics
related to object size, frequency, context, and diversity of object representation. Gender-based
detection revealed the stereotypical portrayal of individuals of different genders. Geography-based
detection focused on the representation of different geographic locations.

Mambreyan et al. [220] analyzed datasets used for lie detection and discovered significant sex
bias within them. Specifically, the percentage of instances labeled as lies for females was greater
than that for males in the dataset. They further examined the effect of this bias on lie detection,
training a classifier to predict the sex of the identity in a video and using sex as a proxy for lies
(predicting lies for females and truth for males). This deception detector simulated a classifier
that relied solely on selection bias. The results demonstrated that the performance of this biased
classifier was comparable to the state-of-the-art, suggesting that recent techniques claiming near-
perfect results may exploit selection bias.

5.2 ML Program Testing

An ML program includes various parts such as data processing, decision-making logic, and runtime
configurations (e.g., ML hyper-parameters) [134]. Each of these parts can potentially introduce a
discordance between the existing fairness conditions and the desired ones for the final ML software
system. Testing the ML program can help identify fairness issues within its implementation.

5.2.1 Testing Data Processing. In ML programs, it is common to include data processing scripts
to manipulate and transform training data for downstream learning tasks. The processing can have
a significant impact on the fairness of the software.

Biswas and Rajan [116] and Valentim et al. [280] have investigated the introduction of
fairness bugs through data processing methods using causal reasoning. They systematically
intervened in the development process of ML software by applying different commonly used data
processing methods while keeping other settings unchanged. Their findings indicate that certain
pre-processing methods indeed introduce fairness bugs, while other methods may improve
software fairness.

Caton et al. [124] have observed that real-world datasets often contain missing values, and one
common approach to address this issue is to impute the missing values using various techniques
during the data processing phase. To evaluate the impact of different imputation strategies on
fairness outcomes, they conducted tests and examined the resulting fairness implications.

5.2.2 Testing Hyper-parameters. The hyper-parameters specified in ML programs can affect
fairness. To validate it, researchers explore whether different hyper-parameter settings lead to
varying levels of software fairness. This testing process is treated as a search-based problem, aim-
ing to discover optimal settings within the hyper-parameter space.

Chakraborty et al. [127, 129] proposed Fairway, a method that combines situation testing with
multi-objective optimization. Since there is often a tradeoff between fairness and ML performance
(such as accuracy) [144], Fairway employs sequential model-based optimization [231] to search
for hyper-parameters that maximize software fairness while minimizing any negative impact on
other performance measures.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:30 Z. Chen et al.

Similarly, Tizpaz-Niari et al. [274] considered both fairness and accuracy in their approach.
They introduced Parfait-ML, which offers three dynamic search algorithms (independently ran-
dom, black-box evolutionary, and gray-box evolutionary) to approximate the Pareto front of hyper-
parameters that balance fairness and accuracy. Parfait-ML not only provides a statistical method
to identify hyper-parameters that systematically influence fairness but also incorporates a fairness
repair method to discover improved hyper-parameter configurations that simultaneously enhance
fairness and accuracy.

Gohar et al. [167] conducted fairness testing on hyper-parameters in ensemble learning. As
ensemble hyper-parameters are more intricate due to their impact on how learners are com-
bined within different ensemble categories, the researchers investigated the effects of ensemble
hyper-parameters on fairness. They also presented how to design fair ensembles using ensemble
hyper-parameters.

5.2.3 Testing Fairness Repair Algorithms. As fairness becomes an increasingly important re-
quirement for software systems, engineers may incorporate fairness repair algorithms (also known
as bias mitigation algorithms) into their programs to ensure fairness. Researchers focus on testing
whether these fairness repair algorithms effectively reduce fairness bugs without introducing side
effects such as a decrease in accuracy.

Biswas and Rajan [115] applied seven fairness repair algorithms to 40 top-rated ML models
collected from a crowdsourced platform. They compared individual fairness, group fairness, and
ML performance before and after applying these algorithms.

Qian et al. [248] applied fairness repair techniques to five widely adopted ML tasks and examined
the variance of fairness and ML performance associated with these techniques. They investigated
whether identical runs with a fixed seed produced different results. The findings indicated that
most fairness repair techniques had undesirable impacts on the ML software, such as reducing
accuracy, increasing fairness variance, or increasing accuracy variance.

Zhang and Sun [311] evaluated existing fairness repair techniques on DNNs and discovered that
while these techniques improved fairness, they often resulted in a significant drop in accuracy. In
some cases, fairness and accuracy were both worsened. They proposed an adaptive approach that
selects the fairness repair method for a DNN based on causality analysis [266].

Hort et al. [183] introduced a benchmarking framework called Fairea. Prior work often measured
the impacts of fairness repair algorithms on fairness and ML performance separately, making it
unclear whether the improved fairness was solely due to the unavoidable loss in ML performance.
Fairea addressed this issue by providing a unified baseline to evaluate and compare the fairness-
performance tradeoff of different repair methods.

Chen et al. [138] utilized Fairea to conduct a large-scale, comprehensive empirical evaluation of
17 representative bias mitigation methods from both the ML and SE communities. They evaluated
these methods across 12 ML performance metrics, 4 fairness metrics, and 24 types of fairness-
performance tradeoff measurements.

Hort and Sarro [182] observed another side effect of fairness repair: It could lead to the loss of
discriminatory behaviors of anti-protected attributes. Anti-protected attributes refer to attributes
on which one might want the ML decision to depend (e.g., students with completed homework
should receive higher grades).

Orgad et al. [235, 236] evaluated fairness repair approaches for NLP models from two aspects:
extrinsic bias (performance difference across different demographic groups) and intrinsic bias (bias
in models’ internal representations, e.g., sentence embeddings). They found that the two types of
bias may not be correlated, and the choice of bias measurement and dataset can significantly affect
the evaluation results.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:31

5.2.4 Testing Compression Algorithms. A computation-intensive DL model can be efficiently
executed on PC platforms with GPU support, but it cannot be directly deployed and executed
on platforms with limited computing power, such as mobile devices [134]. To address this issue,
model compression algorithms have been proposed to represent DL models in a smaller size
with minimal impact on their performance [136]. Common model compression techniques
include quantization (representing weight values of DL models using smaller data types), pruning
(eliminating redundant weights that contribute little to the model’s behavior), and knowledge
distillation (transferring knowledge from a large model to a smaller one) [140]. The widespread
adoption of model compression for DL models has motivated researchers to detect fairness bugs
introduced by these algorithms.

Since model compression is often applied to large DL models, existing fairness testing of model
compression algorithms typically focuses on complex NLP models [118] and computer vision mod-
els [118, 180, 213, 264]. Hooker et al. [180] demonstrated that pruning and quantization can amplify
gender bias when classifying hair color in a computer vision dataset. Xu and Hu [296] tested the
effect of distillation and pruning on bias in generative language models and provided empirical
evidence that distilled models exhibited less bias. Stoychev and Gunes [264] detected fairness bugs
introduced by different model compression algorithms in various facial expression recognition
systems but did not observe consistent findings across different systems.

5.3 Model Testing

Most existing fairness testing techniques primarily focus on the evaluation of individual ML mod-
els [97, 156, 156, 160, 278, 295, 310, 313, 318]. These techniques can be directly applied to the final
ML models obtained, using either a black-box or white-box approach. The distinction between
white-box testing and black-box testing lies in the level of access to training data and internal
knowledge of the ML models.

5.3.1 Black-box Model Testing. Black-box model testing is a technique used to detect fairness
issues in ML models without relying on access to training data or knowledge of the internal model
structure. This approach primarily relies on analyzing the behavior of the model based on the
input space.

Fairness testing in the field typically relies on statistical measurements to identify fairness bugs
in black-box models based on their prediction behaviors. For instance, Tramèr et al. [276] con-
ducted an analysis to detect fairness bugs by examining the associations between prediction out-
comes and sensitive attributes. They aimed to uncover any potential biases or unfairness present
in the model’s predictions. Similarly, Bae [105] compared the performance of pedestrian trajectory
prediction models across different demographic groups, aiming to uncover variations or biases in
their performance.

Additionally, fairness testing approaches often leverage metamorphic relations to detect fairness
bugs by applying transformations to software inputs. These transformations aim to identify un-
expected changes in the model’s predictions. Many of these techniques employ black-box testing
methodologies. For example, the Themis tool [101, 160] generates random test inputs and checks
if the software system produces consistent outputs for individuals who differ only in sensitive at-
tribute values. Similarly, Aequitas [278] and ExpGA [156] search the input space of the software
for discriminatory instances that reveal unfair predictions.

Black-box testing is commonly used to detect fairness bugs in complex software systems, in-
cluding NLP, computer vision, and ranking systems, where the internal workings of the system
are not fully visible to the testers.

Researchers have developed various text templates to uncover fairness bugs in different NLP
systems, such as sentiment analysis [102, 196], machine translation [290], text generation [150,

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:32 Z. Chen et al.

185, 257], natural language inference [256], named entity recognition [222], and conversational
systems [286]. Further details regarding these studies can be found in Section 4.1.4.

For computer vision systems, state-of-the-art fairness techniques [146, 148, 149, 170, 191, 193,
314] often utilize GAN-based algorithms to generate images that differ in sensitive attributes.
These techniques then check if the computer vision systems make different decisions for equiva-
lent image mutants. More information about these techniques is available in Section 4.1.4.

Ranking systems, being predominantly black-box, are also tested in a black-box manner [114,
200, 232, 259, 297]. For instance, researchers have measured whether different demographic groups
have proportional representation in top-ranking positions based on the system’s ranking outputs.
FairRec [173] assesses recommendation differences across demographic groups using statistical
measurements such as recommendation performance, alignment of recommended item popularity
with user preferences, and diversity in recommendations.

Some black-box testing techniques approximate the behavior of the black-box software using a
white-box model, allowing the application of white-box testing techniques. For example, Aggar-
wal [97] approximated the decision-making process of the black-box ML software using a decision
tree constructed through a local model explainer. They then employed symbolic execution-based
test input generation to discover discriminatory inputs. Sharma and Wehrheim [255] first approx-
imated the black-box software with a white-box model based on its behaviors. They subsequently
developed a property-based testing mechanism for fairness checking, where specific fairness re-
quirements can be specified using an assume-assert construct. Test cases were automatically gen-
erated to attempt to violate the specified fairness property.

5.3.2 White-box Model Testing. White-box model testing aims to identify fairness bugs by ex-
amining either the training data or the internal structure and information of the ML model that is
accessible to test engineers.

Some approaches leverage training data to uncover unfair predictions without accessing the in-
ternal of ML models. Chakraborty et al. [128] proposed an explanation method based on k-nearest
neighbors to detect bias in ML software predictions. They identified instances predicted unfavor-
ably and examined their k-nearest neighbors with favorable labels from the training data. By com-
paring the distribution of these neighbors with the test instance, they determined and explained
the presence of bias.

Zhao et al. [316] used fairness measurements from training data as a baseline to identify bias
amplification. They annotated unlabeled data using the ML model and compared fairness measure-
ments between the training data and the annotated dataset to reveal bias amplification.

Wang and Russakovsky [288] highlighted issues with Zhao et al.’s bias amplification mea-
surement and proposed a new, decoupled metric that considers varying base rates of sensitive
attributes.

Cabrera et al. [122] developed FAIRVIS, a testing tool for subgroup fairness. It efficiently searches
for potential issues among numerous subgroups, clustering the training dataset to identify statis-
tically similar subgroups and calculating group fairness metrics using an entropy-based approach.
FAIRVIS presents generated subgroups sorted by their group fairness metrics.

Patel et al. [237] utilized combinatorial t-way testing [201] for fairness testing. This coverage-
based data sampling method generates diverse datasets by applying logical constraints. They cre-
ated an input parameter model from the training data and used it to generate a t-way test set.
Discriminatory instances were identified by mutating protected attributes in each test.

Several techniques [270, 310, 313–315, 318] utilize gradient information, which represents the
direction of steepest ascent in the loss function, to generate test inputs for fairness testing. ADF
[313, 315] focuses on discriminatory instances near the decision boundary of DNNs and employs

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:33

gradients to guide the search for neighboring test inputs. EIDIG [310] reduces gradient calculations
to accelerate the search process.

Researchers have also developed various methods to detect and analyze neurons responsible for
unfair outcomes in emerging deep learning (DL) models. NeuronFair [318] utilizes neuron analy-
sis to identify biased neurons contributing to unfairness and generates discriminatory instances to
amplify the activation differences of these biased neurons. It demonstrates strong interpretability,
generation effectiveness, and data generalization.

DeepFAIT [314] employs significance testing to identify fairness-related neurons by analyzing
the activation differences between privileged and unprivileged groups.

Vig et al. [283] apply Causal Mediation Analysis (CMA) to identify causally implicated parts,
such as neurons or attention heads, in the unfair predictions of a DNN model. CMA measures the
direct and indirect effects of targeted neurons on the final unfair predictions, considering each
neuron as an intermediate mediator.

Tian et al. [273] introduce a novel statistical measurement using neuron activation in DNNs.
They compute neuron activation vectors for each label class based on test inputs and calculate the
distance between these vectors to assess fairness. Dissimilar distances with respect to a third class
indicate the presence of fairness bugs in the tested DNN.

Gao et al. [161] propose FairNeuron for DNNs, which employs neuron slicing to identify conflict
paths containing neurons that rely on sensitive attributes for predictions. Biased instances trigger-
ing the selection of sensitive attributes are identified using these paths, and the model is retrained
through selective training. FairNeuron ensures that the conflict paths learn all important features
for prediction instead of biased ones for the identified biased instances while retaining the original
training approach for other instances.

Additionally, Zhang et al. [300] developed a method to identify and rectify fairness-related paths
in decision tree and random forest models. They employed a MaxSMT solver to determine the paths
that could be altered while satisfying fairness and semantic difference constraints. The identified
paths were refined by modifying the leaf labels, resulting in a repaired fair model.

6 RESEARCH TRENDS AND DISTRIBUTIONS

In Figure 1, we have shown that fairness testing is experiencing a dramatic increase in the num-
ber of publications. This section further analyzes the research trends and distributions of fairness
testing.

6.1 Research Venues

We first describe research trends in terms of the research communities engaging in fairness testing.
Since 2017, an increasing number of research communities have dedicated their efforts to studying
fairness testing. Notable contributions include:

— Galhotra et al. [160] introduced the first fairness testing approach for ML software in the SE
community, receiving the Distinguished Paper Award at ESEC/FSE 2017.

— Zhao et al. [316] detected bias in datasets and ML models for visual recognition tasks, earning
the Best Paper Award at EMNLP 2017.

— Díaz et al. [151] identified age-related bias in sentiment analysis systems, receiving the Best
Paper Award at CHI 2018.

— Ribeiro et al. [251] proposed CheckList, a task-agnostic methodology for testing NLP models,
including fairness testing, which received the Best Paper Award at ACL 2020.

— Zhang et al. [313] proposed a search-based discriminatory instance generation approach for
DNNs, which received the Distinguished Paper Award at ICSE 2020 and was selected for
SIGSOFT Research Highlights.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:34 Z. Chen et al.

Fig. 6. Research distribution among different venues.

— Chakraborty et al. [125] addressed selection bias and label bias in training data and were
honored with the Distinguished Paper Award at ESEC/FSE 2021.

These six best-paper awards, as well as being a credit to their authors, also demonstrate both the
significant level of interest and the high quality of research on fairness in three different research
communities:

— Software Engineering (ICSE and ESEC/FSE)
— Natural Language Processing (EMNLP and ACL)
— Human-Computer Interaction (CHI)

Figure 6 illustrates the distribution of the collected papers across various research venues. The
majority of fairness testing papers (49%) are published in software engineering venues, including
ICSE, ESEC/FSE, ASE, ISSTA, TSE, and TOSEM. Artificial intelligence venues, such as ICML,
NeurIPS, IJCAI, ACL, EMNLP, CVPR, ECCV, and KDD, account for 42% of the fairness testing
papers.

Furthermore, our survey reveals that fairness testing is gaining traction in other research com-
munities, such as computer security, human-computer interaction, and mobile computing commu-
nities. This highlights the broad audience and significance of our survey across multiple disciplines.

6.2 Machine Learning Categories

In this section, we explore the research trend of fairness testing across different ML categories.
Following previous work [304], we categorize the gathered papers into two groups: those that
concentrate on DL software and those that address general ML software.

Out of the total number of papers, 50 papers (50%) focus on conducting fairness testing for DL
software, 41 papers (41%) specifically target general ML software, and 8 papers (8%) consider both
traditional ML software and DL software. The significant volume of publications on fairness test-
ing for DL software can be attributed to several factors. On one hand, DL has gained widespread
adoption and is being utilized in a diverse range of software applications, generating significant
interest from the research community. On the other hand, compared to traditional ML algorithms
such as regression and decision trees, DL models are less interpretable [107], making it more chal-
lenging to directly reason about fairness.

To gain further insights, we analyze the publication trends for both categories over the years.
Figure 7 depicts the number of papers focusing on fairness testing in general ML and DL per
year. Our analysis reveals a clear shift in research focus, with a transition from testing general ML
software to testing DL software. Prior to 2019, fairness testing research primarily concentrated on

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:35

Fig. 7. Number of fairness testing papers on general machine learning and deep learning per year.

Fig. 8. Distribution of different data types in fairness testing papers.

general ML. However, since 2019, the number of papers specifically addressing DL has experienced
a notable surge, surpassing the publications on general ML.

6.3 Data Types

In this section, we investigate the research trends of fairness testing in applications that involve
different types of data.

Out of the total number of papers (100) that we have collected, 5 of them consider more than one
data type. We count each of these papers for each data type they examine, allowing us to analyze
the distribution across various data types. The findings are illustrated in Figure 8.

Our analysis indicates that among the publications we have collected, a significant portion fo-
cuses on testing software applications that utilize tabular data as inputs, accounting for 55% of
the total. Furthermore, approximately 24% of publications address fairness testing in applications
involving text inputs, while another 24% specifically tackle fairness issues in applications utilizing
image inputs.

It is important to note that fairness testing for other data types, such as speech and recommen-
dation systems, has not yet received extensive investigation, representing only a small percentage
of the publications, approximately 1% each. These data types remain relatively underexplored in
the context of fairness testing, emphasizing the need for further research and attention to ensure
fairness across a wider range of data-driven applications.

We also plot the data type distribution for SE publications. Figure 9 shows the results. In compar-
ison to the broader research landscape, the SE community predominantly focuses on applications

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:36 Z. Chen et al.

Fig. 9. Distribution of different data types in fairness testing papers published in SE venues.

involving tabular data, representing a substantial majority of fairness testing publications in SE
venues, amounting to 79%. In contrast, publications addressing text- or image-based problems ac-
count for only 17% and 8%, respectively. These figures are significantly lower than the average
distribution across all data types.

6.4 Fairness Categories

Figure 10 provides insights into the distribution of different fairness categories within the fairness
testing literature. Our analysis reveals that comparable research efforts have been dedicated to
exploring various aspects of fairness testing.

Specifically, we observe that 46% of fairness testing papers focus on group fairness, addressing
issues related to fairness among different groups. Another 46% of papers concentrate on individ-
ual fairness, investigating fairness concerns at the individual level. The remaining 8% of papers
examine both group fairness and individual fairness, recognizing the importance of considering
both perspectives in fairness testing research.

The finding may initially appear contradictory when comparing it with Table 5, where we ob-
serve that nearly all test generation techniques are proposed for individual fairness. This discrep-
ancy can be attributed to the distinct characteristics of individual fairness and group fairness.

When examining group fairness, researchers can leverage real-world data to construct test in-
puts that capture fairness considerations among different groups. This availability of data facil-
itates the exploration of group fairness in testing scenarios. However, for individual fairness, it
becomes challenging for researchers to identify pairs of instances that satisfy the specific input
requirements associated with individual fairness. For instance, it is not always straightforward to
find two individuals who differ solely in a sensitive protected attribute, making test input genera-
tion more focused on individual fairness.

Despite these differences in test input generation, it is important to note that fairness testing
studies overall investigate group fairness and individual fairness at a similar level. The distribution
of research efforts aims to address both perspectives, acknowledging the significance of both group
and individual fairness in testing methodologies.

6.5 Testing Manners

We further categorize existing fairness testing techniques based on the software testing approach
employed, distinguishing between white-box and black-box methods. It is worth noting that al-
though Tizpaz-Niari et al. [274] proposed black-box and gray-box techniques for testing hyper-
parameters, we consider their approach as white-box, because it requires access to the training
data for model training and fairness evaluation.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:37

Fig. 10. Distribution of different fairness categories.

In our analysis, we find that 53% of the 100 papers employ black-box testing techniques, while
47% adopt white-box testing methods. This observed gap between black-box and white-box testing
proportions is reasonable.

Compared to black-box testing, white-box testing necessitates access to either training data
or the internal workings of software systems. However, fairness testing often applies to systems
that are human-related and have social significance, making it challenging to disclose internal
information to the public due to privacy concerns or legal policies. Therefore, it is reasonable
that more research studies focus on black-box testing approaches, which do not require detailed
knowledge of the internal system mechanisms.

6.6 Tasks and Sensitive Attributes

In the collected papers, researchers typically present their techniques and then employ datasets
featuring specified tasks and sensitive attributes for technique evaluation. In this section, we pro-
vide a summary of prevalent tasks and sensitive attributes commonly considered in the fairness
testing literature.

We present in Table 6 commonly studied tasks in fairness testing literature. As detailed in Sec-
tion 6.3, existing fairness testing techniques span various data types, enabling support for diverse
tasks. Notably, income prediction, credit risk prediction, and recidivism/crime prediction emerge
as the three most widely studied. These tasks also feature as the most widely explored ones in the
bias mitigation (i.e., fairness improvement) literature, as indicated by a recent survey [181].

We list in Table 7 commonly studied sensitive attributes in the fairness testing literature. Overall,
the literature covers a wide range of sensitive attributes, including sex/gender, race/ethnicity, age,
country, occupation, religion, and sexual orientation. Notably, the top three sensitive attributes
are sex/gender, race/ethnicity, and age, which are consistent with previous findings observed in
the general software fairness literature [263]. They are considered in 89%, 57%, and 41% of the
collected papers, respectively.

7 DATASETS AND TOOLS

Based on the collected papers, this section summarizes the public datasets and open-source tools
for fairness testing to provide a quick navigation for researchers and practitioners.

7.1 Public Datasets

This section lists the public datasets in the literature based on our collected papers. Table 8 provides
detailed information about these datasets, including their sizes, data types, sensitive attributes,
usage scenarios, and access links. Many of these datasets comprise tabular data, making them
suitable for traditional ML classifiers.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:38 Z. Chen et al.

Table 6. Commonly Studied Tasks in the Fairness Testing Literature

Task #Publications
Income prediction 49
Credit risk prediction 33
Recidivism/crime prediction 26
Deposit subscription prediction 24
Face recognition/facial analysis 16
Healthcare prediction 10
Conversational AI/language generation 9
Sentiment analysis 8
Heart heath prediction 7
Image tagging/classification 7
Exam performance/grade prediction 5
Coreference resolution 3
Machine translation 3
Individual survival prediction 3
Recommender systems 2
Pedestrian trajectory prediction 1
Admission prediction 1
Loan application 1
Hiring 1
Pricing 1
Fraud detection 1
Car rental 1
Execution prediction 1
Toxicity detection 1
Name entity recognition 1
Speech recognition 1
COVID-19 new case prediction 1
Emergency department wait-time prediction 1

In recent years, there has been a surge in the availability of text and image datasets, driven by the
growing popularity of natural language processing and computer vision. These datasets are often
sourced from social media platforms like Twitter. It is worth noting that certain datasets come with
specific usage constraints that researchers must consider when utilizing them. For instance, the
well-known image dataset CelebA [16] is restricted to non-commercial research purposes only.

For a comprehensive overview of the existing fairness datasets, we recommend referring to the
works of Le Quy et al. [249] and Fabris et al. [155]. Le Quy et al. [249] surveyed tabular datasets
specifically for fairness research, while Fabris et al. [155] expanded the survey to include unstruc-
tured data such as text and images. Their surveys encompass datasets from diverse domains, in-
cluding social sciences, computer vision, health, economics, business, and linguistics.

7.2 Open-source Testing Tools

There is a recent proliferation of open-source tools for supporting fairness testing. Nevertheless,
Lee and Singh [207] demonstrated that there is a steep learning curve for practitioners to use these
fairness tools. Presently, there is a lack of guidance on tool adoption [207].

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:39

Table 7. Commonly Studied Sensitive Attributes in the

Fairness Testing Literature

Sensitive attribute #Publications
Sex/gender 89
Race/ethnicity/skin tone 57
Age 41
Country/nationality/geography 8
Occupation/profession 6
Religion 3
Political ideology 2
Sexual orientation 2
Person name 2
Ability 2
Body 2
Character 2
Culture 2
Social status 2
Marital status 1
Hair color 1
Victim 1

To address this gap, we provide a summary of 41 open-source fairness testing tools in this sec-
tion, aiming to assist fairness researchers and practitioners in selecting the most suitable tools. The
details of these tools are presented in Table 9. The table includes fairness testing tools for various
domains, including general ML (e.g., FairTest [276]), DL (e.g., ADF [313] and EIDIG [310]), natural
language processing (e.g., ASTRAEA [262] and BiasFinder [102]), computer vision (e.g., REVISE
[287]), and speech recognition (e.g., AequeVox [250]).

8 RESEARCH OPPORTUNITIES

Fairness testing remains in a relatively embryonic state. Research in this area is experiencing rapid
growth, so there are plenty of open research opportunities. In this section, we outline the chal-
lenges for fairness testing and present promising research directions and open problems.

8.1 Absence of or with Multiple Sensitive Attributes

Fairness testing in the absence of sensitive attribute information. Existing fairness testing
techniques rely on the existence of sensitive attributes, but in practice, this information might
be unavailable or imperfect for many reasons [103]. On the one hand, the data may be collected
in a setting where the sensitive attribute information is unnecessary, undesirable, or even illegal,
considering the recently released regulations such as GDPR (General Data Protection Regula-

tion) [285] and CCPA (California Consumer Privacy Act) [169]. On the other hand, users may
withhold or modify sensitive attribute information, for example, due to privacy concerns or other
personal preferences. To tackle this issue, a straightforward solution is to first use existing demo-
graphic information inference techniques (e.g., gender inference, race inference, and age inference)
to infer the sensitive attribute and then apply fairness testing techniques. However, existing infer-
ence techniques may not be fully satisfactory, and their application scenarios remain limited [135].
Moreover, building a model to infer sensitive information leaves open the possibility that the model

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:40 Z. Chen et al.

Table 8. Public Datasets for Fairness Testing

Dataset Description Data Type Size Sensitive Attribute(s) URL
Adult Income Income prediction Tabular 48,842 sex, race [27]
Census-Income (KDD) Income prediction Tabular 299,285 sex, race [5]
Compas Recidivism prediction Tabular 6,167 sex, race [23]
German Credit Credit risk prediction Tabular 1,000 sex [3]
Default Credit Credit risk prediction Tabular 30,000 sex [24]
Home Credit Credit risk prediction Tabular 37,511 sex [30]
Bank Marketing Deposit subscription prediction Tabular 30,488 age [13]
Mep15 Health care needs prediction Tabular 15,830 race [19]
Mep16 Health care needs prediction Tabular 15,675 race [26]
Dutch Census Income prediction Tabular 60,421 gender [14]
Heart Health Heart health prediction Tabular 303 age [7]
Arrhythmia Cardiac arrhythmia prediction Tabular 452 sex [70]
Student Performance Final year grade prediction Tabular 649 sex [15]
UFRGS GPA prediction Tabular 43,302 gender, race [49]
Law School Exam performance prediction Tabular 20,000 gender, race [4]
Titanic Individual survival prediction Tabular 891 sex [34]
Communities and Crime Crime prediction Tabular 2,215 race, age [10]
Diabetes Readmission prediction Tabular 100,000 race [2]
Heritage Health Staying in the hospital or not Tabular 147,473 age [17]
Fraud Fraud detection Tabular 1,100 age [6]
US Executions Execution prediction Tabular 1,437 sex, race [1]
LFW Face recognition Image 10,000 sex, race [8]
BUPT-Transferface Face recognition Image 1,300,000 race [43]
VGGFace Face recognition Image 2,600,000 gender, race [21]
COCO-gender Object detection Image 66 objects gender [28]
CelebA Facial analysis Image 202,599 gender [16]
RAF-DB Facial analysis Image 15,339 gender, race, age [32]
PBB Facial analysis Image 1,270 gender, skin type [39]
FairFace Facial analysis Image 108,501 gender, race, age [66]
WinoST Speech translation Audio 3,888 gender [59]
AequeVox Speech recognition Audio 68 gender, accent [69]
WinoBias Coreference resolution Text 3,160 gender [40]
Winogender Coreference resolution Text 720 gender [41]
IMDB Sentiment analysis Text 50,000 gender, country, occupation [11]
Twitter Sentiment140 Sentiment analysis Text 1.6 million gender, country, occupation [67]
SST Sentiment analysis Text 11,855 gender, country [31]
EEC Sentiment analysis Text 8,640 sex, race [38]
Large Movie Review Sentiment analysis Text 50,000 gender [12]
Wikipedia comments Toxicity detection Text 127,000 religion, country, ethnic, race [35]
Jigsaw Comments Toxicity classification Text 313,000 religion, country, ethnic, race [46]
nlg-bias Language generation Text 360 gender, race, sexual orientation [48]

BOLD Language generation Text 23,679
profession, gender, race,
religion, political ideology

[95]

HOLISTICBIAS Language generation Text 459,758 13 attributes [76]
DialogueFairness Conversational AI Text 300,000 gender [54]

BiasAsker Conversational AI Text 8,110
ability, age, body character,
culture, gender, profession,
race, religion, social victim

[88]

MovieLens Recommendation Movie ratings 1 million gender, age, occupation [20]

LFM360K Recommendation
Music listening
history

17 million
gender, age,
nationality

[18]

BlackFriday Recommendation Purchase history 550,068

gender, age, occupation,
city category, years of
stay in the current city,
marital status

[42]

may ultimately be used more broadly, with possibly unintended consequences [103]. Therefore,
more research is needed to tackle fairness testing in the absence of sensitive attribute information.
Fairness testing with multiple sensitive attributes. Software systems can have multiple sensi-
tive attributes that need to be considered at the same time [139, 168]. Human attributes, such as sex,
race, and class, intersect with one another, and unfair software systems built into society lead to
systematic disadvantages along these intersecting attributes [145, 195]. However, existing fairness
testing work often tackles a single sensitive attribute at a time. To the best of our knowledge, there
has been a little work that explores fairness testing for compounded or intersectional effects of

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:41

Table 9. Open-source Tools for Fairness Testing

Tool [ref] Application Component Description URL
FairTest [276] General ML Model Analyzing associations between outcomes and sensitive attributes [29]

Themis [160]
Classification
(Tabular data)

Model Black-box random discriminatory instance generation [33]

Aequitas [278]
Classification
(Tabular data)

Model Automated directed fairness testing [36]

ExpGA [156]
Classification
(Tabular data, text)

Model Explanation-guided fairness testing through genetic algorithm [63]

fairCheck [255]
Classification
(Tabular data)

Model Verification-based discriminatory instance generation [55]

MLCheck [254]
Classification
(Tabular data)

Model Property-driven testing of ML models [80]

LTDD [210]
Classification
(Tabular data)

Data Detecting which data features and which parts of them are biased [78]

Fair-SMOTE [125]
Classification
(Tabular data)

Model Detecting biased data labels and data distributions [64]

FairMask [241]
Classification
(Tabular data)

Data Extrapolation of correlations among data features that might cause bias [92]

Fairway [127]
Classification
(Tabular data)

Data, ML
program

Detecting biased data labels and optimal hyper-parameters for fairness [56]

Parfait-ML [274]
Classification
(Tabular data)

ML program Searching for hyper-parameters optimal to ML fairness [82]

Fairea [183]
Classification
(Tabular data)

ML program,
model

A unified benchmark for evaluating fairness repair algorithms [65]

IBM AIF360 [112]
Classification
(Tabular data)

Data, ML
program, model

Examining and mitigating bias in ML software [37]

I&D [218]
Classification
(Tabular data)

Model Improving initial individual discriminatory instances generation [77]

scikit-fairness [91]
Classification
(Tabular data)

Data, ML
program, model

Examining and mitigating bias in ML software [91]

LiFT [281]
Classification
(Tabular data)

Data, ML
program, model

Examining and mitigating bias in ML software [57]

FairVis [122]
Classification
(Tabular data)

Model Visual analytics for discovering intersectional bias in ML software [44]

BiasAmp [288] Image classifier Model Analyzing whether ML exacerbates bias from the training data [72]

MAAT [137]
Classification
(Tabular data)

Data Detecting selection bias and improving fairness-performance tradeoff [79]

FairEnsembles [167]
Classification
(Tabular data)

ML program Analyzing fairness and its composition in ensemble ML [90]

FairRepair [300]
Tree-based classification
(Tabular data)

Model Fairness testing and repair for tree-based models [75]

SBFT [242]
Regression
(Tabular data)

Model Search-based fairness testing for regression-based ML systems [85]

ADF [313]
DL-based classification
(Tabular data)

Model White-box fairness testing through adversarial sampling [50]

EIDIG [310]
DL-based classification
(tabular data)

Model White-box fairness testing through gradient search [62]

NeuronFair [318]
DL-based classification
(tabular data, face images)

Model Interpretable white-box fairness testing through biased neuron identification [81]

DeepInspect [273]
DL-based image
classification

Model Detecting class-based bias in image classification [53]

CMA [283] Language models Model Detecting which parts of DNNs are responsible for unfairness [52]

FairNeuron [161]
DL-based classification
(tabular data)

Model Detecting neurons and data instances responsible for bias [74]

RULER [270]
DL-based classification
(tabular data)

Model Test input generation by discriminating sensitive and non-sensitive attributes [84]

TestSGD [312]
DL-based classification
(Tabular data, text)

Model Interpretable testing of DNNs against subtle group discrimination [94]

DICE [227]
DL-based classification
(tabular data)

Model Information-theoretic fairness testing and debugging of DNNs [89]

ASTRAEA [262] NLP systems Model Grammar-based discriminatory instance generation for NLP systems [71]
MT-NLP [219] NLP systems Model Metamorphic testing of fairness violation in NLP systems [58]
BiasFinder [102] Sentiment analysis Model Metamorphic test generation to uncover bias of sentiment analysis systems [60]
BiasRV [299] Sentiment analysis Model Uncovering biased sentiment predictions at runtime [61]
NERGenderBias [223] Name entity recognition Model Measuring gender bias in named entity recognition [47]
CheckList [251] NLP systems Model Behavioral testing (including fairness testing) of NLP models [51]
DialogueFairness [214] Conversational AI Model Testing gender and linguistic (racial) bias in dialogue systems [54]
BiasAsker [286] Conversational AI Model Fairness testing of conversational AI systems [88]
REVISE [287] CV datasets Data Detecting object-, gender-, and geography-based bias in CV datasets [83]
AequeVox [250] Speech recognition Model Comparing the robustness of speech recognition systems for different groups [68]

multiple sensitive attributes [122, 270, 312], leaving an interesting research opportunity for the
community. Moreover, drawing parallels with historical legal discourse, the intersectionality
of protected attributes reveals the challenges of avoiding over-segmentation when assessing
fairness. In 1976, Judge Harris Wangelin expressed concerns about creating new protected groups

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:42 Z. Chen et al.

[45], specifically considering the implications of the “curse of dimensionality.” Much like the
legal system’s cautious approach to potential Pandora’s boxes of new protected classes, fairness
testing grapples with complexities in addressing compounded or intersectional effects of multiple
sensitive attributes.

8.2 Test Oracle for Fairness Testing

Existing work mainly employs metamorphic relations as pseudo oracles or uses statistical measure-
ments as indirect oracles of fairness testing, which both involve human ingenuity. It is an open
challenge to design automatic techniques for constructing reliable oracles for fairness testing.

Furthermore, the emergence of manually defined oracles for fairness testing brings a challenge
for test oracle selection. For instance, the IBM AIF360 toolkit alone offers more than 70 fairness
measurements [37, 112], and the research community continues to introduce novel measurements.
However, it is impractical to utilize all existing measurements as test oracles for fairness testing.
Moreover, while each measurement may be suitable in a specific context, many of them cannot
be simultaneously satisfied [121]. Hence, an important area for the research community is the de-
velopment of automatic techniques for constructing reliable oracles in fairness testing. It is worth
noting that one could argue that this challenge falls within the realm of requirements engineering
rather than testing. However, in reality, fairness testing is frequently explored in natural settings,
where upfront requirements engineering processes are not always assumed or followed strictly.
Fairness testing involves investigating and evaluating fairness concerns in real-world systems or
datasets, which may lack comprehensive and formal requirements. As a result, fairness testing
needs to adapt to address the unique challenges that arise in these real-world contexts, where
strict adherence to traditional requirements engineering may not be practical or feasible.

8.3 Test Input Generation for Fairness Testing

Generation of natural inputs. Despite the existence of various techniques for test input gen-
eration in fairness testing, there is no guarantee that the generated instances are legitimate and
natural. Particularly, in Table 5, it is evident that most test input generation techniques are based
on the causal fairness definition, which requires generating pairs of instances that differ solely in
sensitive attributes. However, it remains uncertain whether altering only the sensitive attribute is
sufficient to generate inputs that are truly natural.

Furthermore, existing techniques [310, 313, 315] primarily rely on perturbing input features
without explicitly constraining the magnitude of the perturbation. As long as the generated in-
stances can induce the intended output behavior, such as flipping the predicted outcome after
modifying sensitive attribute information, they are considered effective. However, this approach
may overlook real-world constraints, potentially resulting in generated instances that do not align
with reality (e.g., granting a loan to a 10-year-old individual).

As a result, open problems arise regarding how to generate test inputs for fairness testing that
are both legitimate and natural. Researchers need to address the challenges of ensuring the gener-
ated instances adhere to real-world constraints while still accurately assessing fairness. Addition-
ally, automating the evaluation of the naturalness of generated test inputs is another important
area of exploration, enabling more reliable and efficient fairness testing methodologies.
Exploration of more generation techniques. As mentioned earlier, most test input genera-
tion techniques in fairness testing focus on the causal fairness definition. In contrast, test input
generation for counterfactual fairness is relatively unmatured and more challenging. It requires
researchers to conduct causal analysis of features and consider the causal relationships among
them when altering sensitive attributes during generation. Moreover, when dealing with multiple

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:43

sensitive attributes simultaneously, the task becomes even more difficult, as changes in features
need to account for the causal impacts from multiple sensitive attributes.

Furthermore, there is a research opportunity to design test inputs specifically for group fairness
testing. While group fairness can be evaluated using real-world collected data, obtaining such data
is not always easy. Given the limited work on generating test inputs for group fairness, there is
still much potential for exploration in this area.

8.4 Test Adequacy for Fairness Testing

Test adequacy is a well-explored concept in traditional software testing, focusing on evaluating the
coverage provided by existing tests [304]. Adequacy criteria not only offer confidence in testing
activities but also serve as a guide for test generation. However, in the domain of fairness testing,
the issue of test adequacy remains an open problem, and to the best of our knowledge, no research
has specifically addressed this area.

To address this challenge, one approach could be to adapt traditional software test adequacy
metrics or ML test adequacy metrics for fairness testing. For instance, traditional software testing
has proposed metrics such as line coverage, branch coverage, and dataflow coverage [302], while
ML testing has introduced metrics such as neuron coverage, layer coverage, and surprise adequacy
for deep learning models [304]. Neuron coverage assesses the extent to which neurons in a deep
learning model are exercised by a test suite, while layer coverage measures the coverage of different
layers. Surprise adequacy, however, evaluates the coverage of discretized input surprise range for
deep learning models [304].

However, there is currently no empirical evidence to support the applicability and effectiveness
of these metrics in assessing the ability to detect fairness bugs and the sufficiency of fairness
testing. Further research is needed to investigate and validate the suitability of these metrics in
the context of fairness testing. Additionally, novel metrics tailored specifically for fairness testing
may need to be developed to capture the unique characteristics and requirements of assessing
fairness in ML software.

8.5 Test Cost Reduction

Test cost poses a significant challenge in fairness testing of ML software. The process of assessing
fairness often entails retraining ML models, repeating the prediction process, or generating exten-
sive data to explore the vast behavioral space of the models. However, thus far, there has been
no research dedicated to reducing the cost of fairness testing. It would be intriguing to explore
specific techniques for test selection, prioritization, and minimization that can effectively reduce
the cost of fairness testing without compromising test effectiveness.

Moreover, as discussed in Section 5.2, there is an escalating demand for deploying intelligent
software systems on platforms with limited computing power and resources, such as mobile de-
vices. Several studies [118, 118, 180, 264] have addressed fairness testing in such scenarios. This
presents a fresh challenge for the research community: how to conduct fairness testing effectively
on diverse end devices, including those with restricted computing power, limited memory size,
and constrained energy capacity. Addressing this challenge requires innovative approaches and
techniques that can adapt fairness testing methodologies to accommodate the limitations and con-
straints of these resource-constrained platforms.

8.6 Fairness and Other Testing Properties

Testing fairness repair techniques with more properties considered. After fairness repair
techniques have been applied to software systems, fairness testing is often performed again. In
this process, testers may also take ML performance (e.g., accuracy) into consideration [137, 183],

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:44 Z. Chen et al.

because it is well-known that fairness improvement is often at the cost of ML performance [183].
However, in addition to ML performance, there are also many other properties important for soft-
ware systems, including robustness, security, efficiency, interpretability, and privacy [304]. The re-
lationship between fairness and these properties is not well studied in the literature, and thus these
relationships remain less well understood. Future research is needed to uncover the relationships
and perform the testing with these properties considered. The determination of the properties to
be considered needs the assistance of requirements engineers.
Fairness and explainability. Explainability is defined as that users can understand why a pre-
diction is made by a software system [166]. Like fairness, it has also been an important software
property required by recent regulatory provisions [226]. Because application scenarios that de-
mand fairness often also require explainability, it would be an interesting research direction to
consider fairness and explainability together. Many existing fairness testing studies just generate
discriminatory instances that reveal fairness bugs in the software under test, but do not explain
why these instances are unfairly treated by the software.

In this case, software engineers have relatively little guidance on the production of targeted fixes
to repair the software. Improving the explainability behind the unfair software outcomes can help
summarize the reasons for fairness bugs, produce insights for fairness repair, and help stakeholders
without technical backgrounds (e.g., product managers, compliance officers, and policymakers)
understand the software bias simply and quickly.

8.7 Fairness Testing of More Applications

The majority of existing fairness testing work has concentrated on tabular data, natural language
processing systems, and computer vision systems. However, fairness, as a critical non-functional
property, should be considered across a broader spectrum of software systems, including speech
recognition systems, video analytic systems, multi-modal systems, and recommendation systems.
Additionally, existing fairness testing studies have predominantly centered around classification
tasks. However, fairness is a crucial concern that should be examined in various machine learning
tasks, including regression and clustering as well as emerging cutting-edge AI technologies such
as Large Language Models (LLMs).

LLMs, extensively studied in academic literature and widely adopted in various applications,
have recently raised concerns about fairness [209]. Given the significance of fairness in LLMs,
OpenAI is actively seeking expertise to address these concerns and foster the development of fair
LLMs [93]. However, fairness testing for LLMs poses unique challenges. First, LLMs are often open-
domain systems that offer diverse functionalities. For instance, ChatGPT can engage in a variety
of conversations with humans on a broad spectrum of topics. This characteristic poses a challenge
when designing test oracles and input generation techniques for fairness testing, given the need
to account for the extensive range of subjects and functionalities in LLMs. In contrast, existing
fairness testing techniques are often tailored to specific tasks, potentially falling short in compre-
hensively evaluating the performance of LLMs across their diverse capabilities. Second, LLMs can
generate a spectrum of responses, including those that may appear vague or unrelated, often influ-
enced by pre-defined protection mechanisms regarding sensitive topics. This diversity in responses
poses a challenge in automatically discerning whether the LLM output exhibits bias (i.e., the test or-
acle problem). While Wan et al. [286] have proposed solutions to address this challenge, their focus
remains on tackling test oracle problems related to Yes-No questions, Choice-questions, and Wh-
questions. Regrettably, this leaves other question types, such as prediction questions, explanatory
questions, and recommendation questions, unexplored. Third, the majority of large-scale LLMs are
not open-sourced, leading to opacity in their underlying mechanisms and low explainability. This
characteristic poses a challenge in designing fairness testing techniques, limiting practitioners to

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:45

developing black-box approaches based solely on the observed responses of LLMs. Moreover, data
testing and ML program testing are not applicable to such LLMs.

8.8 More Fairness Testing Activities and Components

The current body of research primarily focuses on offline fairness testing. There is a pressing need
for more research in the realm of online fairness testing, as it can provide valuable insights to
guide software maintenance and facilitate the evolution of software systems.

Furthermore, researchers have an opportunity to extend fairness testing investigations to in-
clude additional testing activities that have been extensively studied in traditional software testing
but rarely explored in the context of fairness testing. For instance, exploring bug report analysis
[301], bug triage [189], and test evaluation [304] in fairness testing can contribute valuable insights
to the field.

Additionally, there exists a research gap in the fairness testing components. While testing of ML
frameworks has received considerable attention in traditional ML testing [233, 244, 289, 292], its
application in fairness testing remains underexplored. Furthermore, exploring non-ML component
testing within the context of fairness testing presents a promising research direction that warrants
further investigation.

8.9 More Fairness Testing Tools

Existing fairness testing tools (listed in Table 9) tend to require programming skills and thus are
unfriendly to non-technical stakeholders. However, fairness testing research includes many non-
programmer stakeholders and contributors such as compliance officers, policymakers, and legal
practitioners.

9 DISCUSSION

9.1 Stakeholders in Fairness Testing

Fairness testing goes beyond the pure view of test engineers, involving a range of stakehold-
ers [253]. Given that unfairness can stem from data or algorithms, data scientists and algorithm
designers can play pivotal roles in detecting potential biases and providing valuable insights for
fairness testing. Additionally, legal practitioners, compliance officers, and policymakers can be
queried as crucial stakeholders, ensuring that fairness aligns with encoded laws, regulations, and
policies.

Moreover, it is imperative to expand our focus beyond conventional algorithmic testing. ML
software users, directly impacted by algorithmic decisions, offer unique insights and real-world
experiences that extend beyond the scope of algorithmic scrutiny alone. This is exemplified by
the book Algorithms of Oppression [234], which provides a good example illustrating that, despite
potential testing of its algorithms, Yelp’s review system demonstrated unfairness in its waiting
system concerning a specific user population, adversely affecting a local hairdresser store. This
emphasizes the significance of community perspectives in revealing biases not immediately
evident through algorithmic testing alone. Incorporating user-centered design principles and
establishing feedback loops during development and testing are crucial for a more comprehensive
approach to fairness testing.

9.2 Algorithmic Fairness and Societal Fairness

Certain researchers posit that algorithms inherently reflect the biases embedded in their social
context [208]. Consequently, they argue that addressing algorithmic bias holds limited value un-
less we first address and rectify the societal issues that influence the selection and deployment of

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:46 Z. Chen et al.

these algorithms. However, we believe that addressing algorithmic fairness is not misguided but
complementary to tackling societal fairness. While algorithms may be inherently biased due to
societal bias, addressing algorithmic fairness focuses on short-term solutions within technology
to reduce discrimination. Recognizing that societal fairness is a complex, long-term endeavor, both
efforts—algorithmic and societal fairness—should coexist for a fairer future.

In addition, algorithms are technologies created by people. Even if algorithms reflect societal bi-
ases, it does not absolve the creators of algorithms from their responsibilities. Algorithmic fairness
research emphasizes holding them accountable for addressing bias in algorithms.

Furthermore, the algorithmic view of fairness raises awareness about societal consequences in
decision-making. It contributes to a comprehensive effort for fairness, acknowledging that improv-
ing algorithms is a tangible, achievable step towards broader societal change.

We also recognize that addressing algorithmic fairness fundamentally requires an improvement
in societal fairness, emphasizing crucial social factors such as power structures and social justice.
The technical dimensions of fairness testing necessitate a holistic consideration of the societal
contexts in which these algorithms function.

A significant aspect involves acknowledging that AI technologies often stem from the directives
of individuals or entities in positions of power [260]. To rectify this power imbalance, a profound
shift is imperative. It extends beyond merely consulting those affected by AI at the outset; active
participation in the decision-making process is essential. This entails empowering individuals to
select the problems addressed and guide the entire developmental trajectory.

Furthermore, the involvement of the most relevant participants becomes paramount to ensure
that AI training data authentically mirrors the diversity of perspectives in society [260]. This prin-
ciple underscores the significance of integrating lived experiences into the development of AI sys-
tems. This approach not only mitigates the risk of participation-washing but also fosters a more
inclusive methodology for fairness testing.

9.3 Threats to Validity

As presented in Section 3, the methodology of this article includes two primary phases: paper
collection and paper analysis. In this section, we discuss potential threats associated with these
two phases.
Paper collection: Our collection process involves the selection of research papers from the widely
used DBLP database, which encompasses arXiv and over 1,800 journals, as well as 5,800 academic
conferences and workshops in the field of Computer Science. However, it is important to acknowl-
edge that this approach may overlook papers published in other venues. Additionally, there is the
possibility that our manually defined search strings may not encompass all the relevant studies
within our research scope. To address these potential threats, we employ both backward snow-
balling and forward snowballing to further identify transitively dependent papers. Moreover, we
proactively contact the authors of our collected papers to solicit additional papers that fall within
the scope of our survey.
Paper analysis: The process of manually analyzing research papers to extract relevant informa-
tion to be included in the survey is potentially open to human bias. To mitigate this risk, each
paper undergoes analysis by two separate authors, and any disagreement that arises during the
analysis is resolved through discussions involving other co-authors, all of whom have previously
published fairness-related papers in top-tier SE venues. Furthermore, all authors independently
conduct a thorough review of the survey’s content to identify and rectify any potential issues. We
also share our survey with the authors of the collected papers to ensure that our descriptions of
their work are accurate.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:47

10 CONCLUSION

We have presented a comprehensive survey of 100 papers on fairness testing. We summarized the
current research status in the fairness testing workflow (including test input generation and test
oracle identification) and testing components (including data testing, ML program testing, and
model testing). We analyzed trends and promising research directions for fairness testing. We also
listed public datasets and open-source tools that can be accessed by researchers and practitioners
interested in this topic. We hope this survey will help researchers from various research commu-
nities become familiar with the current status and open opportunities of fairness testing.

ACKNOWLEDGMENT

We shared our work with the authors of the papers we surveyed to check for accuracy and omis-
sion, and we would like to thank those authors who kindly provided comments and feedback on
earlier drafts of this article.

REFERENCES

[1] Data.world. 1977. The US Executions dataset. Retrieved from https://data.world/markmarkoh/executions-since-1977
[2] UCI Machine Learning Repository. 1994. The Diabetes dataset. Retrieved from https://archive.ics.uci.edu/ml/datasets/

diabetes
[3] UCI Machine Learning Repository. 1994. The German Credit dataset. Retrieved from https://archive.ics.uci.edu/ml/

datasets/Statlog+%28German+Credit+Data%29
[4] Kaggle. 1998. The Law School dataset. Retrieved from https://www.kaggle.com/datasets/danofer/law-school-

admissions-bar-passage
[5] UCI Machine Learning Repository. 2000. The Census-Income (KDD) dataset. Retrieved from https://archive.ics.uci.

edu/dataset/117/census+income+kdd
[6] Kaggle. 2000. The Fraud Detection dataset. Retrieved from https://www.kaggle.com/competitions/frauddetection/

data
[7] UCI Machine Learning Repository. 2001. The Heart Health dataset. Retrieved from https://archive.ics.uci.edu/ml/

datasets/Heart+Disease
[8] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. 2007. LFW. Retrieved from http://vis-www.

cs.umass.edu/lfw/
[9] IEEE. 2010. IEEE standard classification for software anomalies. IEEE Std 1044-2009 (Revision of IEEE Std 1044-1993).

1–23.
[10] UCI Machine Learning Repository. 2011. The Communities and Crime dataset. Retrieved from http://archive.ics.uci.

edu/ml/datasets/Communities%20and%20Crime%20Unnormalized
[11] IMDb.com, Inc. 2011. The IMDB dataset. Retrieved from https://www.imdb.com/interfaces/
[12] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. 2011. The

Large Movie Review dataset. Retrieved from https://ai.stanford.edu/~amaas/data/sentiment/
[13] UCI Machine Learning Repository. 2014. The Bank dataset. Retrieved from https://archive.ics.uci.edu/ml/datasets/

Bank+Marketing
[14] Minnesota Population Center. 2014. The Dutch Census of 2001 dataset. Retrieved from https://microdata.worldbank.

org/index.php/catalog/2102
[15] UCI Machine Learning Repository. 2014. The Student Performance dataset. Retrieved from https://archive.ics.uci.

edu/ml/datasets/Student+Performance
[16] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. The CelebA dataset. Retrieved from https://mmlab.ie.

cuhk.edu.hk/projects/CelebA.html
[17] ForeverData.org. 2015. The Heritage Health dataset. Retrieved from https://foreverdata.org/1015/index.html
[18] Oscar Celma. 2015. The LFM360K dataset. Retrieved from https://www.upf.edu/web/mtg/lastfm360k
[19] Agency for Healthcare Research and Quality. 2015. The Mep15 dataset. Retrieved from https://meps.ahrq.gov/

mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-181
[20] GroupLens Research. 2015. The MovieLens dataset. Retrieved from https://movielens.org/
[21] O. M. Parkhi, A. Vedaldi, A. Zisserman. 2015. The VGGFace dataset. Retrieved from https://www.robots.ox.ac.uk/

~vgg/data/vgg_face/#publi
[22] Rafi Letzter. 2016. Amazon just showed us that “unbiased” algorithms can be inadvertently racist. Retrieved from

https://www.businessinsider.com/how-algorithms-can-be-racist-2016-4?r=US&IR=T

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

https://data.world/markmarkoh/executions-since-1977
https://archive.ics.uci.edu/ml/datasets/diabetes
https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
https://www.kaggle.com/datasets/danofer/law-school-admissions-bar-passage
https://archive.ics.uci.edu/dataset/117/census+income+kdd
https://www.kaggle.com/competitions/frauddetection/data
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
http://vis-www.cs.umass.edu/lfw/
http://archive.ics.uci.edu/ml/datasets/Communities%20and%20Crime%20Unnormalized
https://www.imdb.com/interfaces/
https://ai.stanford.edu/~amaas/data/sentiment/
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://microdata.worldbank.org/index.php/catalog/2102
https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://foreverdata.org/1015/index.html
https://www.upf.edu/web/mtg/lastfm360k
https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-181
https://movielens.org/
https://www.robots.ox.ac.uk/~vgg/data/vgg_face/#publi
https://www.businessinsider.com/how-algorithms-can-be-racist-2016-4?r=US&IR=T

137:48 Z. Chen et al.

[23] Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. 2016. The Compas dataset. Retrieved from https://
github.com/propublica/compas-analysis

[24] UCI Machine Learning Repository. 2016. The Default Credit dataset. Retrieved from https://archive.ics.uci.edu/ml/
datasets/default+of+credit+card+clients

[25] Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner. 2016. Machine bias. Retrieved from https://www.
propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

[26] Agency for Healthcare Research and Quality. 2016. The Mep16 dataset. Retrieved from https://meps.ahrq.gov/
mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-192

[27] UCI Machine Learning Repository. 2017. The Adult Census Income dataset. Retrieved from https://archive.ics.uci.
edu/ml/datasets/adult

[28] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, Kai-Wei Chang. 2017. The COCO-gender dataset. Retrieved
from https://github.com/uclanlp/reducingbias

[29] Florian Tramer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, Jean-Pierre Hubaux, Mathias Humbert, Ari Juels,
and Huang Lin. 2017. FairTest Retrieved from https://github.com/columbia/fairtest

[30] Kaggle. 2017. The Home Credit dataset. Retrieved from https://www.kaggle.com/c/home-credit-default-risk
[31] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher Manning, Andrew Ng, and Christopher Potts.

2017. The SST dataset. Retrieved from http://nlpprogress.com/english/sentiment_analysis.html
[32] Shan Li, Weihong Deng, and JunPing Du. 2017. The RAF-DB dataset. Retrieved from http://whdeng.cn/RAF/model1.

html
[33] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Themis. Retrieved from https://github.com/LASER-

UMASS/Themis
[34] Kaggle. 2017. The Titanic dataset. Retrieved from https://www.kaggle.com/c/titanic/data
[35] Conversation-AI. 2017. The Wikipedia comment dataset. Retrieved from https://github.com/conversationai/

unintended-ml-bias-analysis
[36] Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. 2018. Aequitas. Retrieved from https://github.com/

sakshiudeshi/Aequitas
[37] IBM Research. 2018. AIF360. Retrieved from https://aif360.readthedocs.io/en/stable/index.html
[38] Svetlana Kiritchenko and Saif M. Mohammad. 2018. The EEC dataset. Retrieved from https://competitions.codalab.

org/competitions/17751
[39] Joy Buolamwini and Timnit Gebru. 2018. The PBB dataset. Retrieved from http://gendershades.org/overview.html
[40] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, Kai-Wei Chang. 2018. The WinoBias dataset. Retrieved

from https://paperswithcode.com/dataset/winobias
[41] Rachel Rudinger, Jason Naradowsky, Brian Leonard, and Benjamin Van Durme. 2018. The Winogender dataset. Re-

trieved from https://github.com/rudinger/winogender-schemas
[42] Kaggle. 2019. The BlackFriday dataset. Retrieved from https://www.kaggle.com/datasets/sdolezel/black-friday
[43] Mei Wang, Weihong Deng, Jiani Hu, Xunqiang Tao, and Yaohai Huang. 2019. The BUPT-Transferface dataset. Re-

trieved from http://www.whdeng.cn/RFW/Trainingdataste.html
[44] Ángel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng, Jamie Morgenstern, and Duen Horng Chau.

2019. FairVis. Retrieved from https://github.com/poloclub/FairVis
[45] Jane Coaston. 2019. The intersectionality wars. Retrieved from https://www.vox.com/the-highlight/2019/5/20/

18542843/intersectionality-conservatism-law-race-gender-discrimination
[46] Kaggle. 2019. The Jigsaw comment dataset. Retrieved from https://www.kaggle.com/c/jigsaw-toxic-comment-

classification-challenge
[47] Ninareh Mehrabi, Thamme Gowda, Fred Morstatter, Nanyun Peng, and Aram Galstyan. 2019. NERGenderBias. Re-

trieved from https://github.com/Ninarehm/NERGenderBias
[48] Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. 2019. The nlg-bias dataset. Retrieved from

https://github.com/ewsheng/nlg-bias
[49] Bruno Castro da Silva. 2019. The UFRGS Entrance Exam and GPA Data. Retrieved from https://dataverse.harvard.

edu/dataset.xhtml?persistentId=doi:10.7910/DVN/O35FW8
[50] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang, Ting Dai, and Jinsong Dong. 2020.

ADF. Retrieved from https://github.com/pxzhang94/ADF
[51] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020. CheckList. Retrieved from https:

//github.com/marcotcr/checklist
[52] Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Simas Sakenis, Jason Huang,

Yaron Singer, and Stuart Shieber. 2020. CMA. Retrieved from https://github.com/sebastianGehrmann/
CausalMediationAnalysis

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

https://github.com/propublica/compas-analysis
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-192
https://archive.ics.uci.edu/ml/datasets/adult
https://github.com/uclanlp/reducingbias
https://github.com/columbia/fairtest
https://www.kaggle.com/c/home-credit-default-risk
http://nlpprogress.com/english/sentiment_analysis.html
http://whdeng.cn/RAF/model1.html
https://github.com/LASER-UMASS/Themis
https://www.kaggle.com/c/titanic/data
https://github.com/conversationai/unintended-ml-bias-analysis
https://github.com/sakshiudeshi/Aequitas
https://aif360.readthedocs.io/en/stable/index.html
https://competitions.codalab.org/competitions/17751
http://gendershades.org/overview.html
https://paperswithcode.com/dataset/winobias
https://github.com/rudinger/winogender-schemas
https://www.kaggle.com/datasets/sdolezel/black-friday
http://www.whdeng.cn/RFW/Trainingdataste.html
https://github.com/poloclub/FairVis
https://www.vox.com/the-highlight/2019/5/20/18542843/intersectionality-conservatism-law-race-gender-discrimination
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://github.com/Ninarehm/NERGenderBias
https://github.com/ewsheng/nlg-bias
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/O35FW8
https://github.com/pxzhang94/ADF
https://github.com/marcotcr/checklist
https://github.com/sebastianGehrmann/CausalMediationAnalysis

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:49

[53] Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail E. Kaiser, and Baishakhi Ray. 2020. DeepInspect. Retrieved from
https://github.com/ARiSE-Lab/DeepInspect

[54] Haochen Liu, Jamell Dacon, Wenqi Fan, Hui Liu, Zitao Liu, and Jiliang Tang. 2020. DialogueFairness. Retrieved from
https://github.com/zgahhblhc/DialogueFairness

[55] Arnab Sharma and Heike Wehrheim. 2020. fairCheck. Retrieved from https://github.com/arnabsharma91/fairCheck
[56] Joymallya Chakraborty, Suvodeep Majumder, Zhe Yu, and Tim Menzies. 2020. Fairway. Retrieved from https://github.

com/joymallyac/Fairway
[57] Sriram Vasudevan and Krishnaram Kenthapadi. 2020. LiFT. Retrieved from https://github.com/linkedin/LiFT
[58] Pingchuan Ma, Shuai Wang, and Jin Liu. 2020. MT-NLP. Retrieved from https://github.com/pckennethma/MT-NLP
[59] Marta R. Costa-jussa. 2020. WinoST. Retrieved from https://zenodo.org/record/4139080#.YtGEc-zMJAc
[60] Muhammad Hilmi Asyrofi, Zhou Yang, Imam Nur Bani Yusuf, Hong Jin Kang, Ferdian Thung, and David Lo. 2021.

BiasFinder. Retrieved from https://github.com/soarsmu/BiasFinder
[61] Zhou Yang, Muhammad Hilmi Asyrofi, and David Lo. 2021. BiasRV. Retrieved from https://github.com/soarsmu/

BiasRV
[62] Lingfeng Zhang, Yueling Zhang, and Min Zhang. 2021. EIDIG. Retrieved from https://github.com/LingfengZhang98/

EIDIG
[63] Ming Fan, Wenying Wei, Wuxia Jin, Zijiang Yang, and Ting Liu. 2021. ExpGA. Retrieved from https://github.com/

waving7799/ExpGA
[64] Joymallya Chakraborty, Suvodeep Majumder, and Tim Menzies. 2021. Fair-SMOTE. Retrieved from https://github.

com/joymallyac/Fair-SMOTE
[65] Max Hort, Jie M. Zhang, Federica Sarro, and Mark Harman. 2021. Fairea. Retrieved from https://github.com/maxhort/

Fairea
[66] Kimmo Karkkainen and Jungseock Joo. 2021. The FairFace dataset. Retrieved from https://github.com/dchen236/

FairFace
[67] Kaggle. 2021. The Sentiment140 dataset. Retrieved from https://www.kaggle.com/datasets/kazanova/sentiment140
[68] Sai Sathiesh Rajan, Sakshi Udeshi, and Sudipta Chattopadhyay. 2022. AequeVox. Retrieved from https://github.com/

sparkssss/AequeVox
[69] Sai Sathiesh Rajan, Sakshi Udeshi, and Sudipta Chattopadhyay. 2022. The AequeVox dataset. Retrieved from https:

//zenodo.org/record/5897347
[70] UCI Machine Learning Repository. 2022. The Arrhythmia dataset. Retrieved from https://archive.ics.uci.edu/dataset/

5/arrhythmia
[71] Ezekiel Soremekun, Sakshi Udeshi, and Sudipta Chattopadhyay. 2022. ASTRAEA. Retrieved from https://github.com/

sakshiudeshi/Astraea
[72] Angelina Wang and Olga Russakovsky. 2022. BiasAmp→. Retrieved from https://github.com/princetonvisualai/

directional-bias-amp
[73] DBLP computer science bibliography. 2022. DBLP. Retrieved from https://dblp.org
[74] Xuanqi Gao, Juan Zhai, Shiqing Ma, Chao Shen, Yufei Chen, and Qian Wang. 2022. FairNeuron. Retrieved from

https://github.com/Antimony5292/FairNeuron
[75] Jiang Zhang, Jiang Zhang, Sergey Mechtaev, and Abhik Roychoudhury. 2022. FairRepair. Retrieved from https://

github.com/fairrepair/fair-repair
[76] Eric Michael Smith, Melissa Hall, Melanie Kambadur, Eleonora Presani, and Adina Williams. 2022. HOLISTICBIAS.

Retrieved from https://github.com/facebookresearch/ResponsibleNLP/tree/main/holistic_bias
[77] Minghua Ma, Zhao Tian, Max Hort, Federica Sarro, Hongyu Zhang, Qingwei Lin, and Dongmei Zhang. 2022. I&D.

Retrieved from https://anonymous.4open.science/r/fairness-095F/README.md
[78] Yanhui Li, Linghan Meng, Lin Chen, Li Yu, Di Wu, Yuming Zhou, and Baowen Xu. 2022. LTDD. Retrieved from

https://github.com/fairnesstest/LTDD
[79] Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and Mark Harman. 2022. MAAT. Retrieved from https://github.com/

chenzhenpeng18/FSE22-MAAT
[80] Arnab Sharma, Caglar Demir, Axel-Cyrille Ngonga Ngomo, and Heike Wehrheim. 2022. MLCheck. Retrieved from

https://github.com/anonymseal/MLCheck
[81] Haibin Zheng, Zhiqing Chen, Tianyu Du, Xuhong Zhang, Yao Cheng, Shouling Ji, Jingyi Wang, Yue Yu, and Jinyin

Chen. 2022. NeuronFair. Retrieved from https://github.com/haibinzheng/NeuronFair
[82] Saeid Tizpaz-Niari, Ashish Kumar, Gang Tan, and Ashutosh Trivedi. 2022. Parfait-ML. Retrieved from https://github.

com/Tizpaz/Parfait-ML
[83] Angelina Wang, Alexander Liu, Ryan Zhang, Anat Kleiman, Leslie Kim, Dora Zhao, Iroha Shirai, Arvind Narayanan,

and Olga Russakovsky. 2022. REVISE. Retrieved from https://github.com/princetonvisualai/revise-tool

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

https://github.com/ARiSE-Lab/DeepInspect
https://github.com/zgahhblhc/DialogueFairness
https://github.com/arnabsharma91/fairCheck
https://github.com/joymallyac/Fairway
https://github.com/linkedin/LiFT
https://github.com/pckennethma/MT-NLP
https://zenodo.org/record/4139080#.YtGEc-zMJAc
https://github.com/soarsmu/BiasFinder
https://github.com/soarsmu/BiasRV
https://github.com/LingfengZhang98/EIDIG
https://github.com/waving7799/ExpGA
https://github.com/joymallyac/Fair-SMOTE
https://github.com/maxhort/Fairea
https://github.com/dchen236/FairFace
https://www.kaggle.com/datasets/kazanova/sentiment140
https://github.com/sparkssss/AequeVox
https://zenodo.org/record/5897347
https://archive.ics.uci.edu/dataset/5/arrhythmia
https://github.com/sakshiudeshi/Astraea
https://github.com/princetonvisualai/directional-bias-amp
https://dblp.org
https://github.com/Antimony5292/FairNeuron
https://github.com/fairrepair/fair-repair
https://github.com/facebookresearch/ResponsibleNLP/tree/main/holistic_bias
https://anonymous.4open.science/r/fairness-095F/README.md
https://github.com/fairnesstest/LTDD
https://github.com/chenzhenpeng18/FSE22-MAAT
https://github.com/anonymseal/MLCheck
https://github.com/haibinzheng/NeuronFair
https://github.com/Tizpaz/Parfait-ML
https://github.com/princetonvisualai/revise-tool

137:50 Z. Chen et al.

[84] Guanhong Tao, Weisong Sun, Tingxu Han, Chunrong Fang, and Xiangyu Zhang. 2022. RULER. Retrieved from https:
//github.com/wssun/RULER

[85] Anjana Perera, Aldeida Aleti, Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, Burak Turhan, Lisa Kuhn, and Katie
Walker. 2022. SBFT. Retrieved from https://github.com/search-based-fairness-testing/sbft

[86] Shuo Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. 2022. WIDER FACE. Retrieved from http://shuoyang1213.
me/WIDERFACE/

[87] Marcel R. Ackermann. 2023. 6 million publications. Retrieved from https://blog.dblp.org/2022/02/22/6-million-
publications/

[88] Yuxuan Wan, Wenxuan Wang, Pinjia He, Jiazhen Gu, Haonan Bai, and Michael Lyu. 2023. BiasAsker. Retrieved from
https://github.com/yxwan123/BiasAsker

[89] Verya Monjezi, Ashutosh Trivedi, Gang Tan, and Saeid Tizpaz-Niari. 2023. DICE. Retrieved from https://github.com/
armanunix/Fairness-testing

[90] Usman Gohar, Sumon Biswas, and Hridesh Rajan. 2023. FairEnsembles. Retrieved from https://github.com/
UsmanGohar/FairEnsemble

[91] Hilde Weerts, Miroslav Dudík, Richard Edgar, Adrin Jalali, Roman Lutz, and Michael Madaio. 2023. Fairlearn. Re-
trieved from https://fairlearn.org/

[92] Kewen Peng, Joymallya Chakraborty, and Tim Menzies. 2023. FairMask. Retrieved from https://github.com/
anonymous12138/biasmitigation

[93] OpenAI. 2023. How should AI systems behave, and who should decide? Retrieved from https://openai.com/blog/how-
should-ai-systems-behave

[94] Mengdi Zhang, Jun Sun, Jingyi Wang, and Bing Sun. 2023. TestSGD Retrieved from https://github.com/
zhangmengling/subtle_discrimination_testing

[95] Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya Krishna, Yada Pruksachatkun, Kai-Wei Chang, and Rahul Gupta.
2021. The BOLD dataset. Retrieved from https://github.com/jwaladhamala/BOLD-Bias-in-open-ended-language-
generation

[96] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gor-
don Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2016. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI’16). 265–283.
[97] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha. 2019. Black box fairness testing of

machine learning models. In Proceedings of the ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE’19). 625–635.
[98] Khlood Ahmad, Muneera Bano, Mohamed Abdelrazek, Chetan Arora, and John C. Grundy. 2021. What’s up with re-

quirements engineering for artificial intelligence systems?. In Proceedings of the 29th IEEE International Requirements

Engineering Conference (RE’21). 1–12.
[99] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori. 2017. FairSquare: Probabilistic verification of

program fairness. Proc. ACM Program. Lang. OOPSLA (2017), 80:1–80:30.
[100] Razieh Alidoosti. 2021. Ethics-driven software architecture decision making. In Proceedings of the IEEE 18th Interna-

tional Conference on Software Architecture Companion (ICSA-C’21). 90–91.
[101] Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2018. Themis: Automatically testing software for

discrimination. In Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE’18). 871–875.
[102] Muhammad Hilmi Asyrofi, Zhou Yang, Imam Nur Bani Yusuf, Hong Jin Kang, Ferdian Thung, and David Lo. 2021. Bi-

asFinder: Metamorphic test generation to uncover bias for sentiment analysis systems. IEEE Transactions on Software

Engineering 48, 12 (2021), 5087–5101.
[103] Pranjal Awasthi, Alex Beutel, Matthäus Kleindessner, Jamie Morgenstern, and Xuezhi Wang. 2021. Evaluating fair-

ness of machine learning models under uncertain and incomplete information. In Proceedings of the ACM Conference

on Fairness, Accountability, and Transparency (FAccT’21). 206–214.
[104] Fatma Basak Aydemir and Fabiano Dalpiaz. 2018. A roadmap for ethics-aware software engineering. In Proceedings

of the International Workshop on Software Fairness (FairWare@ICSE’18). 15–21.
[105] Andrew Bae and Susu Xu. 2022. Discovering and understanding algorithmic biases in autonomous pedestrian trajec-

tory predictions. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems. 1155–1161.
[106] Guha Balakrishnan, Yuanjun Xiong, Wei Xia, and Pietro Perona. 2020. Towards causal benchmarking of bias in face

analysis algorithms. In Proceedings of the 16th European Conference on Computer Vision (ECCV’20). 547–563.
[107] Máté Baranyi, Marcell Nagy, and Roland Molontay. 2020. Interpretable deep learning for university dropout predic-

tion. In Proceedings of the 21st Annual Conference on Information Technology Education (SIGITE’20). 13–19.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

https://github.com/wssun/RULER
https://github.com/search-based-fairness-testing/sbft
http://shuoyang1213.me/WIDERFACE/
https://blog.dblp.org/2022/02/22/6-million-publications/
https://github.com/yxwan123/BiasAsker
https://github.com/armanunix/Fairness-testing
https://github.com/UsmanGohar/FairEnsemble
https://fairlearn.org/
https://github.com/anonymous12138/biasmitigation
https://openai.com/blog/how-should-ai-systems-behave
https://github.com/zhangmengling/subtle_discrimination_testing
https://github.com/jwaladhamala/BOLD-Bias-in-open-ended-language-generation

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:51

[108] Luciano Baresi, Chiara Criscuolo, and Carlo Ghezzi. 2023. Understanding fairness requirements for ML-based soft-
ware. In Proceedings of the 31st IEEE International Requirements Engineering Conference (RE’23). 341–346.

[109] Solon Barocas and Andrew D. Selbst. 2016. Big data’s disparate impact. Calif. Law Rev. 104 (2016), 671.
[110] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015. The oracle problem in software

testing: A survey. IEEE Trans. Softw. Eng. 41, 5 (2015), 507–525.
[111] Osbert Bastani, Xin Zhang, and Armando Solar-Lezama. 2019. Probabilistic verification of fairness properties via

concentration. Proc. ACM Program. Lang. 3, OOPSLA (2019), 118:1–118:27.
[112] Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Kalapriya Kannan, Pranay

Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovic, Seema Nagar, Karthikeyan Natesan Ramamurthy,
John T. Richards, Diptikalyan Saha, Prasanna Sattigeri, Moninder Singh, Kush R. Varshney, and Yunfeng Zhang. 2018.
AI fairness 360: An extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias. CoRR

abs/1810.01943 (2018).
[113] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. 2021. Fairness in criminal justice risk

assessments: The state of the art. Sociol. Meth. Res. 50, 1 (2021), 3–44.
[114] Alex Beutel, Jilin Chen, Tulsee Doshi, Hai Qian, Li Wei, Yi Wu, Lukasz Heldt, Zhe Zhao, Lichan Hong, Ed H. Chi,

and Cristos Goodrow. 2019. Fairness in recommendation ranking through pairwise comparisons. In Proceedings of

the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’19). 2212–2220.
[115] Sumon Biswas and Hridesh Rajan. 2020. Do the machine learning models on a crowd sourced platform exhibit bias?

An empirical study on model fairness. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’20). 642–653.
[116] Sumon Biswas and Hridesh Rajan. 2021. Fair preprocessing: Towards understanding compositional fairness of data

transformers in machine learning pipeline. In Proceedings of the 29th ACM Joint Meeting on European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’21). 981–993.
[117] Emily Black, Samuel Yeom, and Matt Fredrikson. 2020. FlipTest: Fairness testing via optimal transport. In Proceedings

of the Conference on Fairness, Accountability, and Transparency (FAT*’20). 111–121.
[118] Cody Blakeney, Nathaniel Huish, Yan Yan, and Ziliang Zong. 2021. Simon says: Evaluating and mitigating bias in

pruned neural networks with knowledge distillation. CoRR abs/2106.07849 (2021).
[119] Teresa Bono, Karen Croxson, and Adam Giles. 2021. Algorithmic fairness in credit scoring. Oxford Rev. Econ. Polic.

37, 3 (2021), 585–617.
[120] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Whang, and Martin Zinkevich. 2019. Data validation for machine

learning. In Proceedings of Machine Learning and Systems (MLSys’19).
[121] Yuriy Brun and Alexandra Meliou. 2018. Software fairness. In Proceedings of the ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’18). 754–759.
[122] Ángel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng, Jamie Morgenstern, and Duen Horng Chau.

2019. FairVis: Visual analytics for discovering intersectional bias in machine learning. In Proceedings of the IEEE

Conference on Visual Analytics Science and Technology (VAST’19). 46–56.
[123] Alessandro Castelnovo, Riccardo Crupi, Greta Greco, Daniele Regoli, Ilaria Giuseppina Penco, and Andrea Claudio

Cosentini. 2022. A clarification of the nuances in the fairness metrics landscape. Scient. Rep. 12, 1 (2022), 1–21.
[124] Simon Caton, Saiteja Malisetty, and Christian Haas. 2022. Impact of imputation strategies on fairness in machine

learning. J. Artif. Intell. Res. 74 (2022), 1011–1035.
[125] Joymallya Chakraborty, Suvodeep Majumder, and Tim Menzies. 2021. Bias in machine learning software: Why?

How? What to do? In Proceedings of the 29th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE’21). 429–440.
[126] Joymallya Chakraborty, Suvodeep Majumder, and Huy Tu. 2022. Fair-SSL: Building fair ML software with less data.

In Proceedings of the International Workshop on Software Fairness (FairWare@ICSE’22).
[127] Joymallya Chakraborty, Suvodeep Majumder, Zhe Yu, and Tim Menzies. 2020. Fairway: A way to build fair ML

software. In Proceedings of the 28th ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE’20). 654–665.
[128] Joymallya Chakraborty, Kewen Peng, and Tim Menzies. 2020. Making fair ML software using trustworthy expla-

nation. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering (ASE’20).
1229–1233.

[129] Joymallya Chakraborty, Tianpei Xia, Fahmid M. Fahid, and Tim Menzies. 2019. Software engineering for fairness: A
case study with hyperparameter optimization. CoRR abs/1905.05786 (2019).

[130] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and Moshe Y. Vardi. 2015. On parallel
scalable uniform SAT witness generation. In Proceedings of the 21st International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS’15). 304–319.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:52 Z. Chen et al.

[131] Jason Chan and Jing Wang. 2018. Hiring preferences in online labor markets: Evidence of a female hiring bias. Manag.

Sci. 64, 7 (2018), 2973–2994.
[132] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and Lu Zhang. 2020. A survey of

compiler testing. Comput. Surv. 53, 1 (2020), 4:1–4:36.
[133] Yunliang Chen and Jungseock Joo. 2021. Understanding and mitigating annotation bias in facial expression recogni-

tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV’21).
[134] Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, Tao Xie, and Xuanzhe Liu. 2020. A comprehensive study

on challenges in deploying deep learning based software. In Proceedings of the 28th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’20). 750–762.
[135] Zhenpeng Chen, Xuan Lu, Wei Ai, Huoran Li, Qiaozhu Mei, and Xuanzhe Liu. 2018. Through a gender lens: Learning

usage patterns of emojis from large-scale Android users. In Proceedings of the World Wide Web Conference on World

Wide Web (WWW’18). 763–772.
[136] Zhenpeng Chen, Huihan Yao, Yiling Lou, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, and Xuanzhe Liu. 2021. An

empirical study on deployment faults of deep learning based mobile applications. In Proceedings of the 43rd IEEE/ACM

International Conference on Software Engineering (ICSE’21). 674–685.
[137] Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and Mark Harman. 2022. MAAT: A novel ensemble approach to fixing

fairness and performance bugs for machine learning software. In Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’22). 1122–1134.
[138] Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and Mark Harman. 2023. A comprehensive empirical study of bias mit-

igation methods for machine learning classifiers. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 106 (2023), 30 pages.
[139] Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and Mark Harman. 2024. Fairness improvement with multiple pro-

tected attributes: How far are we? In Proceedings of the 46th ACM/IEEE International Conference on Software Engi-

neering (ICSE’24).
[140] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A survey of model compression and acceleration for deep

neural networks. CoRR abs/1710.09282 (2017).
[141] Alexandra Chouldechova. 2017. Fair prediction with disparate impact: A study of bias in recidivism prediction in-

struments. Big Data 5, 2 (2017), 153–163.
[142] T. Anne Cleary. 1966. Test bias: Validity of the scholastic aptitude test for Negro and white students in integrated

colleges. ETS Res. Bull. Series 1966, 2 (1966), i–23.
[143] T. Anne Cleary. 1968. Test bias: Prediction of grades of Negro and white students in integrated colleges. J. Educ.

Measur. 5, 2 (1968), 115–124.
[144] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. 2017. Algorithmic decision making and

the cost of fairness. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD’17). 797–806.
[145] Kimberlé Crenshaw. 2013. Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrim-

ination doctrine, feminist theory and antiracist politics. In Feminist Legal Theories. Routledge, 23–51.
[146] Saloni Dash, Vineeth N. Balasubramanian, and Amit Sharma. 2022. Evaluating and mitigating bias in image classi-

fiers: A causal perspective using counterfactuals. In Proceedings of the IEEE/CVF Winter Conference on Applications

of Computer Vision (WACV’22). 3879–3888.
[147] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the 14th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’08). 337–340.
[148] Emily Denton, Ben Hutchinson, Margaret Mitchell, and Timnit Gebru. 2019. Detecting bias with generative coun-

terfactual face attribute augmentation. In Proceedings of the CVPR Workshop on Fairness Accountability Transparency

and Ethics in Computer Vision.
[149] Emily Denton, Ben Hutchinson, Margaret Mitchell, Timnit Gebru, and Andrew Zaldivar. 2019. Image counterfactual

sensitivity analysis for detecting unintended bias. In Proceedings of the CVPR Workshop on Fairness Accountability

Transparency and Ethics in Computer Vision.
[150] Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya Krishna, Yada Pruksachatkun, Kai-Wei Chang, and Rahul Gupta.

2021. BOLD: Dataset and metrics for measuring biases in open-ended language generation. In Proceedings of the ACM

Conference on Fairness, Accountability, and Transparency (FAccT’21). 862–872.
[151] Mark Díaz, Isaac Johnson, Amanda Lazar, Anne Marie Piper, and Darren Gergle. 2018. Addressing age-related bias

in sentiment analysis. In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI’18). 412.
[152] Cyrus DiCiccio, Sriram Vasudevan, Kinjal Basu, Krishnaram Kenthapadi, and Deepak Agarwal. 2020. Evaluating

fairness using permutation tests. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining (KDD’20). 1467–1477.
[153] Joe W. Duran and Simeon C. Ntafos. 1984. An evaluation of random testing. IEEE Trans. Softw. Eng. 10, 4 (1984),

438–444.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:53

[154] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel. 2012. Fairness through aware-
ness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (ITCS’12).. 214–226.

[155] Alessandro Fabris, Stefano Messina, Gianmaria Silvello, and Gian Antonio Susto. 2022. Algorithmic fairness datasets:
The story so far. CoRR abs/2202.01711 (2022).

[156] Ming Fan, Wenying Wei, Wuxia Jin, Zijiang Yang, and Ting Liu. 2022. Explanation-guided fairness testing through
genetic algorithm. In Proceedings of the 44th International Conference on Software Engineering (ICSE’22).

[157] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian. 2015. Certi-
fying and removing disparate impact. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD’15). 259–268.
[158] Sira Ferradans, Nicolas Papadakis, Gabriel Peyré, and Jean-François Aujol. 2014. Regularized discrete optimal trans-

port. SIAM J. Imag. Sci. 7, 3 (2014), 1853–1882.
[159] Anthony Finkelstein, Mark Harman, S. Afshin Mansouri, Jian Ren, and Yuanyuan Zhang. 2008. “Fairness Analysis” in

requirements assignments. In Proceedings of the 16th IEEE International Requirements Engineering Conference (RE’08).
115–124.

[160] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness testing: Testing software for discrimination. In
Proceedings of the Joint Meeting on Foundations of Software Engineering (ESEC/FSE’17). 498–510.

[161] Xuanqi Gao, Juan Zhai, Shiqing Ma, Chao Shen, Yufei Chen, and Qian Wang. 2022. FairNeuron: Improving deep neu-
ral network fairness with adversary games on selective neurons. In Proceedings of the 44th International Conference

on Software Engineering (ICSE’22).
[162] Vahid Garousi and João M. Fernandes. 2016. Highly-cited papers in software engineering: The top-100. Inf. Softw.

Technol. 71 (2016), 108–128.
[163] Gizem Gezici, Aldo Lipani, Yücel Saygin, and Emine Yilmaz. 2021. Evaluation metrics for measuring bias in search

engine results. Inf. Retriev. J. 24, 2 (2021), 85–113.
[164] Bishwamittra Ghosh, Debabrota Basu, and Kuldeep S. Meel. 2021. Justicia: A stochastic SAT approach to formally

verify fairness. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI’21). 7554–7563.
[165] Bishwamittra Ghosh, Debabrota Basu, and Kuldeep S. Meel. 2022. Algorithmic fairness verification with graphical

models. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI’22).
[166] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. 2018. Explaining expla-

nations: An overview of interpretability of machine learning. In Proceedings of the IEEE 5th International Conference

on Data Science and Advanced Analytics (DSAA’18). IEEE, 80–89.
[167] Usman Gohar, Sumon Biswas, and Hridesh Rajan. 2023. Towards understanding fairness and its composition in

ensemble machine learning. In Proceedings of the 45th IEEE/ACM International Conference on Software Engineering

(ICSE’23).
[168] Usman Gohar and Lu Cheng. 2023. A survey on intersectional fairness in machine learning: Notions, mitigation, and

challenges. In Proceedings of the 31st International Joint Conference on Artificial Intelligence (IJCAI’23). 6619–6627.
[169] Eric Goldman. 2020. An Introduction to the California Consumer Privacy Act (CCPA) (July 1, 2020). Santa Clara Univ.

Legal Studies Research Paper, Available at SSRN: https://ssrn.com/abstract=3211013 or http://dx.doi.org/10.2139/ssrn.
3211013

[170] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,
and Yoshua Bengio. 2014. Generative adversarial nets. In Proceedings of the Annual Conference on Neural Information

Processing Systems (NIPS’14). 2672–2680.
[171] Nina Grgic-Hlaca, Muhammad Bilal Zafar, Krishna P. Gummadi, and Adrian Weller. 2016. The case for process fair-

ness in learning: Feature selection for fair decision making. In NIPS Symposium on Machine Learning and the Law,
Vol. 1. 2.

[172] Antonio Gulli and Sujit Pal. 2017. Deep Learning with Keras. Packt Publishing Ltd.
[173] Huizhong Guo, Jinfeng Li, Jingyi Wang, Xiangyu Liu, Dongxia Wang, Zehong Hu, Rong Zhang, and Hui Xue. 2023.

FairRec: Fairness testing for deep recommender systems. In Proceedings of the 32nd ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA’23).
[174] Furkan Gursoy and Ioannis A. Kakadiaris. 2022. Error parity fairness: Testing for group fairness in regression tasks.

CoRR abs/2208.08279 (2022).
[175] Rami Haffar, Ashneet Khandpur Singh, Josep Domingo-Ferrer, and Najeeb Jebreel. 2022. Measuring fairness in ma-

chine learning models via counterfactual examples. In Proceedings of the 19th International Conference on Modeling

Decisions for Artificial Intelligence (MDAI’22). 119–131.
[176] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of opportunity in supervised learning. In Proceedings of the

Annual Conference on Neural Information Processing Systems (NIPS’16). 3315–3323.
[177] Mark Harman, Yue Jia, and Yuanyuan Zhang. 2015. Achievements, open problems and challenges for search based

software testing. In Proceedings of the 8th IEEE International Conference on Software Testing, Verification and Validation

(ICST’15). 1–12.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

https://ssrn.com/abstract=3211013
http://dx.doi.org/10.2139/ssrn.3211013

137:54 Z. Chen et al.

[178] Mark Harman and Bryan F. Jones. 2001. Search-based software engineering. Inf. Softw. Technol. 43, 14 (2001), 833–839.
[179] Deborah Hellman. 2020. Measuring algorithmic fairness. Virginia Law Rev. 106, 4 (2020), 811–866.
[180] Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton. 2020. Characterising bias in com-

pressed models. CoRR abs/2010.03058 (2020).
[181] Max Hort, Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and Mark Harman. 2023. Bias mitigation for machine

learning classifiers: A comprehensive survey. ACM J. Respons. Comput. (2023).
[182] Max Hort and Federica Sarro. 2021. Did you do your homework? Raising awareness on software fairness and discrim-

ination. In Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering (ASE’21).
1322–1326.

[183] Max Hort, Jie M. Zhang, Federica Sarro, and Mark Harman. 2021. Fairea: A model behaviour mutation approach to
benchmarking bias mitigation methods. In Proceedings of the 29th ACM Joint European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering (ESEC/FSE’21). 994–1006.
[184] Rein-Lien Hsu, Mohamed Abdel-Mottaleb, and Anil K. Jain. 2002. Face detection in color images. IEEE Trans. Pattern

Anal. Mach. Intell. 24, 5 (2002), 696–706.
[185] Po-Sen Huang, Huan Zhang, Ray Jiang, Robert Stanforth, Johannes Welbl, Jack Rae, Vishal Maini, Dani Yogatama,

and Pushmeet Kohli. 2020. Reducing sentiment bias in language models via counterfactual evaluation. In Proceedings

of the Findings of the Association for Computational Linguistics (EMNLP’20). 65–83.
[186] Xin Huang, He Zhang, Xin Zhou, Muhammad Ali Babar, and Song Yang. 2018. Synthesizing qualitative research in

software engineering: A critical review. In Proceedings of the 40th International Conference on Software Engineering

(ICSE’18). 1207–1218.
[187] Ben Hutchinson and Margaret Mitchell. 2019. 50 years of test (Un)fairness: Lessons for machine learning. In Proceed-

ings of the Conference on Fairness, Accountability, and Transparency (FAT*’19). 49–58.
[188] Samireh Jalali and Claes Wohlin. 2012. Systematic literature studies: Database searches vs. backward snowballing. In

Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’12).
29–38.

[189] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. 2009. Improving bug triage with bug tossing graphs. In
Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering (ESEC/FSE’09). 111–120.
[190] Philips George John, Deepak Vijaykeerthy, and Diptikalyan Saha. 2020. Verifying individual fairness in machine

learning models. In Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI’20). 749–758.
[191] Jungseock Joo and Kimmo Kärkkäinen. 2020. Gender Slopes: Counterfactual fairness for computer vision models by

attribute manipulation. CoRR abs/2005.10430 (2020).
[192] Kimmo Kärkkäinen and Jungseock Joo. 2021. FairFace: Face attribute dataset for balanced race, gender, and age for

bias measurement and mitigation. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision

(WACV’21). 1547–1557.
[193] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive growing of GANs for improved quality,

stability, and variation. In Proceedings of the 6th International Conference on Learning Representations (ICLR’18).
[194] Mohd Ehmer Khan and Farmeena Khan. 2012. A comparative study of white box, black box and grey box testing

techniques. Int. J. Advanc. Comput. Sci. Applic. 3, 6 (2012).
[195] Crenshaw Kimberly. 1989. Demarginalizing the intersection of race and sex: A black feminist critique of anti-

discrimination doctrine, feminist theory and anti-racist politics. In The University of Chicago Legal Forum, Vol. 140.
139.

[196] Svetlana Kiritchenko and Saif Mohammad. 2018. Examining gender and race bias in two hundred sentiment analysis
systems. In Proceedings of the 7th Joint Conference on Lexical and Computational Semantics (*SEM@NAACL-HLT’18).
43–53.

[197] Takashi Kitamura, Zhenjiang Zhao, and Takahisa Toda. 2022. Applying combinatorial testing to verification-based
fairness testing. In Proceedings of the 14th International Symposium on Search-Based Software Engineering (SSBSE’22).
101–107.

[198] Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2017. Inherent trade-offs in the fair determination
of risk scores. In Proceedings of the 8th Innovations in Theoretical Computer Science Conference (ITCS’17). 43:1–43:23.

[199] Caitlin Kuhlman, Walter Gerych, and Elke A. Rundensteiner. 2021. Measuring group advantage: A comparative study
of fair ranking metrics. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES’21). 674–682.

[200] Caitlin Kuhlman, MaryAnn VanValkenburg, and Elke Rundensteiner. 2019. Fare: Diagnostics for fair ranking using
pairwise error metrics. In Proceedings of the World Wide Web Conference (WWW’19). 2936–2942.

[201] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. 2013. Introduction to Combinatorial Testing. CRC Press.
[202] Matt J. Kusner, Joshua R. Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfactual fairness. In Proceedings of the

Annual Conference on Neural Information Processing Systems (NIPS’17). 4066–4076.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:55

[203] Gulsher Laghari and Serge Demeyer. 2018. Unit tests and component tests do make a difference on fault localisation
effectiveness. In Proceedings of the 40th International Conference on Software Engineering (ICSE’18). 280–281.

[204] Kiran Lakhotia, Mark Harman, and Phil McMinn. 2007. A multi-objective approach to search-based test data gener-
ation. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’07). 1098–1105.

[205] Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic Denoyer, and Marc’Aurelio Ranzato.
2017. Fader networks: Manipulating images by sliding attributes. In Proceedings of the Annual Conference on Neural

Information Processing Systems (NIPS’17). 5967–5976.
[206] Winner Langdon. 1986. Do artifacts have politics? Whale Reactor (1986).
[207] Michelle Seng Ah Lee and Jatinder Singh. 2021. The landscape and gaps in open source fairness toolkits. In Proceed-

ings of the CHI Conference on Human Factors in Computing Systems (CHI’21). 699:1–699:13.
[208] W. David Lewis. 1977. The forces behind technology: America by design. Science 198, 4318 (1977), 722–723.
[209] Yingji Li, Mengnan Du, Rui Song, Xin Wang, and Ying Wang. 2023. A survey on fairness in large language models.

CoRR abs/2308.10149 (2023).
[210] Yanhui Li, Linghan Meng, Lin Chen, Li Yu, Di Wu, Yuming Zhou, and Baowen Xu. 2022. Training data debugging for

the fairness of machine learning software. In Proceedings of the 44th International Conference on Software Engineering

(ICSE’22). 2215–2227.
[211] Zhiheng Li and Chenliang Xu. 2021. Discover the unknown biased attribute of an image classifier. In Proceedings of

the IEEE/CVF International Conference on Computer Vision (ICCV’21). 14950–14959.
[212] Bin Lin, Nathan Cassee, Alexander Serebrenik, Gabriele Bavota, Nicole Novielli, and Michele Lanza. 2022. Opinion

mining for software development: A systematic literature review. ACM Trans. Softw. Eng. Methodol. 31, 3 (2022),
38:1–38:41.

[213] Xiaofeng Lin, Seungbae Kim, and Jungseock Joo. 2022. FairGRAPE: Fairness-aware GRAdient pruning method for
face attribute classification. In Proceedings of the European Conference on Computer Vision (ECCV’22).

[214] Haochen Liu, Jamell Dacon, Wenqi Fan, Hui Liu, Zitao Liu, and Jiliang Tang. 2020. Does gender matter? Towards
fairness in dialogue systems. In Proceedings of the 28th International Conference on Computational Linguistics (COL-

ING’20). 4403–4416.
[215] Qinghua Lu, Liming Zhu, Xiwei Xu, Jon Whittle, David Douglas, and Conrad Sanderson. 2021. Software engineering

for responsible AI: An empirical study and operationalised patterns. CoRR abs/2111.09478 (2021).
[216] Qinghua Lu, Liming Zhu, Xiwei Xu, Jon Whittle, David Douglas, and Conrad Sanderson. 2022. Software engineering

for responsible AI: An empirical study and operationalised patterns. In Proceedings of the 44th IEEE/ACM International

Conference on Software Engineering: Software Engineering in Practice (ICSE SEIP)’22). 241–242.
[217] Scott M. Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In Proceedings of the

Annual Conference on Neural Information Processing Systems (NIPS’17). 4765–4774.
[218] Minghua Ma, Zhao Tian, Max Hort, Federica Sarro, Hongyu Zhang, Qingwei Lin, and Dongmei Zhang. 2022. En-

hanced fairness testing via generating effective initial individual discriminatory instances. CoRR abs/2209.08321
(2022).

[219] Pingchuan Ma, Shuai Wang, and Jin Liu. 2020. Metamorphic testing and certified mitigation of fairness violations in
NLP models. In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI’20). 458–465.

[220] Ara Mambreyan, Elena Punskaya, and Hatice Gunes. 2022. Dataset bias in deception detection. In Proceedings of the

26th International Conference on Pattern Recognition (ICPR’22).
[221] George Mathew, Amritanshu Agrawal, and Tim Menzies. 2018. Finding trends in software research. IEEE Trans. Softw.

Eng. (2018).
[222] Ninareh Mehrabi, Thamme Gowda, Fred Morstatter, Nanyun Peng, and Aram Galstyan. 2020. Man is to person as

woman is to location: Measuring gender bias in named entity recognition. In Proceedings of the 31st ACM Conference

on Hypertext and Social Media (HT’20). 231–232.
[223] Ninareh Mehrabi, Thamme Gowda, Fred Morstatter, Nanyun Peng, and Aram Galstyan. 2020. Man is to person as

woman is to location: Measuring gender bias in named entity recognition. In Proceedings of the 31st ACM Conference

on Hypertext and Social Media. 231–232.
[224] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2021. A survey on bias

and fairness in machine learning. Comput. Surv. 54, 6 (2021), 115:1–115:35.
[225] Shira Mitchell, Eric Potash, Solon Barocas, Alexander D’Amour, and Kristian Lum. 2021. Algorithmic fairness:

Choices, assumptions, and definitions. Ann. Rev. Stat. Applic. 8 (2021), 141–163.
[226] Brent D. Mittelstadt, Chris Russell, and Sandra Wachter. 2019. Explaining explanations in AI. In Proceedings of the

Conference on Fairness, Accountability, and Transparency (FAT’19). 279–288.
[227] Verya Monjezi, Ashutosh Trivedi, Gang Tan, and Saeid Tizpaz-Niari. 2023. Information-theoretic testing and debug-

ging of fairness defects in deep neural networks. In Proceedings of the 45th IEEE/ACM International Conference on

Software Engineering (ICSE’23).

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

137:56 Z. Chen et al.

[228] Rebecca Moussa and Federica Sarro. 2022. Do not take it for granted: Comparing open-source libraries for software
development effort estimation. Retrieved from https://arxiv.org/abs/2207.01705

[229] Vidya Muthukumar. 2019. Color-theoretic experiments to understand unequal gender classification accuracy from
face images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR

Workshops’19). 2286–2295.
[230] Nadia Nahar, Shurui Zhou, Grace A. Lewis, and Christian Kästner. 2022. Collaboration challenges in building ML-

enabled systems: Communication, documentation, engineering, and process. In Proceedings of the 44th IEEE/ACM

44th International Conference on Software Engineering (ICSE’22). 413–425.
[231] Vivek Nair, Zhe Yu, Tim Menzies, Norbert Siegmund, and Sven Apel. 2020. Finding faster configurations using FLASH.

IEEE Trans. Softw. Eng. 46, 7 (2020), 794–811.
[232] Harikrishna Narasimhan, Andrew Cotter, Maya R. Gupta, and Serena Wang. 2020. Pairwise fairness for ranking and

regression. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI’20). 5248–5255.
[233] Mahdi Nejadgholi and Jinqiu Yang. 2019. A study of oracle approximations in testing deep learning libraries. In

Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE’19). 785–796.
[234] Safiya Umoja Noble. 2018. Algorithms of oppression. In Algorithms of Oppression. New York University Press.
[235] Hadas Orgad and Yonatan Belinkov. 2022. Choose your lenses: Flaws in gender bias evaluation. In Proceedings of the

4th Workshop on Gender Bias in Natural Language Processing (GeBNLP’22). 151–167.
[236] Hadas Orgad, Seraphina Goldfarb-Tarrant, and Yonatan Belinkov. 2022. How gender debiasing affects internal model

representations, and why it matters. In Proceedings of the Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies (NAACL’22). 2602–2628.
[237] Ankita Ramjibhai Patel, Jaganmohan Chandrasekaran, Yu Lei, Raghu N. Kacker, and D. Richard Kuhn. 2022. A com-

binatorial approach to fairness testing of machine learning models. In Proceedings of the 15th IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICST Workshops’22). 94–101.
[238] Judea Pearl. 2009. Causality. Cambridge University Press.
[239] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu

Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. J.

Mach. Learn. Res. 12 (2011), 2825–2830.
[240] Dino Pedreschi, Salvatore Ruggieri, and Franco Turini. 2008. Discrimination-aware data mining. In Proceedings of

the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’08). 560–568.
[241] Kewen Peng, Joymallya Chakraborty, and Tim Menzies. 2023. FairMask: Better fairness via model-based rebalancing

of protected attributes. IEEE Trans. Softw. Eng. (2023).
[242] Anjana Perera, Aldeida Aleti, Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, Burak Turhan, Lisa Kuhn, and Katie

Walker. 2022. Search-based fairness testing for regression-based machine learning systems. Empir. Softw. Eng. 27, 79
(2022).

[243] Dana Pessach and Erez Shmueli. 2022. A review on fairness in machine learning. Comput. Surv. 55, 3 (2022).
[244] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE: Cross-backend validation to detect and

localize bugs in deep learning libraries. In Proceedings of the 41st International Conference on Software Engineering

(ICSE’19). 1027–1038.
[245] Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. 2021. Fairness in rankings and recommendations: An

overview. VLDB J. (2021).
[246] Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, and Rada Mihalcea. 2020. Beneath the tip of the iceberg:

Current challenges and new directions in sentiment analysis research. IEEE Trans. Affect. Comput. (2020).
[247] Muxin Pu, Meng Yi Kuan, Nyee Thoang Lim, Chun Yong Chong, and Mei Kuan Lim. 2022. Fairness evaluation in

deepfake detection models using metamorphic testing. In Proceedings of the IEEE/ACM 7th International Workshop

on Metamorphic Testing (MET@ICSE’22). 7–14.
[248] Shangshu Qian, Viet Hung Pham, Thibaud Lutellier, Zeou Hu, Jungwon Kim, Lin Tan, Yaoliang Yu, Jiahao Chen, and

Sameena Shah. 2021. Are my deep learning systems fair? An empirical study of fixed-seed training. Adv. Neural Inf.

Process. Syst. 34 (2021), 30211–30227.
[249] Tai Le Quy, Arjun Roy, Vasileios Iosifidis, and Eirini Ntoutsi. 2021. A survey on datasets for fairness-aware machine

learning. CoRR abs/2110.00530 (2021).
[250] Sai Sathiesh Rajan, Sakshi Udeshi, and Sudipta Chattopadhyay. 2022. AequeVox: Automated fairness testing of speech

recognition systems. In Proceedings of the 25th International Conference on Fundamental Approaches to Software En-

gineering (FASE’22). 245–267.
[251] Marco Túlio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020. Beyond accuracy: Behavioral test-

ing of NLP models with CheckList. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics (ACL’20). 4902–4912.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

https://arxiv.org/abs/2207.01705

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:57

[252] Shinya Sano, Takashi Kitamura, and Shingo Takada. 2022. An efficient discrimination discovery method for fair-
ness testing. In Proceedings of the 34th International Conference on Software Engineering and Knowledge Engineering

(SEKE’22). 200–205.
[253] Federica Sarro. 2023. Search-based software engineering in the era of modern software systems. In Proceedings of the

31st IEEE International Requirements Engineering Conference. IEEE.
[254] Arnab Sharma, Caglar Demir, Axel-Cyrille Ngonga Ngomo, and Heike Wehrheim. 2021. MLCHECK–Property-driven

testing of machine learning classifiers. In Proceedings of the 20th IEEE International Conference on Machine Learning

and Applications (ICMLA’21). 738–745.
[255] Arnab Sharma and Heike Wehrheim. 2020. Automatic fairness testing of machine learning models. In Proceedings of

the 32nd International Conference on Testing Software and Systems (ICTSS’20). 255–271.
[256] Shanya Sharma, Manan Dey, and Koustuv Sinha. 2020. Evaluating gender bias in natural language inference. In

Proceedings of the NeurIPS Workshop on Dataset Curation and Security.
[257] Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. 2019. The woman worked as a babysitter: On

biases in language generation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP’19). 3405–3410.
[258] Nian Si, Karthyek Murthy, Jose H. Blanchet, and Viet Anh Nguyen. 2021. Testing group fairness via optimal transport

projections. In Proceedings of the 38th International Conference on Machine Learning (ICML’21). 9649–9659.
[259] Ashudeep Singh and Thorsten Joachims. 2018. Fairness of exposure in rankings. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining. 2219–2228.
[260] Mona Sloane. 2022. To make AI fair, here’s what we must learn to do. Nature 605, 7908 (2022), 9–9.
[261] Eric Michael Smith, Melissa Hall, Melanie Kambadur, Eleonora Presani, and Adina Williams. 2022. “I’m sorry to hear

that”: Finding new biases in language models with a holistic descriptor dataset. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing (EMNLP’22). 9180–9211.
[262] Ezekiel Soremekun, Sakshi Sunil Udeshi, and Sudipta Chattopadhyay. 2022. ASTRAEA: Grammar-based fairness

testing. IEEE Trans. Softw. Eng. (2022), 1–1. DOI:https://doi.org/10.1109/TSE.2022.3141758
[263] Ezekiel O. Soremekun, Mike Papadakis, Maxime Cordy, and Yves Le Traon. 2022. Software fairness: An analysis and

survey. CoRR abs/2205.08809 (2022).
[264] Samuil Stoychev and Hatice Gunes. 2022. The effect of model compression on fairness in facial expression recognition.

In Proceedings of Workshop on Applied Affect Recognition at the 26th International Conference on Pattern Recognition

(ICPR’22).
[265] Bing Sun, Jun Sun, Ting Dai, and Lijun Zhang. 2021. Probabilistic verification of neural networks against group

fairness. In Proceedings of the 24th International Symposium on Formal Methods (FM’21). 83–102.
[266] Bing Sun, Jun Sun, Long H. Pham, and Tie Shi. 2022. Causality-based neural network repair. In Proceedings of the

44th IEEE/ACM 44th International Conference on Software Engineering (ICSE’22). 338–349.
[267] Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang, Mai ElSherief, Jieyu Zhao, Diba Mirza, Elizabeth Belding, Kai-

Wei Chang, and William Yang Wang. 2019. Mitigating gender bias in natural language processing: Literature review.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL’19). 1630–1640.

[268] Zeyu Sun, Jie M. Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020. Automatic testing and improvement of
machine translation. In Proceedings of the 42nd International Conference on Software Engineering (ICSE’20). 974–985.

[269] Zeyu Sun, Jie M. Zhang, Yingfei Xiong, Mark Harman, Mike Papadakis, and Lu Zhang. 2022. Improving machine
translation systems via isotopic replacement. In Proceedings of the 44th IEEE/ACM 44th International Conference on

Software Engineering (ICSE’22). 1181–1192.
[270] Guanhong Tao, Weisong Sun, Tingxu Han, Chunrong Fang, and Xiangyu Zhang. 2022. RULER: Discriminative and

iterative adversarial training for deep neural network fairness. In Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’22). 1173–1184.
[271] Bahar Taskesen, Jose H. Blanchet, Daniel Kuhn, and Viet Anh Nguyen. 2021. A statistical test for probabilistic fairness.

In Proceedings of the ACM Conference on Fairness, Accountability, and Transparency (FAccT’21). 648–665.
[272] Binh Luong Thanh, Salvatore Ruggieri, and Franco Turini. 2011. k-NN as an implementation of situation testing

for discrimination discovery and prevention. In Proceedings of the 17th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD’11). 502–510.
[273] Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail E. Kaiser, and Baishakhi Ray. 2020. Testing DNN image classifiers

for confusion & bias errors. In Proceedings of the 42nd International Conference on Software Engineering (ICSE’20).
1122–1134.

[274] Saeid Tizpaz-Niari, Ashish Kumar, Gang Tan, and Ashutosh Trivedi. 2022. Fairness-aware configuration of machine
learning libraries. In Proceedings of the 44th International Conference on Software Engineering (ICSE’22).

[275] Antonio Torralba and Alexei A. Efros. 2011. Unbiased look at dataset bias. In Proceedings of the 24th IEEE Conference

on Computer Vision and Pattern Recognition (CVPR’11). 1521–1528.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

https://doi.org/10.1109/TSE.2022.3141758

137:58 Z. Chen et al.

[276] Florian Tramèr, Vaggelis Atlidakis, Roxana Geambasu, Daniel J. Hsu, Jean-Pierre Hubaux, Mathias Humbert, Ari
Juels, and Huang Lin. 2017. FairTest: Discovering unwarranted associations in data-driven applications. In Proceed-

ings of the IEEE European Symposium on Security and Privacy (EuroS&P’17). 401–416.
[277] Miroslav Tushev, Fahimeh Ebrahimi, and Anas M. Mahmoud. 2022. A systematic literature review of anti-

discrimination design strategies in the digital sharing economy. IEEE Trans. Softw. Eng. (2022).
[278] Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. 2018. Automated directed fairness testing. In Proceed-

ings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE’18). 98–108.
[279] Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. 2020. Perfectly parallel fairness certifica-

tion of neural networks. Proc. ACM Program. Lang. 4, OOPSLA (2020), 185:1–185:30.
[280] Inês Valentim, Nuno Lourenço, and Nuno Antunes. 2019. The impact of data preparation on the fairness of soft-

ware systems. In Proceedings of the 30th IEEE International Symposium on Software Reliability Engineering (ISSRE’19).
391–401.

[281] Sriram Vasudevan and Krishnaram Kenthapadi. 2020. LiFT: A scalable framework for measuring fairness in ML
applications. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management

(CIKM’20). 2773–2780.
[282] Sahil Verma and Julia Rubin. 2018. Fairness definitions explained. In Proceedings of the International Workshop on

Software Fairness (FairWare@ICSE’18). 1–7.
[283] Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart M. Shieber.

2020. Investigating gender bias in language models using causal mediation analysis. In Proceedings of the Annual

Conference on Neural Information Processing Systems (NeurIPS’20).
[284] Cédric Villani. 2009. Optimal Transport: Old and New. Vol. 338. Springer.
[285] Paul Voigt and Axel Von dem Bussche. 2017. The EU general data protection regulation (GDPR). A Practical Guide,

1st Ed., Cham: Springer International Publishing 10, 3152676 (2017), 10–5555.
[286] Yuxuan Wan, Wenxuan Wang, Pinjia He, Jiazhen Gu, Haonan Bai, and Michael R. Lyu. 2023. BiasAsker: Measuring

the bias in conversational AI system. In Proceedings of the 31st ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’23).
[287] Angelina Wang, Arvind Narayanan, and Olga Russakovsky. 2020. REVISE: A tool for measuring and mitigating bias

in visual datasets. In Proceedings of the 16th European Conference (ECCV’20). 733–751.
[288] Angelina Wang and Olga Russakovsky. 2021. Directional bias amplification. In Proceedings of the 38th International

Conference on Machine Learning (ICML’21). 10882–10893.
[289] Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin Tan. 2022. EAGLE: Creating equivalent

graphs to test deep learning libraries. In Proceedings of the 44th IEEE/ACM 44th International Conference on Software

Engineering (ICSE’22). 798–810.
[290] Jun Wang, Benjamin I. P. Rubinstein, and Trevor Cohn. 2022. Measuring and mitigating name biases in neural ma-

chine translation. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL’22).
2576–2590.

[291] Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and Vicente Ordonez. 2019. Balanced datasets are not
enough: Estimating and mitigating gender bias in deep image representations. In Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision (ICCV’19). 5309–5318.
[292] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep learning library testing via effective

model generation. In Proceedings of the 28th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE’20). 788–799.
[293] Michael L. Wick, Swetasudha Panda, and Jean-Baptiste Tristan. 2019. Unlocking fairness: A trade-off revisited. In

Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS’19). 8780–8789.
[294] Yisong Xiao, Aishan Liu, Tianlin Li, and Xianglong Liu. 2023. Latent imitator: Generating natural individual discrim-

inatory instances for black-box fairness testing. In Proceedings of the 32nd ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA’23).
[295] Wentao Xie and Peng Wu. 2020. Fairness testing of machine learning models using deep reinforcement learning. In

Proceedings of the 19th IEEE International Conference on Trust, Security and Privacy in Computing and Communications

(TrustCom’20). 121–128.
[296] Guangxuan Xu and Qingyuan Hu. 2022. Can model compression improve NLP fairness. CoRR abs/2201.08542 (2022).
[297] Ke Yang and Julia Stoyanovich. 2017. Measuring fairness in ranked outputs. In Proceedings of the 29th International

Conference on Scientific and Statistical Database Management. 1–6.
[298] Yu Yang, Aayush Gupta, Jianwei Feng, Prateek Singhal, Vivek Yadav, Yue Wu, Pradeep Natarajan, Varsha Hedau,

and Jungseock Joo. 2022. Enhancing fairness in face detection in computer vision systems by demographic bias
mitigation. In Proceedings of AAAI/ACM Conference on AI, Ethics, and Society (AIES’22). 813–822.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

Fairness Testing: A Comprehensive Survey and Analysis of Trends 137:59

[299] Zhou Yang, Muhammad Hilmi Asyrofi, and David Lo. 2021. BiasRV: Uncovering biased sentiment predictions at
runtime. In Proceedings of the 29th ACM Joint European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering (ESEC/FSE’21). 1540–1544.
[300] Jiang Zhang, Ivan Beschastnikh, Sergey Mechtaev, and Abhik Roychoudhury. 2022. Fair decision making via au-

tomated repair of decision trees. In Proceedings of the 2nd IEEE/ACM International Workshop on Equitable Data &

Technology (FairWare@ICSE’22). 9–16.
[301] Jie Zhang, Xiaoyin Wang, Dan Hao, Bing Xie, Lu Zhang, and Hong Mei. 2015. A survey on bug-report analysis. Sci.

China Inf. Sci. 58, 2 (2015), 1–24.
[302] Jie Zhang, Lingming Zhang, Mark Harman, Dan Hao, Yue Jia, and Lu Zhang. 2019. Predictive mutation testing. IEEE

Trans. Softw. Eng. 45, 9 (2019), 898–918.
[303] Jie M. Zhang and Mark Harman. 2021. “Ignorance and prejudice” in software fairness. In Proceedings of the 43rd

IEEE/ACM International Conference on Software Engineering (ICSE’21). 1436–1447.
[304] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2022. Machine learning testing: Survey, landscapes and horizons.

IEEE Trans. Softw. Eng. 48, 2 (2022), 1–36.
[305] Li Zhang, Jia-Hao Tian, Jing Jiang, Yi-Jun Liu, Meng-Yuan Pu, and Tao Yue. 2018. Empirical research in software

engineering—A literature survey. J. Comput. Sci. Technol. 33, 5 (2018), 876–899.
[306] Lu Zhang, Yongkai Wu, and Xintao Wu. 2016. On discrimination discovery using causal networks. In Proceedings of

the 9th International Conference on Social, Cultural, and Behavioral Modeling (SBP-BRiMS’16). 83–93.
[307] Lu Zhang, Yongkai Wu, and Xintao Wu. 2016. Situation testing-based discrimination discovery: A causal inference

approach. In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI’16). 2718–2724.
[308] Lu Zhang, Yongkai Wu, and Xintao Wu. 2017. A causal framework for discovering and removing direct and indirect

discrimination. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17). 3929–3935.
[309] Lu Zhang, Yongkai Wu, and Xintao Wu. 2019. Causal modeling-based discrimination discovery and removal: Criteria,

bounds, and algorithms. IEEE Trans. Knowl. Data Eng. 31, 11 (2019), 2035–2050.
[310] Lingfeng Zhang, Yueling Zhang, and Min Zhang. 2021. Efficient white-box fairness testing through gradient search.

In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’21).
103–114.

[311] Mengdi Zhang and Jun Sun. 2022. Adaptive fairness improvement based on causality analysis. In Proceedings of the

30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE’22). 6–17.
[312] Mengdi Zhang, Jun Sun, Jingyi Wang, and Bing Sun. 2023. TESTSGD: Interpretable testing of neural networks against

subtle group discrimination. ACM Trans. Softw. Eng. Methodol. (2023).
[313] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang, Jin Song Dong, and Ting Dai.

2020. White-box fairness testing through adversarial sampling. In Proceedings of the 42nd International Conference

on Software Engineering (ICSE’20). 949–960.
[314] Peixin Zhang, Jingyi Wang, Jun Sun, and Xinyu Wang. 2021. Fairness testing of deep image classification with ade-

quacy metrics. CoRR abs/2111.08856 (2021).
[315] Peixin Zhang, Jingyi Wang, Jun Sun, Xinyu Wang, Guoliang Dong, Xingen Wang, Ting Dai, and Jin Song Dong.

2021. Automatic fairness testing of neural classifiers through adversarial sampling. IEEE Trans. Softw. Eng. (2021).
DOI:https://doi.org/10.1109/TSE.2021.3101478

[316] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. 2017. Men also like shopping: Reduc-
ing gender bias amplification using corpus-level constraints. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing (EMNLP’17). 2979–2989.
[317] Zhenjiang Zhao, Takahisa Toda, and Takashi Kitamura. 2022. Efficient fairness testing through hash-based sampling.

In Proceedings of the 14th International Symposium on Search-Based Software Engineering (SSBSE’22). 35–50.
[318] Haibin Zheng, Zhiqing Chen, Tianyu Du, Xuhong Zhang, Yao Cheng, Shouling Ji, Jingyi Wang, Yue Yu, and Jinyin

Chen. 2022. NeuronFair—Interpretable white-box fairness testing through biased neuron identification. In Proceed-

ings of the 44th International Conference on Software Engineering (ICSE’22).
[319] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV’17).
2242–2251.

Received 19 July 2023; revised 18 January 2024; accepted 1 March 2024

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 137. Publication date: June 2024.

https://doi.org/10.1109/TSE.2021.3101478

