
2

Adonis: Practical and Efficient Control Flow Recovery

through OS-level Traces

XUANZHE LIU, CHENGXU YANG, DING LI, YUHAN ZHOU, SHAOFEI LI, and

JIALI CHEN, Peking University, China

ZHENPENG CHEN, University College London, United Kingdom

Control flow recovery is critical to promise the software quality, especially for large-scale software in produc-

tion environment. However, the efficiency of most current control flow recovery techniques is compromised

due to their runtime overheads along with deployment and development costs. To tackle this problem, we

propose a novel solution, Adonis, which harnesses Operating System (OS)-level traces, such as dynamic

library calls and system call traces, to efficiently and safely recover control flows in practice. Adonis operates

in two steps: It first identifies the call-sites of trace entries, and then it executes a pairwise symbolic execution

to recover valid execution paths. This technique has several advantages. First, Adonis does not require the

insertion of any probes into existing applications, thereby minimizing runtime cost. Second, given that OS-

level traces are hardware-independent, Adonis can be implemented across various hardware configurations

without the need for hardware-specific engineering efforts, thus reducing deployment cost. Third, as Adonis

is fully automated and does not depend on manually created logs, it circumvents additional development cost.

We conducted an evaluation of Adonis on representative desktop applications and real-world IoT applications.

Adonis can faithfully recover the control flow with 86.8% recall and 81.7% precision. Compared to the state-

of-the-art log-based approach, Adonis can not only cover all the execution paths recovered but also recover

74.9% of statements that cannot be covered. In addition, the runtime cost of Adonis is 18.3× lower than the

instrument-based approach; the analysis time and storage cost (indicative of the deployment cost) of Adonis is

50× smaller and 443× smaller than the hardware-based approach, respectively. To facilitate future replication

and extension of this work, we have made the code and data publicly available.

CCS Concepts: • Software and its engineering → Error handling and recovery; Software maintenance

tools;

Additional Key Words and Phrases: Control flow recovery, os-level traces, reverse engineering

ACM Reference format:

Xuanzhe Liu, Chengxu Yang, Ding Li, Yuhan Zhou, Shaofei Li, Jiali Chen, and Zhenpeng Chen. 2023. Adonis:

Practical and Efficient Control Flow Recovery through OS-level Traces. ACM Trans. Softw. Eng. Methodol. 33,

1, Article 2 (November 2023), 27 pages.

https://doi.org/10.1145/3607187

This work is supported in part by the National Key Research and Development Program of China under the grant number

2020YFB2104100 and the National Natural Science Foundation of China under the grant number 62172009. Zhenpeng Chen

is supported by the ERC Advanced Grant No. 741278 (EPIC: Evolutionary Program Improvement Collaborators).

Authors’ addresses: X. Liu, C. Yang, D. Li (corresponding author), Y. Zhou, S. Li, and J. Chen, Peking University, No. 5

Yiheyuan Road Haidian District, Beijing, P.R. China 10087; emails: {liuxuanzhe, yangchengxu, ding_li, zhouyuhan, lishaofei,

chenjiali}@pku.edu.cn; Z. Chen (corresponding author), University College London, Gower Street, London WC1E 6BT, UK;

email: zp.chen@ucl.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/11-ART2 $15.00

https://doi.org/10.1145/3607187

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

https://orcid.org/0000-0002-7908-8484
https://orcid.org/0009-0009-6991-7195
https://orcid.org/0000-0001-7558-9137
https://orcid.org/0000-0002-0729-7391
https://orcid.org/0009-0001-6530-5935
https://orcid.org/0009-0008-5755-3681
https://orcid.org/0000-0002-4765-1893
https://doi.org/10.1145/3607187
mailto:permissions@acm.org
https://doi.org/10.1145/3607187
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607187&domain=pdf&date_stamp=2023-11-24

2:2 X. Liu et al.

1 INTRODUCTION

In a world where operations are increasingly dictated by software, the visibility and prominence of
bugs leading to system failures have escalated, especially in production environments [10]. When
software failures happen, the primary concern of developers is understanding the processes the
program undergoes [35, 47]. To this end, detailed control flow is of great value for the later root
cause analysis or fault localization. Realizing the value of control flow, researchers have proposed
many solutions for recovering the control flow from software failures [4, 14, 21, 45, 47, 54–57, 60].

However, existing control flow recovery techniques unfortunately often fall short of adequately
accommodating the unique cost constraints associated with large-scale software in production
environments. In particular, three types of cost constraints are relevant: First, runtime cost is a
critical consideration, as the control flow recovery technique should not substantially slow down
the monitored software [8]. This is due to the stringent latency limits imposed by production
environments, where any delays could lead to substantial costs. Second, deployment cost is
essential, as the technique should be easily deployable on different hardware platforms. Given the
wide variety of devices on which software may run [20], the technique must be versatile enough
to work across a range of systems. Finally, development cost is a crucial factor, which refers to
the manual effort required to make the technique work when the applied software gets updated.
The control flow recovery technique should require minimal manual effort to keep up with the
fast-evolving production software [10]. Specifically, the technique should be fully automated,
eliminating the need for manual intervention. Unfortunately, existing techniques fail to balance
all three types of costs effectively. Therefore, there is an urgent need for a novel technique
capable of recovering control flow information in production environments, while satisfying the
constraints related to runtime, deployment, and development costs.
Research Challenges. It is challenging to build a control flow recovery technique that achieves
moderate runtime, deployment, and development cost. To the best of our knowledge, as shown in
Table 1, traditional techniques used by existing control flow recovery solutions have a high cost in
production environments. The first type is the instrument-based techniques [4, 47], which insert
probes at compile time and record the branch taken by control flow statements. This technique is
unsuitable for production environments, as it can slow down the monitored program by over 50%
[4], exceeding the acceptable runtime cost. The second type is hardware-based techniques, which
leverage hardware features, such as Intel-PT, to record branch outcomes [14, 21, 45, 54–56]. These
techniques do not meet the requirements of deployment cost, because they cannot work when
Intel-PT is unavailable (e.g., in Cloud or IoT environments) and have considerable cost for storing
and processing control flow data. The third type is log-based techniques that leverage logs manu-
ally created by developers [12, 28, 59, 61]. However, such techniques require software developers
to manually improve the quality of logs that can recover control flow accurately. Moreover, the
cost can be extremely high to maintain logging code along with the update of the software. Once
the log misses key information of program failures, developers have to add much more logging
code to try to catch the failures. In summary, new control flow recovery techniques are needed to
meet the requirements of production environments.
Design Principles. This article aims to propose a control flow recovery technique that satisfies
runtime, deployment, and development cost constraints in production environments. Our
approach achieves this by following three design principles: (1) First, our technique is instrumen-
tation free, meaning it does not add any extra code to the monitored program, thereby minimizing
the runtime cost. (2) Second, our technique is hardware independent, meaning it does not rely on
any specific hardware features. Therefore, it can be applied in different environments without
any modifications, satisfying deployment cost constraints. (3) Finally, our proposed technique
is fully automated, requiring no manual effort. This satisfies the requirement of development

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

Adonis: Practical and Efficient Control Flow Recovery through OS-level Traces 2:3

Table 1. Comparison between Adonis and Existing Control Flow Recovery Techniques

Instrument based Hardware based Log based Adonis

Runtime Cost High Low Low Low
Deployment Cost Low High Low Low
Development Cost Low Low High Low

cost, as software developers do not need to expend additional effort manually improving the
quality of logs or maintaining logging code. By meeting all three requirements, our proposed
technique offers a promising solution for recovering control flow in production environments
while satisfying runtime, deployment, and development cost constraints.
Insights. Our technique is motivated by an insight that has been overlooked by existing methods:
OS-level traces, such as dynamic library calls and system call traces, have a strong correlation to
the control flow of a program. Applications heavily rely on the OS interface [40], including system
calls and shared libraries like glibc. Therefore, we can recover the control flow of programs by link-
ing the call sites of system calls and shared library calls. Importantly, modern operating systems
can automatically collect OS-level traces with less than 5% runtime overhead [9]. Furthermore,
collecting OS-level traces does not require any instrumentation or hardware features. Therefore,
our approach of recovering control flow from OS-level traces meets the design requirements of
being instrumentation free, hardware independent, and fully automated.
Technical Challenges. Leveraging OS-level traces to recover the control flow is a promising
approach, but it poses two non-trivial challenges: (1) Statement-level Ambiguity. It is difficult to
identify the call site of each trace entry inside OS-level traces. Programs invoke the same library
functions or system calls at different locations, making it challenging to match items in OS-level
traces to their exact call sites. Conventional log-based techniques, such as Sherlog [57], match a
log message to its log printing statement through format string matching (e.g., log “file ABC”
is matched to the format string “file %s”). However, this matching-based method cannot solve
statement-level ambiguity, because not all library functions and system calls have distinguishable
arguments like the “format strings.” (2) Path-level Ambiguity. Even though we can identify the
call site of each trace entry, recovering the full path is still not straightforward. It is notable that
dynamic functions or system calls are sparse in a program, and there may be code snippets that
contain no library functions, and, as a result, simply using global symbolic execution can lead to
path explosion, while previous summary-based approaches [57] or context-insensitive approaches
[47] may result in inaccurate results.
Design. In this article, we propose Adonis, a novel and practical approach that leverages OS-level
traces to recover the control flow of a program’s execution. Specifically, given a program whose
source code may or may not be accessible, Adonis non-intrusively traces the program by recording its
library functions or system calls and performs a two-stage analysis and outputs the control flow. To
handle the challenges of statement-level and path-level ambiguity, Adonis uses several techniques.
(1) To handle the statement-level ambiguity, Adonis leverages both internal information, such as
the “format string” argument, and external order information between entries to identify each
entry’s call-site. We also propose a control flow graph simplifying approach that masks basic blocks
that will not generate OS-level traces, significantly narrowing the search space. (2) To handle path-
level ambiguity, Adonis treats each identified call-site as a checkpoint and performs a pairwise
symbolic execution between pairs of checkpoints. For each pair, if certain variables are captured
by the trace, then Adonis looks back to paths between previous pairs and excludes impossible ones.
Finally, Adonis concatenates partial paths between checkpoints as the output.
Evaluation. We have implemented the prototype of Adonis based on Linux. To show its effective-
ness in control flow recovery, we use 11 applications, of which 8 are desktop applications covered

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

2:4 X. Liu et al.

by previous work [47, 48, 56] and 3 are real-world IoT applications (running on a Raspberry Pi).
We evaluate the accuracy, runtime cost, deployment cost, and development cost of Adonis.

Accuracy: We found that Adonis is able to accurately recover control flow with 86.8% recall and
81.7% precision. Compared to the state-of-the-art log-based baseline, Adonis significantly reduces
false positives by 41.7% and recovers 74.9% of statements that were missed by the baseline.

Runtime Cost: The runtime overhead (cost for tracing) of Adonis is between 2.78% and 3.34%,
which is lower than hardware-based techniques (6.58%). In particular, the runtime cost of Adonis
is significantly lower (18.3× lower) than instrument-based techniques.

Deployment Cost: Adonis can be deployed in desktop, IoT, and cloud environments without mod-
ifications. Compared to hardware-based techniques, Adonis has a much lower storage cost (443×
lower) and trace processing time (50× shorter).

Development Cost: Unlike log-based techniques, Adonis is fully automated and does not require
manual effort when the monitored program upgrades. Specifically, Adonis requires 18.4× fewer
log printing statements than log-based techniques.

We summarize our contributions as follows:

● We propose Adonis, a novel control flow recovery approach based on OS-level traces,
following the design principles of instrumentation free, hardware independent, and fully
automated.
● We implement the prototype of Adonis and evaluate it on representative desktop appli-

cations and IoT applications. The results demonstrated its effectiveness in terms of low
runtime cost, deployment cost, and development cost, compared to SOTA approaches.
● We make available the scripts and data used in this study1 to the research community for

other researchers to adopt Adonis or replicate and extend this work.

The rest of the article is organized as follows: Section 2 proposes a motivating example to show
the limitations of existing techniques and the insights of Adonis. Section 3 introduces the overview
of our approach, including the input, output, and the workflow of Adonis. Section 4 introduces the
detailed design of Adonis. Section 5 introduces how we implemented Adonis and the optimization
we have applied. Section 6 provides our evaluation on Adonis compared to existing techniques.
Section 7 introduces the related work. Section 8 discusses the threats to validity and limitations of
this work. Section 9 summarizes this article.

2 A MOTIVATING EXAMPLE

In this section, we use a real-world failure example to explain the limitations of existing techniques
and the insight of our approach. Figure 1 shows our example, which is from abc2mtex, a popular
Linux tool to notate tunes. Here is how it works: First, it parses the settings and sets up the
program (Lines 27–30). Then, it tries to load the filename of the input (Lines 32–42). After that, it
opens the file to read the inputs (Lines 8–23 and Lines 44 and 45). Finally, it processes the inputs
(Lines 46 and 47). Besides the functional code, developers also write some log printing statements
(Lines 18, 37, and 45) to help diagnose failures.

These code snippets contain a stack overflow bug recorded as EDB-47254. The buggy code is at
Line 14, where it copies filename to a temporary variable defined at the beginning of the function.
A stack overflow bug happens when the length of filename exceeds the capacity of the temporary
variable, and the program will crash when it returns (Line 22).
Control flow recovery in production: When the program failure happens in production, what
presents to developers is usually a partial picture of the failed execution. Specifically, unlike that in

1https://github.com/PKU-Chengxu/Adonis.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

https://ctan.org/pkg/abc2mtex
https://www.exploit-db.com/exploits/47254
https://github.com/PKU-Chengxu/Adonis

Adonis: Practical and Efficient Control Flow Recovery through OS-level Traces 2:5

Fig. 1. A motivating example that shows how OS-level traces help find a real bug.

a development environment where developers can use a debugger to run the program step by step
and inspect variables, in production environments, most failure reports presented to developers
contain only a stack trace and a few logs before failure happens [47]. It would be rather challenging
and time-consuming for developers to find the bug based on these briefly described reports.

To this end, control flow information has great value in debugging failures in production envi-
ronments. In our example, the control flow information can reveal the branch decisions at Lines 11,
13, and 16 and can also reveal that the program abnormally exits in function openIn. Developers
can follow the execution paths that lead to the failure and quickly identify the buggy code.
Limitations of existing techniques: Despite the value of control flow information in debug-
ging, recovering the control flow in production environments is non-trivial considering the
runtime, deployment, and development cost. Currently, there are three categories of control flow
recovery techniques, i.e., instrument-based techniques, log-based techniques, and hardware-based
techniques.

(1) Instrument-based techniques [4, 47, 48] recover control flow by inserting probes at compile
time to record branch conditions [4, 47]. However, these techniques suffer the problem of high
runtime cost. In our example, a full instrumentation to profile executed paths would slow down
the program by 47.6% on average (up to 96.6%), which is typically unaffordable in production
environments [19].

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

2:6 X. Liu et al.

(2) Log-based methods [57] are limited due to the high development cost. We argue that the
cost comes from two parts. The first part is the cost of maintaining logging code—with the rapid
evolution of modern software, developers are required to frequently maintain existing log printing
statements and add new ones for new features. According to previous studies [12, 28], maintaining
logging code has proven to be error prone and time-consuming. The second part is the cost of
adding temporary logging code—previous studies on logging practices [36, 58] show that around
60% of failures do not leave any trace in logs, and developers have to spend a significant amount
of effort on adding temporary logs to narrow the space in finding bugs. As shown in our example,
the program bypasses two important log points (Line 18 and Line 45) and crashes without leaving
any logs. For the log point at Line 18, it is triggered only when the program fails to open the input
file twice. In other words, if the first fopen fails and the second fopen succeeds, then the log point
at Line 18 is bypassed. For the log point at Line 45, it still fails to catch this failure, because the call
stack is smashed and no longer available in function openIn. As a result, developers have to add lots
of temporary logs to narrow the search space, which significantly increases the development cost.

(3) Hardware-based methods [14, 54, 55] are not suitable due to the heavy deployment cost. On
the one hand, hardware-based methods require specific hardware and heavy software support. For
example, existing work [14, 54, 55] is typically based on Intel-PT. This hinders these methods from
being widely deployed, given the popularity of nowadays VM-based cloud computing schema [7].
To date, major cloud computing platforms (including AWS, Google Cloud, Microsoft Azure, and Ali
Cloud) do not support Intel-PT in their services due to the heavy implementation efforts. Besides,
IoT devices also do not support hardware-based control flow recovery.2 On the other hand, even for
the platforms that support Intel-PT, hardware-based techniques are still not friendly to developers,
because the output traces would take massive storage (tens of GBs) and hours or days of time to
decode [43].
Our insight: We argue that OS-level traces are promising for recovering crash paths in production
environments. Applications need to constantly call external shared libraries and system calls to
accomplish different tasks. Therefore, the call sites of shared libraries and system calls are natural
probes for recovering the execution paths of an application.

Compared with existing techniques, OS-level traces also have moderate runtime, deployment,
and development cost. For runtime cost, since system calls and shared libraries are more com-
plex than single instructions, the relative overhead for logging OS-level traces is much lower than
conventional instrument-based techniques, which log branch statements. In our example, monitor-
ing OS-level traces slows down the program by only 2.78–3.34%, which is an order of magnitude
lower than existing instrument-based techniques. For deployment cost, OS-level traces are indepen-
dent of hardware features. Furthermore, modern OSes have provided full-fledged tools or utilities
[9, 23, 42, 44] to collect OS-level traces. For development cost, OS-level traces can adapt to software
evolution, because they are inherently embedded in the program. Specifically, OS-level traces are
able to cover not only the information recorded by logs (e.g., the log printing statements at Lines
3, 18, and 40) but also the information missed by logs (e.g., the file open operations at Lines 13, 16,
and 28).
Bug localization based on OS-level traces: We show how developers can leverage OS-level
traces to locate the bug. Given the monitored system calls of the execution in Figure 1, developers
can notice two “openat” events by reversely checking the monitored trace. These two entries
represent two open operations: One failed, and another succeeded, and both of them try to
open a file with a long filename. Developers can relate events to their call sites (Lines 13 and

2Although ARM’s Embedded Trace Macrocell (ETM) in its Coresight architecture is similar to Intel PT, many chip designers

choose not to expose it in the device tree [20, 27].

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

Adonis: Practical and Efficient Control Flow Recovery through OS-level Traces 2:7

Fig. 2. Workflow of Adonis.

16) by checking all open-related functions. Then, developers can quickly notice the abnormal
longfilename recorded by the trace and find the stack overflow bug in Line 14. Moreover,
based on the trace, developers can recover the path before the program crashes (shown as “must
executed” and “must not executed,” which is also used by existing work [57] to make the
recovered control flow more readable.) and identify that the abnormal longfilename is passed in
at Line 36 (read from user’s command line).
Challenges: Despite the advantages of OS-level traces, leveraging them to recover the control flow
faces two challenges: (1) Statement-level Ambiguity comes from the fact that different statements
could invoke the same lib functions, which makes it difficult to identify the call-site of each trace
entry. For example, in Figure 1, openat may be generated by the statement at Lines 13, 16, and 28,
or other code related to the open operation. Simply testing all possibilities is exponentially time-
consuming. (2) Path-level Ambiguity comes from the fact that there exist code snippets that would
not generate any traces. For example, codes at Lines 32–36 will not generate any trace. To recover
the corresponding control flow, we need information about the variable command_line. A naive
approach is to apply traditional symbolic execution from the start and find valid paths to Line 38.
This approach would dive into every single branch and try to find all constraints. It would easily
fall into path explosion considering the complexity of current programs.

3 APPROACH OVERVIEW

We propose the design of a tool, Adonis, that achieves instrumentation-free, hardware-
independent, and fully automated control flow recovery for production environments. The input
of Adonis includes a target program whose source code may or may not be available and the OS-
level features, such as system call and shared library call traces, before the crash. The output is the
execution path of the input program that leads to the crash. The high-level workflow of Adonis is
shown in Figure 2.

Adonis allows two types of input traces, i.e., the traces of shared library calls (function route) and
the traces of system calls (syscall route). We support these two types of input to cover popular use
cases of applications. By default, Adonis accepts the traces of shared library calls through the func-
tion route. However, we also notice that shared library call traces may not always be available [40].
For example, a self-contained executable that statically links all libraries does not have shared
library call traces. Therefore, Adonis also accepts system call traces when shared library call traces
are not available. Note that both types of traces can be easily collected using already-existing tools
(e.g., function traces can be collected by setting “LD_PRELOAD” environment variable and system
call traces can be collected by tools like strace [44] and sysdig [9], more details in Section 5).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

2:8 X. Liu et al.

Adonis contains two phases. In the first phase, it prepares the traces for analysis. In the func-
tion route, Adonis first scans the program and automatically generates detour functions of shared
library functions (1). Detour functions will record the internal information of library functions,
such as function name, arguments, and return values. Then Adonis uses the function hooking tech-
niques to monitor the function traces (2). In the syscall route, Adonis first monitors the program’s
system call traces using system utilities (1) and then uses an offline pre-build API model to infer
the corresponding function traces (2) (details in Section 4.1).

The second phase of Adonis is to analyze the control flow, which accepts the monitored or in-
ferred library call traces and the program’s control flow graph (CFG) and outputs the analyzed
control flow. In this phase, Adonis uses a two-stage analyzing method to handle the statement-
level ambiguity and the path-level ambiguity: (1) In the first stage, given library call traces, Adonis
pinpoints each library call’s call-site, which we define as a checkpoint (4). Since many basic blocks
may not call library functions, we propose a CFG simplifying method that removes “useless” basic
blocks to improve the searching efficiency (3) before analyzing the CFGs. (2) In the second stage,
given the checkpoints that contain the location and program state information, Adonis performs a
pairwise symbolic execution to recover possible paths between adjacent checkpoints (5). Adonis
handles the path explosion problem by limiting the search space and fully leveraging the informa-
tion inside each checkpoint. Finally, Adonis concatenates these paths and outputs the analyzed full
path.

4 DESIGN

In this section, we present the design details of Adonis.

4.1 System Call Trace to Function Trace

Adonis needs to infer the static library call traces when dynamic library call traces are not available,
i.e., change to syscall route (see Section 3). To this end, we use an API model to infer the static
library call traces based on system call traces.

API model introduction. The API model accepts a system call trace and outputs all possi-
ble static library call traces (i.e., the function traces). Given the generating speed of system calls
(52.1/ms according to our experiments) and the exponentially increasing number of possible func-
tion traces, the model should quickly return the result. To this end, we organize the API model as
an efficient information retrieval data structure, i.e., Trie [53], also called a prefix tree. Specifically,
Trie is a treelike data structure, and every node of a Trie consists of multiple branches. Each branch
represents a system call, and each leaf node in the Trie contains the possible function(s) that would
generate corresponding system calls from the root to the leaf.

Figure 3 shows an example of the Trie (i.e., the API model) used in our motivating example,
which covers the related system calls and lib functions used in the code snippets. Starting from
the “root” node, the fstat, read system calls may be generated by a gets() function (leaf 1),
and the write system call may be generated by a fprintf() or printf() function (leaf 3).

API model construction. Building a Trie needs key–value pairs. Similarly, to build our API
model, we need numerous API-to-Trace mappings (API for value and corresponding system calls
for key). We collect these mappings from massive test cases provided by the glibc library. We
instrument test cases by adding probes between library function calls so that we can obtain precise
system call traces generated by each library function, i.e., the API-to-Trace mapping. Then given
these mappings, we follow the Trie’s insertion algorithm [26] to insert these mappings (key–value
pairs) into the Trie pair by pair. Specifically, given a pair of API-to-Trace mapping, we start from
the root node, take the branches that have the same system calls, add a new node if there are no
corresponding system calls, and update the leaf node if necessary.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

Adonis: Practical and Efficient Control Flow Recovery through OS-level Traces 2:9

Fig. 3. An example of how API model works. Since there are extensive function-to-syscall mappings, we show

only a small portion to illustrate the API model’s construction.

Figure 3 shows how our simple API model is constructed. In the beginning, the Trie is empty, i.e.,
there is only a root node. We then insert API-to-Trace mappings pair by pair. For pair <fopen(),
openat>, there is no edge corresponding to openat, so we insert a new edge (openat) into the
Trie and its leaf node (leaf 5) is fopen(). Then for pair <fprintf(), write>, we insert a new
edge (write) and a new node (leaf 3). For pair <printf(), write>, we could find an edge
corresponding to write, so we update the corresponding node (leaf 3) to printf/fprintf, which
means that the write system call could be generated by printf or fprintf. For pair <fgets(),
fstat read>, we insert a new node (leaf 1) that is two steps from the root. For pair fstat(),
fstat, we insert a new node (leaf 2) to distinguish from leaf 1.

We build our API model using more than 10K API-to-Trace mappings, which ensure that the
constructed API model could cover more than 99% of the lib functions and system calls in our
benchmark. For new lib functions or system calls (like the ones from system update), one can just
collect API-to-Trace mappings and update the Trie. Once the API model is built, there is no need to
store these API-to-Trace mappings. We also collect some additional mappings from real programs
(like nginx). These “realistic” mappings could make the Trie robust to the noise system calls from
the system itself. For example, we have witnessed lots of brk and switch system calls that corre-
spond to no functions. These system calls come from page fault exceptions and context switches,
and the Trie could correctly ignore them once accepting these “realistic” mappings (please refer to
more details about how Adonis handles these system calls in Section 8).

API model usage. Given monitored system calls, using the API model to infer the correspond-
ing lib functions is a process of querying values (functions) by keys (system calls). Specifically, we
start from the root node and take the corresponding branches until we reach the leaf node and do
the former operations recursively until all the system calls in the given trace have been inferred.
Note that there could be more than one inference result, which means that all of these results could
generate the given system calls.

We use the monitored system call trace in our motivating example to illustrate how the previ-
ously built API model works. As shown in Figure 3, given a trace containing six system calls, i.e.,
openat, fstat, read, read, openat, openat, the API model processes them sequentially. For openat,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

2:10 X. Liu et al.

the Trie outputs fopen by following the edge of openat. For fstat, the Trie follows the edge of fstat
and reaches a node that is not a leaf node (parent of leaf 1 and leaf 2). It then checks whether the
succeeding system call could match the following edges (read and N/A). In our example, both the
edges can be matched thus the Trie outputs two possible function traces. Similarly, the Trie pro-
cesses the succeeding system calls until all of them have been inferred. Finally, our model outputs
two sets of inferred lib functions.

API-model profile. In general, the API model, i.e., the Trie, used in the syscall route is a treelike
structure with a shallow depth and a relatively large width. The shallow depth indicates that each
libc function will typically call only a few system calls (typically just one). The width reflects the
number of system calls involved. The size of the Trie is 4.0 KB. The depth of the Trie is 5. The width
of the Trie is 68. Among the involved system calls, the “write” system call has the most functions
grouped together at the leaf, which is 7. Note that more than seven functions could generate the
“write” system call. However, only seven of them are used by our evaluated applications.

4.2 Execution Paths Recovery

Adonis recovers the execution paths of crashes from the dynamic or static library call traces. The
key challenge is to handle the ambiguity of OS-level traces (i.e., statement-level and path-level
ambiguity) while managing the analysis efficiency. To address this challenge, we design a two-
stage approach that infers the execution paths with moderate analysis cost.

On the high level, in the first stage, Adonis first simplifies the program’s CFG to accelerate
the analysis and then performs a block-level inter-procedural analysis to pinpoint the call-
site of each monitored event. We call the pinpointed call-sites the checkpoints. In the second
stage, Adonis performs inter-procedural pairwise symbolic execution to recover paths between
checkpoints.
Pinpoint the call-sites. It is non-trivial to find the precise call-site for each monitored event
due to the statement-level ambiguity, i.e., different statements could call the same lib functions. It
can be regarded as search problem trying to find the longest match in a huge graph. Before we
introduce our solution, we first formalize the task as a search problem in directed graphs.

Given a program’s sCFG, we formulate it as a directed graphG = (N ,E), where the set of nodes
N denotes the statements (or basic blocks) in sCFG, and the sets of edges E denotes the intra-
procedural and inter-procedural edges in sCFG. Given a function trace (which can be monitored
from the function route or be inferred from the syscall route) with M events, we formulate it as
a sequence T =< t1, t2, t3, . . . , tM >, and each event ti as a tuple (f uncti

,xti
,yti
), where f uncti

is
the corresponding function, xti

represents the function’s arguments, yti
represents the function’s

return value.
Now we can formulate the task as the following problem: Given a simplified CFGG and a func-

tion traceT , we call π a valid pinpointing result if there exists a valid path P =< n0,n1,n2, ... >, such
that the function calls of P is equal to the functions inT . To solve the problem, a naive approach is
to start from the program’s entry n0 and then traverse and test successor nodes until a valid path
that matches the trace is found. However, this approach is inaccurate, because it does not use the
information that lies in each event t , i.e., arguments xt and return values yt . As a result, this ap-
proach would require more analysis time or get worse results in precision/recall. Intuitively, some
arguments of library functions are usually constant values that can be easily obtained through little
analysis, e.g., the format string in printf and flags and mode in open. Based on this observation,
we propose the following algorithm as shown in Algorithm 1.

We implement Algorithm 1 using the Breadth First Search algorithm with caching optimization.
The high-level idea of Algorithm 1 is to first find the most definite node (nd at Line 1). A definite
node is a node in the CFG that can be logically linked to a specific event in the monitored trace.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

Adonis: Practical and Efficient Control Flow Recovery through OS-level Traces 2:11

ALGORITHM 1: pinpoint(G,T): pinpoint the call-sites of given trace

Data: simplified CFG G, function trace T
Result: valid pinpointing result π

1 nd ← f ind most de f inite node f rom T

2 f uncd ← дet f unction o f nd

3 paths ← search path in f uncd

4 π = List()

5 for path ∈ paths do

6 i, j ← path′s start/end index in T

7 t ← (f uncd ,x ,y) // treat f uncd as a new event.

8 traceLe f t ← T [∶ i] + [t] +T [j ∶]

9 π .insert(pinpoint(G, traceLe f t))

10 return π

For instance, an output statement, printf(‘‘file %s ABC does not exist’’, filename) can
be considered as a definite node, since it can be traced back to a “write” event that writes the data
“file ABC does not exist.” Conversely, given this “write” event, the corresponding definite
node (i.e., the printf statement in the example) is the call-site that we aim to identify. To achieve
this, we analyze the parameters of library functions and match the constant values (e.g., “file %s
ABC does not exist” in printf statement) to the fields in events (e.g., “file ABC does not
exist” in the write event). Currently, the events used to determine the definite node are related to
output (like printf, fprintf, etc.) and file control (like fopen, opendir, etc.).

There may be multiple definite nodes and Adonis needs to select one of them as the starting point
for path recovery, preferably the one with the highest degree of certainty or the “most definite node.”
To determine this, Adonis calculates the priority of each definite node. Generally, a node’s priority
depends on the complexity of its parameters. If a node’s parameter is a complex string rather than
a simple string or integer, then it may be more difficult to match with an event. Therefore, if such a
node is successfully matched and confirmed as a definite node, then it should be assigned a higher
priority.

If Algorithm 1 fails to identify a definite node on Line 1 (which is rare in our experiments), then
Adonis will attempt to locate the call site by searching from the program’s entry point. This means
that the first node that matches the first trace item will be treated as the definite node. Moreover,
if the stack trace of the failed execution is available, then Adonis can perform a reverse search
starting from the crashed function.

Once the definite node is determined, we expand from it and search for a valid path in the func-
tion (f uncd) such that the trace generated by this path can match part of the whole trace. Then,
we consider the matched partial trace as a whole, whose function name is f uncd . So we can re-
place this partial trace with a new event in the whole trace (Lines 6–8). Then we recursively call
Algorithm 1 on the newly constructed trace (Line 9) until all the events are matched.
Pairwise symbolic execution. After we pinpoint the call-site of each monitored event, the next
step is to recover the full path. Note that we should use the original CFG instead of the sCFG
(the pinpointing result on sCFG can be seamlessly ported to CFG). In this step, we encounter the
challenge of path-level ambiguity, i.e., for some code snippets, there is no trace to indicate the
control flow. A naive approach that performs symbolic execution on the whole program would
easily fall into path explosion. We notice that the call-sites in previous step have divided the
programs into small subroutines, on which it is affordable to perform symbolic execution. Thus
we propose the pairwise symbolic execution to fully leverage the information in traces while

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

2:12 X. Liu et al.

Fig. 4. An example of how Adonis performs pairwise symbolic execution.

managing the search space. In Figure 4, we use the motivating example to show how pairwise
symbolic execution is conducted.

Inspired by the concolic execution [25, 52], the high-level idea of pairwise symbolic execution is
to (1) recover paths iteratively instead of all at once and (2) try to use concrete values recorded in
traces instead of calculating symbolic constraints. Specifically, we refer to each pinpointed call-site
as a checkpoint ckpt . We refer to the process of searching for valid paths between a pair of adjacent
checkpoints < ckpti ,ckpti+1 > as one step. In each step, there are two types of constraints used:
(1) The first type is the trace constraint that is imposed by the concrete call-sites and corresponding
(function, arguments, return value) tuples. For example, in Figure 4, for ckpt L28, we monitored
a trace fopen(‘‘settings’’,‘‘r’’) = 4, and the trace constraint for ckpt L13 is fp == 4 where
fp is the variable that accepts fopen’s return value. (2) The second type is the historical constraint
that is the path constraints accumulated up until the current checkpoint. We will introduce how
Adonis maintains the historical constraint when performing pairwise symbolic execution.

Adonis recovers the full path step by step from the starting checkpoints to the end. In each step:

(1) Adonis checks if there is only one path from ckpti to ckpti+1. If so, then this path is the result
for this step and Adonis symbolically executes the program from ckpti to ckpti+1 and updates
the historical constraint accordingly. For example, in Figure 4, there is only one path from
ckpt L28 to ckpt L29. In this case, Adonis regards this sub-path as the result of this step
and update the constraint, i.e., add a fp == 4 constraint.

(2) If there is more than one path, then Adonis first uses the pinpointing information to reduce
search space, i.e., possible paths. Note that there are some basic blocks that are important
(would generate trace) but not pinpointed as checkpoints. We consider these basic blocks
as non-executed, and this information can help reduce the search space without performing

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

Adonis: Practical and Efficient Control Flow Recovery through OS-level Traces 2:13

symbolic execution. For example, for the step from ckpt L16 to ckpt exit, basic block
L18 (a printing statement) is considered non-executed. So the path L16 -> L18 -> L19 is
excluded.

(3) After reducing the search space, Adonis tries to find valid paths according to the historical
constraint and trace constraint. Specifically, for each branch, Adonis uses the existing con-
straints to try to deduce the branch condition. If it can deduce the condition, then it will
take the corresponding branch. If not, then it will symbolically execute each branch and up-
date the constraint. Finally, the valid paths (the ones whose constraints is solvable by SMT
solver) will be considered as the results of this step. For example, there are multiple paths
from ckpt L29 to ckpt L13. After the symbolic execution, only the path L29 -> L32 -> L33
-> L35 -> L36 -> L44 -> L11 -> L13 is valid. The path to L34 is excluded (unsatisfied),
because it assigns the string “stdin” to the variable input, but it should be “longfilename”
according to the trace constraint at ckpt L13.

(4) If there is more than one valid path in this step, then Adonis cannot determine which path is
truly executed. On the one hand, it would report the uncertain basic blocks as may-executed.
On the other hand, it would maintain the historical constraint. Specifically, it performs a
live variable analysis [49] and reset the constraint to the live variable if it is used by more
than one valid path. We perform this operation to avoid the case that wrong constraints are
passed as historical constraints to succeeding checkpoints.

The pairwise symbolic execution is effective and efficient. It is effective, because it utilizes the
locality of the program. We find that nearby checkpoints can determine most conditions, thus
greatly decreasing the search space. It is efficient, because it tries to use concrete values stored in
traces to reduce uncertain searches.

We also take several strategies to avoid path explosion. First, when we encounter a function
call, similarly to previous work [57], we implement strongest observable necessary condition [16]
for constraint conversion. It guarantees that the converted constraint is a necessary condition of
the original one by keeping only the caller-observable conditions such as return values, function
arguments, and global variables. Second, we limit the depths of the call stack to prevent an infinite
loop. Third, we also limit the search time for each step. Once it times out, it will regard all the
paths in the unsearched space as may-executed.

Finally, paths between pairs of checkpoints will be concatenated as possible full paths. Adonis
cannot guarantee that there is only one feasible path left after the pairwise symbolic execution.
So the output of Adonis (after the pairwise symbolic execution) is a rough but usable control flow
(organized as must/must not/may executed basic blocks). As we have described in Section 1 and
illustrated in Section 2, this control flow provides valuable information for failure diagnosis.

5 IMPLEMENTATION

Overall implementation. We implement the prototype of Adonis on Linux system based on
EOSAFE [30], a state-of-the-art symbolic execution engine for WebAssembly. Our implementation
contains ∼8.2k lines of Python code. We choose WebAssembly, because it is a low-level language
that can be translated from other mainstream programming languages, e.g., C, C++, Go, Rust, and
so on, and binaries without source code can also be lifted to LLVM IR and then recompiled to
WebAssembly [37]. Adonis does not rely on the source code to perform its analysis, even for the
symbolic execution. All of Adonis’s analysis is performed on the WebAssembly (wasm) binary code.

In the function route, Adonis collects shared library call traces to recover the control flow. To
collect such traces, Adonis automatically generates a proxy library for the given program by follow-
ing the steps below: It first uses RetDec [3], an LLVM-based machine-code decompiler, to scan the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

2:14 X. Liu et al.

Fig. 5. CFG and sCFG of code snippets in the motivating example.

program and identify used dynamic functions and their signatures. Based on the signature, Adonis
then generates a detour function for each identified dynamic function. The detour functions are
then compiled to the proxy library, which is a shared object (with the .so suffix) accounting for
10–100 KBs of storage (depending on the number of detour functions). Finally, Adonis modifies
the LD_PRELOAD environment to direct calls to the original functions to our detour functions to
collect calling traces. The process of generating the proxy library takes 1–5 minutes.

In the syscall route, Adonis collects system call traces to recover the control flow. To collect such
traces, we use sysdig [9] to monitor the given program and implement a trace parser. Moreover,
Adonis needs the offline-built API model (i.e., the Trie in Section 4) to infer a system call trace to
its possible function traces. Building such an API model takes around 10 minutes, and the built
API model accounts for less than 10 KBs of storage and can be re-used in the analysis of different
programs.
CFG Simplification optimization. This is a preceding step before Adonis pinpoints the call sites.
We design this step to improve the efficiency of the pinpointing step. Specifically, considering that
OS-interface or lib functions are not called intensively, there are many ordinary statements that
will not generate any OS-level trace lying between important statements that could generate traces.
According to our experiments, these ordinary statements account for the majority of the code
(>80% on average) but will not generate any OS-level traces. As a result, directly searching (i.e.,
pinpointing) the call-sites among the original CFG is inefficient because of the noise branch, loop,
and function calls from ordinary statements. So, we are motivated to first perform a simplifying
operation to remove unrelated but massive ordinary statements from the original CFG and remain
a backbone (which we call an sCFG) that could generate the same trace as the original CFG.

As shown in Figure 5, we demonstrate the high-level idea of the simplifying operation using
the CFG and sCFG of our motivating example. For any path in CFG, we can find a corresponding
path in sCFG so that both paths generate the same OS-level traces. Moreover, sCFG contains much
fewer nodes than CFG, because most ordinary statements or basic blocks have been removed. As
a result, searching (pinpointing the callsites) based on sCFG instead of CFG will greatly improve
the efficiency and will not decrease the correctness of the results.

Next we introduce how to simplify a CFG to get its sCFG. First, we define that a statement (or
a basic block) is ordinary when it will not generate any OS-level traces; otherwise, it is important,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

Adonis: Practical and Efficient Control Flow Recovery through OS-level Traces 2:15

Fig. 6. An example of how CFG is simplified.

which means that it could generate OS-level traces when executed. Note two types of statements
(or basic blocks) are important, i.e., the ones that directly call lib functions and the ones that call
functions that contain important statements (or basic blocks). Given a function’s CFG, Adonis takes
the following steps to simplify this CFG.

(1) Topological sort all edges in the CFG.
(2) Traverse the sorted edges. For any edge A → B that A is not the function’s Entry node and

B is not the function’s exit node, if A or B is ordinary and there exists only one path from A
to B, then do the following remove operation:

(a) Remove the edge A→ B from CFG so that on of the nodes would be removed latter.
(b) Remove one node (basic block or statement) that is ordinary from CFG (suppose A is ordi-

nary and removed), and modify all edges pointing to or starting fromA to point to or start
from B.

(c) If there are redundant edges, then only one of them is retained.
(3) Repeat step 1 and 2 until there is no edge to remove.

Figure 6 shows an example of how function openIn’s CFG is step-by-step simplified. For edge
L11 → L12, both L11 and L12 are ordinary, so one of them should be removed. Here L12 is re-
moved, because L11 is the function’s entry node. For edge L13 → L14, L13 is important and L14
is ordinary, so L14 is removed. Similarly, L19 is removed when processing edge L18 → L19. Then
the simplification finished, because there is no edge to be removed.

This CFG simplification optimization could improve the efficiency of the afterward pinpointing
step (the step in Section 4.2), especially when the analyzed program is complex and has huge func-
tions. For example, sqlite3VdbeExec() is a huge function in sqlite3 with 1,331 basic blocks. Our
optimization reduces the number of basic blocks to 497 (reduced by 62.7%), leading to a smaller
search space when pinpointing the call-site. According to our prior experiments, without the
CFG simplification optimization, Adonis will take more than 12 hours to finish the pin-pointing
step for a complex program like sqlite3. However, after adding the optimization, it can finish in
30 minutes.

6 EVALUATION

We focus on evaluating whether OS-level traces are sufficient to accurately recover control flow
for programs in production environments with moderate runtime, deployment, and development
cost. In particular, we answer following four research questions:

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

2:16 X. Liu et al.

Table 2. Evaluated Applications

Applications Description LOC BBs functions

tcas SIR application [17] 173 163 20
replace SIR application [17] 563 437 53
tot_info SIR application [17] 564 231 26
abc2mtex Music notation 4,764 4,328 462
gzip Linux utility 8,114 3,704 236
space ADL interpreter 9,563 3,895 253
grep Linux utility 15,460 7,121 177
microcoap CoAP server 809 795 11
mqtt-sn-tools MQTT for networks 1,675 1,258 37
libmodbus Modbus protocol 5,435 1,996 64
sqlite3 Database management system 236,528 86,852 2,930

RQ 1: How accurate is Adonis in control flow recovery?
RQ 2: What is the runtime cost of Adonis?
RQ 3: What is the deployment cost of Adonis?
RQ 4: What is the development cost of Adonis?

6.1 Experimental Settings

Benchmarks: Our benchmark contains 11 real applications or tools, of which 8 are desktop ap-
plications used by previous work [47, 55] and the other 3 are IoT applications or libraries selected
from awesome-open-iot [1], a curated list of open source IoT frameworks, libraries and software.
The three IoT applications we select are the most popular ones in the list implemented in C. For
each application, we use its default test cases as the benchmark. If the number of test cases is too
large, e.g., space has 13,525 test cases, then we randomly choose 100 of them. We provide informa-
tion about CFGs for each application in Table 2, including lines of code, numbers of functions, and
basic blocks.
Baselines: We choose four baselines to compare against, representing the state-of-the-art
hardware-based, instrument-based, and log-based methods that can recover the control flow.
The first one is Bunkerbuster [56], a bug hunting framework based on Intel-PT. Bunkerbuster
symbolically reconstructs program states leveraging the hardware traces and partial memory
snapshots (hardware-based method). The second baseline is gcov [34], a commercial tool to test
program coverage widely used by LLVM and GCC (instrument-based method). The third baseline
is Pensieve [60], a tool for failure reproduction. Pensieve reconstructs failure reproduction steps
based on log files (log-based method). Since Pensieve is not publicly available, we reproduce it
in our platform. The fourth baseline is s-VPA [47], which is a control flow recovery tool based
on selective instrumentation (instrument-based method). Note that we only compare s-VPA with
Adonis in terms of accuracy, because we cannot find the exact value of the three types of cost in the
article. For example, the analysis time (measured as deployment cost) reported in the article is a
relative value.
Experimental environment: To make the experiments close to reality, we set up two environ-
ments, i.e., (1) a tracing environment where applications run on ordinary devices, and (2) an analy-
sis environment where traces are analyzed on more powerful devices. For the tracing environment,
we use two hardware platforms, including an x86–64 desktop running eight desktop applications
and an ARM Raspberry Pi 3B running 3 IoT applications. The desktop is equipped with an Intel
i7-9750H CPU, 16 GB memory, and 1 TB storage and the Raspberry Pi is equipped with a 1.2 GHz

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

Adonis: Practical and Efficient Control Flow Recovery through OS-level Traces 2:17

Table 3. Block-level Accuracy, Recall, and Precision of Adonis and Baselines

Block-level Accuracy Recall Precision

s-VPA Pensieve
Adonis

(function)
Adonis
(syscall)

Pensieve
Adonis

(function)
Adonis
(syscall)

Pensieve
Adonis

(function)
Adonis
(syscall)

tcas 88.1% 72.2% 95.7% 94.8% 71.5% 92.7% 92.7% 96.0% 96.2% 96.2%
replace 93.1% 71.5% 93.5% 93.0% 68.5% 89.4% 89.4% 94.4% 97.6% 97.3%
tot_info 97.9% 76.7% 98.5% 97.2% 70.3% 95.5% 94.1% 80.2% 93.3% 86.1%
abc2mtex — 42.8% 76.7% 73.9% 44.7% 76.6% 71.7% 83.5% 94.9% 92.4%
gzip 61.9% 20.3% 67.5% 53.9% 28.8% 98.6% 99.4% 40.1% 78.4% 74.9%
space 58.6% 38.5% 70.2% 64.4% 47.3% 73.1% 75.2% 63.7% 76.5% 67.6%
grep 48.3% 22.7% 54.5% 53.6% 33.2% 92.5% 91.6% 43.2% 52.9% 50.8%
microcoap — 55.2% 86.7% 86.0% 47.4% 79.3% 71.9% 79.2% 86.1% 86.1%
mqtt-sn-tools — 44.3% 87.7% 84.6% 35.7% 90.6% 81.8% 70.5% 80.0% 76.3%
libmodbus — 48.3% 85.1% 79.0% 37.5% 92.2% 88.3% 72.5% 83.0% 77.7%
sqlite3 — 43.3% 74.5% 67.2% 35.5% 74.8% 70.3% 45.5% 59.5% 57.4%
Average 74.6% 48.7% 81.0% 77.1% 47.3% 86.8% 84.2% 69.9% 81.7% 78.4%

Broadcom BCM2837 CPU, 1 GB memory, and 16 GB storage. For the analysis environment, we
perform analysis on an x86–64 server. The server is equipped with an Intel Xeon E5-4620 v2 CPU,
32 GB memory, and 3 TB storage. Both the desktop and server run a 64-bit Ubuntu 18.04, and the
Raspberry Pi runs a 64-bit Raspberry Pi Bullseye OS.

6.2 RQ 1: Accuracy

We first evaluate whether OS-level traces can accurately recover control flow of programs. To
answer this RQ, we compare Adonis to Pensieve [60], a log-based technique that recovers control
flow information, and s-VPA [47], a path recovery tool based on selective instrumentation. We omit
the Gcov and Bunkerbuster, since they are designed to have 100% accuracy. However, these two
techniques have high runtime or deployment overhead for production environments (Sections 6.3
and 6.4).

We measure three metrics, which are block-level accuracy, precision, and recall. We define the
block-level accuracy as the ratio of basic blocks that can be definitively categorized as “executed”

or “not executed.” Recall is measured by #T P

#T P+#F N
and precision is measured by #T P

#T P+#F P
, where #TP

is the number of basic blocks executed in the path, #FN is for executed but not in the path, and
#FP is for in the path but not executed. We select these metrics, because they intuitively reflect
the accuracy of the recovered path and are widely used in related work [47]. Only block-level
accuracy is reported in the article of s-VPA, so we only show its block-level accuracy and omit the
other two metrics. We build the ground truth by running Gcov. The results are shown in Table 3,
in which we used arithmetic means instead of geometric means, because there are test cases that
no log messages get output by the application, making Pensieve cannot recover any control flow.
As a result, its accuracy is 0 for these test cases. Including these zero values to calculate the total
geometric means would also result in a mean value of zero. We also cannot remove these test cases,
because it is unfair to Adonis.

Block-level accuracy: We observe that, Adonis (77.1% and 81.0%) substantially outperforms
Pensieve (48.7%). The control flow recovered by Adonis can not only cover the results of Pensieve
but also cover 74.9% statements missed by it. This indicates that OS-level traces are able to record
more valuable information compared to logs. We will show more details when we evaluate the
recall and precision. Adonis also outperforms s-VPA (74.6%). To handle the runtime cost of instru-
mentation, s-VPA selectively instrumentation the program, i.e., it only traces executed functions
and paths of functions in the call stack [48]. As a result, this selective instrumentation provides lim-
ited information of the paths of functions outside the stack (i.e., functions that have been called but

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

2:18 X. Liu et al.

popped from the call stack). By contrast, the OS-level traces used by Adonis cover the information
of these functions, and thus Adonis could get more accurate results.

Recall and precision: The results are shown in Table 3. Overall, Adonis outperforms Pensieve
by 37.12% to 39.56% on recall and 8.21% to 11.56% on precision. Pensieve gets less effective in
two aspects. First, in production environments, log levels are typically suppressed for brevity
concerns [11]. For example, in sqlite3, the C preprocessor variable SQLITE_DEBUG is not set in
the release version, and the DEBUG level logs would not be output. As a result, logs often record
only limited paths or variables, leaving broad space not traced. Second, to improve the scalability
and efficiency, Pensieve skips a vast majority of the code paths by focusing on instructions causally
relevant to the failure. By contrast, the OS-level traces, used by Adonis, not only cover the logs
written by developers by recording I/O events but also contain valuable program states that could
be missed by logs, e.g., libmodbus, as a communication protocol library, suppresses many log
points in the release version (the version used in production). Pensieve suffers a low recall (37.5%)
due to the aforementioned two aspects. Meanwhile, Adonis can still effectively recover the path
based on the traced events and achieve a much higher recall (92.2%).

Answer to RQ 1: Adonis can recover the control flow with 81.0% block-level accuracy,
86.8% recall, and 81.7% precision. Adonis substantially outperforms the state-of-the-art log-
based control flow recovery methods in terms of the accuracy. Specifically, Adonis not only
covers the execution paths recovered by Pensieve but also recovers 74.9% of statements
missed by it.

6.3 RQ 2: Runtime Cost

In this RQ, we evaluate if the runtime cost of Adonis is low enough for production environments.
We measure a tool’s runtime cost by calculating the slowdown of an application when it is being
traced by the tool compared to when it is not. For example, the runtime cost of “Adonis syscall” is
the slowdown of an application when Adonis collects the application’s system call traces, which
does not contain the overhead of call trace inference. Similarly, the runtime cost of “Adonis func-
tion” is the slowdown of an application when it is hooked by the proxy library generated by Adonis.
We show the results in Figure 7. We do not include Pensieve, because its runtime overhead is zero
by design.

On average, Adonis induces 3.34% runtime overhead when tracing dynamic library functions
and induces 2.78% overhead when tracing system calls, which is lower than Bunkerbuster (6.58%)
and Gcov (49.4%). Note that Intel-PT is designed to minimize the runtime overhead of control flow
recovery [55]. Therefore, the runtime cost of Adonis is acceptable in production environments.

Our evaluation also shows that Gcov, a full instrumentation tool, may introduce a slow down of
more than 50% (18.3× higher than Adonis) to programs. This overhead is too high for production
environments, particularly for delay sensitive applications [19]. Note that many instrument-based
approaches do partial tracing at the cost of accuracy. So the comparison in this RQ cannot be
stretched to all instrumentation based tool.

Answer to RQ 2: Adonis has moderate runtime cost for control flow recovery in produc-
tion environments. On average, Adonis induces 3.34% and 2.78% overhead to trace dynamic
library functions and system calls, respectively. This overhead is lower than Bunkerbuster
(6.58%), the state-of-the-art hardware-based method designed for reducing the runtime cost
of control flow recovery. Moreover, this overhead is 18.3× lower than Gcov, the commercial
instrument-based method.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

Adonis: Practical and Efficient Control Flow Recovery through OS-level Traces 2:19

Fig. 7. Runtime overhead of Adonis and baselines.

Fig. 8. Analysis time and storage cost of Adonis.

6.4 RQ 3: Deployment Cost

We evaluate how Adonis reduces deployment cost by conducting experiments from four aspects.
First, we evaluate the ease of deploying Adonis on different hardware. In this experiment, we mea-
sure whether Adonis can run in desktop, cloud, and IoT environments, respectively, without heavy
modifications. Second, we evaluate the ease of deploying Adonis when source code is not available.
Third, we measure the storage overhead to keep the logs of Adonis. Fourth, we measure the analy-
sis time to process the logs of Adonis. The analysis time evaluates whether Adonis requires extra
computational resources to analyze generated logs. The results are shown in Figure 8 and Table 4.

Deployment across different hardware platforms: Adonis achieves the same block-level
accuracy, precision, and recall across the desktop, IoT, and Cloud environments without any mod-
ification. In other words, Adonis can be directly deployed in different hardware platforms without

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

2:20 X. Liu et al.

Table 4. Summary of the Deployment Cost of Adonis and Baselines

Bunkerbuster Pensieve Gcov Adonis (syscall)

Storage Cost 1.6 GB 2.2 MB 9.2 MB 7.8 MB
Analysis Time 35 hours 31.5 mins — 38.6 mins
Deployment on

Different Platforms
Hard Easy Easy Easy

Source Code
Dependency

No Yes Yes No

any extra effort. On the contrary, Bunkerbuster only works in the desktop environment as it de-
pends on Intel-PT.

Dependency on source code: We further evaluate Adonis by measuring its block-level accu-
racy, precision, and recall on the executables of our test cases without debugging information (e.g.,
with the the -g configuration during compilation). Our experiment shows that Adonis achieves
the same values. On the contrary, Pensieve and Gcov fail, because they require source code.

Storage Cost: According to Figure 8, Adonis requires 3.2–27.6 MB to keep the OS-level traces
and the mean value is 7.8 MBs. In contrast, Bunkerbuster requires 1.6 GB, Gcov requires 9.2 MB, and
Pensieve requires 2.2 MB. The storage cost of Adonis is low enough for production environments
considering that it is similar to the cost of popular logging practice, i.e., the cost of Pensieve. Our
results also show that the storage cost of Bunkerbuster is three orders of magnitude higher than
others. This is because Intel-PT is agnostic to upper level OS designs like process and context
switch, and it will simply record all instructions executed by the CPU. As a result, developers
should deploy more storage when using hardware-based methods.

Analysis Time: According to Figure 8, the analysis time of Adonis is 1.2–215.8 mins, which
is positively correlated with the length of the trace (illustrated as storage cost). And the mean
value of Adonis’s analysis time is 38.6 mins, which is similar to Pensieve. Adonis’s analysis time
is practically small considering that developers spend 49.9% of their programming time (several
hours) in debugging [11]. On the contrary, Bunkerbuster needs 35 hours to decode and process
the trace. It means that developers need to deploy around 50× number of machines to achieve a
similar analysis time, which increases the deployment cost of Intel-PT based techniques.

We also notice that in terms of the deployment cost, Pensieve is comparable to Adonis. How-
ever, it is also notable that according to RQ 1 and RQ 4, Adonis has better accuracy and lower
development cost.

Answer to RQ 3: Adonis has reasonable deployment cost for a production environment.
First, It can be deployed in desktop, IoT, and cloud environment without any modifications.
Second, the storage cost (7.8 MB on average) and analysis time (38.6 mins on average) of
Adonis is moderate and significantly smaller (443× smaller for storage cost and 50× smaller
for analysis time) than Intel-PT based techniques, saving a large amount of storage and
computational resources. Further, Adonis does not require source code while the log-based
and instrument-based baselines are source code dependent.

6.5 RQ 4: Development Cost

To evaluate the development cost of Adonis, we evaluate the development efforts to adapt Adonis
to a new version of software. As a comparison, we also measure the extra log printing statement
needed for log-based techniques to achieve the same level accuracy as Adonis.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

Adonis: Practical and Efficient Control Flow Recovery through OS-level Traces 2:21

Development efforts to adapt to software update: In our experiment, Adonis can adapt
to the software updates with negligible development efforts. Given a new version of the program,
Adonis only needs to re-generate the proxy library to hook previously uncovered library functions.
This process is fully automated so there are no extra development efforts for developers when using
Adonis. On the contrary, for Pensieve, developers need to manually insert logging statements and
its efforts depend on the complexity of the new features.

Extra log printing statements: In our experiment, Adonis records 393.3 log events on average.
On the contrary, Pensieve generates only 21.3 log events and around 30% of the test cases output
no logs. To achieve the accuracy similar to Adonis, developers need to insert 18.4× (393.3/21.3) log
printing statement for log-based techniques.

Answer to RQ 4: Adonis has reasonable development cost for a production environment.
On the one hand, Adonis is fully automated while log-based methods rely on developers to
manually insert log printing statements. On the other hand, a log-based technique requires
developers to add 18.4× of new code to achieve the same accuracy as Adonis.

7 RELATED WORK

Our work is particularly related to two streams of literature: control flow recovery and OS-level
traces analysis.
Control flow recovery. Control flow recovery has been widely applied in many software
development tasks, i.e., software failure analysis [4, 14, 21, 45, 47, 54–57, 60], service contexts
understanding [38, 39], and so on. Some typical methods can be categorized as follows. Instrument-
based methods insert probes in the monitored programs at compile time to record or measure
executed paths [2, 4, 13, 46, 48, 51]. The main limitation of instrument-based methods is the high
runtime cost. Although there are a few methods that aim to reduce the runtime cost, they are
semi-automated, and thus still have high engineering cost [2, 13, 48, 63]. Specifically, developers
need to manually specify targeted code snippets [2, 48] or iteratively run the programs multiple
times [13, 63]. There are two pieces of instrument-based work (i.e., s-VPA [47] and Trafic [51])
that are close to Adonis. For s-VPA, its analysis is based on the trace provided by a lightweight
and selective instrumentation tool [48]. Moreover, according to our experiments in Section 6.2,
the block-level accuracy of Adonis is higher than s-VPA by 6.4% on average. For Trafic [51], it
is also an instrument-based method. It needs the application’s source code to add its tracing
logic and recompile the instrumented source code. Log-based methods guide the control flow
recovery by analyzing logs inserted by developers. The limitation of log-based methods is that
they depend on manually placed log printing statements and, thus, have high development
cost [32, 33, 41, 57]. Several methods aim to automatically place log printing statements [59, 61];
they are still semi-automated and require human effort [12, 28]. Hardware-based methods recover
control flow based on traces from hardware features [15, 24, 54, 64]. These methods depend on
Intel-PT so they have high deployment cost in cloud or IoT environments. There are also several
hardware tracing techniques based on ARM [15], but these techniques are limited to in-house
debugging.
OS-level traces analysis. OS-level traces (e.g., system logs) are informative and valuable indi-
cators for system behaviors. Existing work analyzes system logs mainly for anomaly detection
[18, 22, 62] and system knowledge extraction [5, 6]. For example, DeepLog [18] uses LSTM, a popu-
lar deep neural network model, to learn system log patterns and identifies anomalies when system
logs deviate from the normal patterns; CSight [5] mines system logs to infer a model of the system
behaviors; PerfAugur [50] is designed to find performance problems by mining service logs using

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

2:22 X. Liu et al.

specialized features such as predicate combinations. To the best of our knowledge, to date, there
has been no work that uses OS-level traces for control flow recovery.

8 DISCUSSION AND THREATS TO VALIDITY

Threats to internal validity concern confounding factors that could affect the obtained results.
The threat primarily lies in our implementation of existing control flow recovery methods. To
mitigate this threat, for Bunkerbuster and Gcov, we replicate them by using the code released by
their authors and the default configurations suggested by them; for Pensieve, we implement it
carefully according to the description in its paper as its authors do not make the code publicly
available.
Threats to external validity concern the generalizability of our experimental results. In line with
the literature [47, 55], we focus on C/C++ programs and Linux to ensure a fair comparison with
existing control flow recovery methods. However, our approach is general and can be also applied
to other programming languages and OSes with engineering efforts. For example, for Java, one can
collect the external library calls in JVM and recover the control flow using our approach. Another
threat to external validity lies in the selection of applications for evaluation. To mitigate the threat,
we use seven desktop applications that are widely adopted in the control flow recovery literature
as well as three real-world IoT applications.
Research comparison between Adonis and log-based methods. First, as shown in our RQ 1,
Adonis achieves a higher accuracy rate, because OS-level traces are more informative than logs.
OS-level traces record not only I/O events, but also other program states that may be missed by
logs. For instance, in the bug diagnosis example in Figure 1, the return value of “fopen” at line 13 is
not covered by logs but is captured by OS-level traces. Additionally, not all program failures output
logs that can be used for debugging (like the one shown in our motivating example in Figure 1).
By contrast, OS-level traces are more faithful and informative, as they capture a broader range of
system events beyond the I/O events that logs rely on.

Second, maintaining OS-level traces is fully automated, whereas maintaining logging code is
time-consuming and error prone. When a program undergoes an update, Adonis requires fewer
developer efforts to adapt to the change than log-based techniques. For Adonis, developers only
need to regenerate the proxy lib, which is fully automated and requires negligible human effort.
In contrast, log-based techniques require developers to spend significant time maintaining the
logging code by adding new log printing statements and modifying outdated ones. A previous
empirical study [58] found that logging code is modified in a substantial number of committed
revisions (18%), indicating that maintaining logging code is time-consuming. Furthermore, 39% of
log modifications in the study were made to fix inconsistencies between logs and actual execution
information intended to be recorded, suggesting that maintaining logging code is error prone.
Although there are tools to enhance logging practices (e.g., Log20 [61] and LogEnhancer [59]),
these tools are only semi-automated and cannot easily adapt to software updates. Consequently,
developers still rely mainly on themselves to maintain logging code.

In summary, Adonis outperforms Pensieve and other log-based methods in accuracy and effi-
ciency by leveraging automated OS-level traces that are more informative and less error prone
than manually maintained logs.
Faithfulness of reproduced Pensieve. The high-level idea of Pensieve is based on the Partial
Trace Observation, which is “jumping directly from an event to its prior causes (without analyzing
the intermediate code path).” Pensieve proposes an event-chaining algorithm that uses the Partial
Trace Observation to reconstruct a simplified partial trace of a failed execution. We strictly
follow the design of the event chaining algorithm to reproduce the Pensieve in our experiments.
We implement four types of events as Pensieve has designed, including condition, location,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

Adonis: Practical and Efficient Control Flow Recovery through OS-level Traces 2:23

invocation, and output events. To implement Partial Trace Observation (i.e., jumping from one
event to another), we follow Pensieve’s design that repeatedly explains events, i.e., reasoning the
prior events that could cause the current event. For example, in Figure 1, suppose we get a log
message with “file ABC does not exist.” An output event <e1, “O”, “file ABC ...”> is
generated. We will then try to explain this event e1 by searching for the statement that would
output the corresponding log message. And another location event <e2, L, printf(“file %s
does not exist.”, savename)> is reasoned. Then we will try to explain e2 by searching for
branch conditions whose basic blocks dominate L on the control flow graph. And a condition
event <e3, C, fopen(filename, “r”) == NULL> is reasoned. Then, we will search for the
statements that assign values to the variable filename and the reason for some new location
events. This process is repeated until a point where the remaining unexplained events correspond
to external API calls (the user input in our case).

Moreover, we also realize that it is unfair to treat the event chain as the control flow recovered
from Pensieve. So in our experiments, we also apply pairwise symbolic execution on pairs of events
to recover detailed control flow between adjacent events (note that conditions are stored in each
event by design). We cannot reproduce the experiments of the original paper, because we have
difficulty in compiling distributed JAVA programs (which rely on JVM) to Webassembly bytecode,
whereas we evaluate our reproduced Pensieve using Magma [29], a ground-truth fuzzing bench-
mark suite based on real programs with real bugs. The results show that the reproduced Pensieve
could successfully reproduce 38/56 real bugs on four applications (libpng, libtiff, libxml2, libsndfile).
Our results are similar to the results of Pensieve’s paper (13/18 bugs are successfully reproduced).
Configuration to reduce the trace size of Intel-PT. There are several ways to reduce the trace
size of Intel-PT and “Filter by CR3” [31] is the most relevant and practical configuration in our case.
It reduces the size by limiting Intel-PT to trace limited number of processes. To our knowledge,
Bunkerbuster supports “Filter by CR3,” and in our experiment, we also make it trace the targeted
application’s processes.
Tracing long running processes. For long running processes (e.g., an HTTP server), Adonis
users can choose to start or stop tracing at any time (e.g., tracing a specific HTTP request), and
these actions will not affect the traced program, because the tracing is at the system level. So for
long running processes, there is no need to record all OS-level traces for their whole life. As for
the length of the trace needed to recreate a usable control flow, it depends on the complexity of the
program. In our experiments, for a simple application like “tcas,” Adonis can recreate a usable
control flow from 14 events; and for a complex application like “sqlite3,” it may require 1–k
events.
Handle system calls generated by the system itself. When using the API model to infer a
system call trace’s corresponding function trace, Adonis will try to ignore brk and switch events
if it cannot find a proper function to match the current system call. These system calls come from
page fault exceptions and context switches and are generated by the system instead of the traced
application. In this case, these system calls should be ignored. For example, suppose the current
system call trace left to match (infer) is brk, brk, open. In this case, Adonis cannot find a proper
function in Trie (i.e., the API model) that matches it, so it will ignore the first brk and try to match
again. It still fails and will ignore the second brk until it can match the open system call.

Applications could also use these system calls, and it does happen in our evaluated applications.
There are two cases when applications may use them. The first case is that the application inten-
tionally invokes them, which we call an intentional call (e.g., calling malloc() to allocate memory
will generate the brk system call). In this case, Adonis will not consider the statement that contains
an intentional call as a checkpoint (in the function route, we cannot use these functions for path
recovery, as we find that hooking these functions will interfere with the execution of the program,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

2:24 X. Liu et al.

and in syscall route, we choose not to use these events for path recovery to protect the consistency
of our analysis algorithm). In other words, these intentional calls are treated as normal statements
that will not generate system calls. And the monitored system calls generated by these intentional
calls will be correctly ignored by the API model. The second case is that the application uses a lib
function that may generate these system calls, which we call an unintentional call. For example,
function opendir() could generate a series of system calls, including openat, fstat, brk, brk,
and the brk here is an unintentional call. In this case, our API model has already covered this
mapping when we construct the model, i.e., there is a 5-depth leaf corresponding to this API-to-
Trace mapping (textttopendir to the 4-length trace) in the Trie. So when the current system call
trace left to match is openat, fstat, brk, brk, the brk here will not be ignored, and Adonis
will correctly infer this system call trace’s function trace is opendir.
Scalability of Adonis. Currently, the biggest application we have evaluated Adonis on is sqlite3
(with 236K LoC). One of the difficulties that prevent us from evaluating Adonis on large applica-
tions is that complex applications are usually built based on build systems (e.g., GNU Make and
CMake). And using these systems to compile the source code to the WASM binary that we could
analyze usually produces many compilation errors, and fixing these errors is time-consuming.
In the future, we plan to evaluate Adonis on other complex applications, such as nginx and
OpenSSL.
Handle multithread executions. Our approach inherently supports multithread programs. Note
that the tracing is implemented in the OS layer, so it is easy to get the thread id of each system call
event. For example, Sysdig, the tool that Adonis uses to trace system calls, supports extracting the
thread id of each system call. And the order of these events can be determined by their timestamps.
Similarly, for function trace, we can use gettid() API to get the thread id of each lib call.

9 CONCLUSION

We have presented Adonis, an instrumentation-free and hardware-independent control flow recov-
ery tool for production environments. By leveraging the informative and easy-to-collect OS-level
traces, Adonis is able to recover crash paths from software failures under 86.8% recall and 81.7%
precision. Experiments on representative desktop and IoT applications show that Adonis has mod-
erate runtime, deployment, and development cost compared with existing control flow recovery
techniques. Specifically, Adonis slows down the program by 2.78% to 3.34%, which is 18.3× lower
than the instrument-based baseline. It can be deployed in desktop, IoT, and cloud environments
with negligible modification so its deployment cost is practically low. The development cost of
Adonis is also reasonable as it is fully automated and requires no extra developer efforts.

REFERENCES

[1] Agile-IoT. 2022. Awesome-Open-IoT, a curated list of awesome open source IoT frameworks, libraries and software.

Retrieved June 21, 2022 from https://github.com/Agile-IoT/awesome-open-iot.

[2] Taweesup Apiwattanapong and Mary Jean Harrold. 2002. Selective path profiling. ACM SIGSOFT Softw. Eng. Notes 28,

1 (2002), 35–42.

[3] Avast. 2022. RetDec. Retrieved June 10, 2022 from https://github.com/avast/retdec.

[4] Thomas Ball and James R. Larus. 1996. Efficient path profiling. In Proceedings of the 29th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO 29). IEEE, 46–57.

[5] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, and Arvind Krishnamurthy. 2014. Inferring models of concurrent

systems from logs of their behavior with CSight. In Proceedings of the 36th International Conference on Software Engi-

neering. 468–479.

[6] Ivan Beschastnikh, Perry Liu, Albert Xing, Patty Wang, Yuriy Brun, and Michael D. Ernst. 2020. Visualizing distributed

system executions. ACM Trans. Softw. Eng. Methodol. 29, 2 (2020), 1–38.

[7] Aditya Bhardwaj and C. Rama Krishna. 2021. Virtualization in cloud computing: Moving from hypervisor to

containerization—A survey. Arab. J. Sci. Eng. 46, 9 (2021), 8585–8601.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

https://github.com/Agile-IoT/awesome-open-iot
https://github.com/avast/retdec

Adonis: Practical and Efficient Control Flow Recovery through OS-level Traces 2:25

[8] Marcel Böhme, Ezekiel Olamide Soremekun, Sudipta Chattopadhyay, Emamurho Juliet Ugherughe, and Andreas Zeller.

2017. How developers debug software–the dbgbench dataset. In Proceedings of the IEEE/ACM 39th International Con-

ference on Software Engineering Companion (ICSE-C’17). IEEE, 244–246.

[9] Gianluca Borello. 2015. System and Application Monitoring and Troubleshooting with Sysdig. USENIX Association,

Washington, DC.

[10] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer Katzenellenbogen. 2013. Reversible debugging soft-

ware. Technical Report, Judge Business School, University of Cambridge, Cambridge, UK.

[11] T. Britton, L. Jeng, C. Graham, P. Cheak, and T. Katyenellenbogen. 2015. Reversible debugging software, university of

cambridge. Judge Business School 2013.

[12] Boyuan Chen et al. 2017. Characterizing logging practices in java-based open source software projects–a replication

study in apache software foundation. Empir. Softw. Eng. 22, 1 (2017), 330–374.

[13] Trishul M. Chilimbi, Ben Liblit, Krishna Mehra, Aditya V. Nori, and Kapil Vaswani. 2009. Holmes: Effective statistical

debugging via efficient path profiling. In Proceedings of the IEEE 31st International Conference on Software Engineering.

IEEE, 34–44.

[14] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma, Ruoyu Wang, and Insu Yun. 2018. REPT: Re-

verse debugging of failures in deployed software. In Proceedings of the 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’18). 17–32.

[15] Normann Decker, Boris Dreyer, Philip Gottschling, Christian Hochberger, Alexander Lange, Martin Leucker, Torben

Scheffel, Simon Wegener, and Alexander Weiss. 2018. Online analysis of debug trace data for embedded systems. In

Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE’18). IEEE, 851–856.

[16] Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, complete and scalable path-sensitive analysis. In Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation, Rajiv Gupta and Saman P.

Amarasinghe (Eds.). ACM, 270–280. https://doi.org/10.1145/1375581.1375615

[17] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting controlled experimentation with testing

techniques: An infrastructure and its potential impact. Empir. Softw. Eng. 10, 4 (2005), 405–435.

[18] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly detection and diagnosis from system

logs through deep learning. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security.

1285–1298.

[19] Yoav Einav. 2019. Amazon Found Every 100ms of Latency Cost Them 1% in Sales. Retrieved May 24, 2022 from

https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales.

[20] Raspberrypi Forums. 2022. ARM CoreSight. Retrieved June 28, 2022 from https://forums.raspberrypi.com/viewtopic.

php?t=192728.

[21] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. Griffin: Guarding control flows using intel processor trace. ACM

SIGPLAN Not. 52, 4 (2017), 585–598.

[22] Siavash Ghiasvand and Florina M Ciorba. 2018. Assessing data usefulness for failure analysis in anonymized sys-

tem logs. In Proceedings of the 17th International Symposium on Parallel and Distributed Computing (ISPDC’18). IEEE,

164–171.

[23] GitHub. 2006. Mac OS X Man Pages—dyld(3). Retrieved June 10, 2022 from https://developer.apple.com/library/

archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/dyld.3.html.

[24] Francesco Giuliari, Alberto Castellini, Riccardo Berra, Alessio Del Bue, Alessandro Farinelli, Marco Cristani, Francesco

Setti, and Yiming Wang. 2021. POMP++: Pomcp-based active visual search in unknown indoor environments. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’21). IEEE, 1523–1530.

[25] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed automated random testing. In Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation. 213–223.

[26] Gaston H. Gonnet and Ricardo Baeza-Yates. 1991. Handbook of Algorithms and Data Structures: in Pascal and C.

Addison-Wesley Longman Publishing Co., Inc.

[27] Honggfuzz Google. 2022. ARM CoreSight Tracing. Retrieved June 28, 2022 from https://github.com/google/honggfuzz/

issues/63.

[28] Mehran Hassani, Weiyi Shang, Emad Shihab, and Nikolaos Tsantalis. 2018. Studying and detecting log-related issues.

Emp. Softw. Eng. 23, 6 (2018), 3248–3280.

[29] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A ground-truth fuzzing benchmark. Proc. ACM

Meas. Anal. Comput. Syst. 4, 3 (2020), 1–29.

[30] Ningyu He, Ruiyi Zhang, Haoyu Wang, Lei Wu, Xiapu Luo, Yao Guo, Ting Yu, and Xuxian Jiang. 2021. EOSAFE: Secu-

rity Analysis of EOSIO Smart Contracts. In Proceedings of the 30th USENIX Security Symposium (USENIX Security’21).

1271–1288.

[31] Intel. 2015. Real Time Instruction Trace. Retrieved March 3, 2022 from https://www.intel.com/content/dam/www/

public/us/en/documents/reference-guides/real-time-instruction-trace-atom-reference.pdf.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

https://doi.org/10.1145/1375581.1375615
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales
https://forums.raspberrypi.com/viewtopic.php?t=192728
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/dyld.3.html
https://github.com/google/honggfuzz/issues/63
https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/real-time-instruction-trace-atom-reference.pdf

2:26 X. Liu et al.

[32] Tong Jia, Pengfei Chen, Lin Yang, Ying Li, Fanjing Meng, and Jingmin Xu. 2017. An approach for anomaly diagnosis

based on hybrid graph model with logs for distributed services. In Proceedings of the IEEE International Conference on

Web Services (ICWS’17). IEEE, 25–32.

[33] Tong Jia, Lin Yang, Pengfei Chen, Ying Li, Fanjing Meng, and Jingmin Xu. 2017. Logsed: Anomaly diagnosis through

mining time-weighted control flow graph in logs. In Proceedings of the IEEE 10th International Conference on Cloud

Computing (CLOUD’17). IEEE, 447–455.

[34] Michael Kerrisk. 2021. gcov(1)—Linux manual page. Retrieved June 28, 2022 from https://man7.org/linux/man-pages/

man1/gcov.1.html.

[35] Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering-Volume 1. 185–194.

[36] Heng Li, Weiyi Shang, Bram Adams, Mohammed Sayagh, and Ahmed E. Hassan. 2020. A qualitative study of the

benefits and costs of logging from developers’ perspectives. IEEE Trans. Softw. Eng. 47, 12 (2020).

[37] lifting bits. 2022. McSema, Framework for lifting x86, amd64, aarch64, sparc32, and sparc64 program binaries to LLVM

bitcode. https://github.com/lifting-bits/mcsema. [Online; accessed 21-June-2022].

[38] Xuanzhe Liu, Gang Huang, Qi Zhao, Hong Mei, and M. Brian Blake. 2014. iMashup: A mashup-based framework for

service composition. Sci. Chin. Inf. Sci. 57, 1 (2014), 1–20.

[39] Xuanzhe Liu, Yi Hui, Wei Sun, and Haiqi Liang. 2007. Towards service composition based on mashup. In Proceedings

of the IEEE International Conference on Services Computing Workshops (SCW’07). IEEE Computer Society, 332–339.

[40] Juan Lopez, Leonardo Babun, Hidayet Aksu, and A Selcuk Uluagac. 2017. A survey on function and system call hooking

approaches. J. Hardw. Syst. Secur. 1, 2 (2017), 114–136.

[41] Jie Lu, Feng Li, Lian Li, and Xiaobing Feng. 2018. Cloudraid: Hunting concurrency bugs in the cloud via log-mining.

In Proceedings of the 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. 3–14.

[42] Linux manual page. 2021. ld.so(8). Retrieved May 27, 2022 from https://man7.org/linux/man-pages/man8/ld.so.8.html.

[43] Linux manual page. 2021. perf-intel-pt. Retrieved May 24, 2022 from https://man7.org/linux/man-pages/man1/perf-

intel-pt.1.html.

[44] Linux manual page. 2021. strace. Retrieved May 27, 2022 from https://man7.org/linux/man-pages/man1/strace.1.html.

[45] Dongliang Mu, Yunlan Du, Jianhao Xu, Jun Xu, Xinyu Xing, Bing Mao, and Peng Liu. 2019. POMP++: Facilitating

postmortem program diagnosis with value-set analysis. IEEE Trans. Softw. Eng. 47, 9 (2019), 1929–1942.

[46] Rashmi Mudduluru and Murali Krishna Ramanathan. 2016. Efficient flow profiling for detecting performance bugs. In

Proceedings of the 25th International Symposium on Software Testing and Analysis. 413–424.

[47] Peter Ohmann, Alexander Brooks, Loris D’Antoni, and Ben Liblit. 2017. Control-flow recovery from partial failure

reports. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation.

390–405.

[48] Peter Ohmann and Ben Liblit. 2017. Lightweight control-flow instrumentation and postmortem analysis in support

of debugging. Autom. Softw. Eng. 24, 4 (2017), 865–904.

[49] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural dataflow analysis via graph reachability.

In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 49–61.

[50] Sudip Roy, Arnd Christian König, Igor Dvorkin, and Manish Kumar. 2015. Perfaugur: Robust diagnostics for perfor-

mance anomalies in cloud services. In Proceedings of the IEEE 31st International Conference on Data Engineering. IEEE,

1167–1178.

[51] Anirban Saha, Raju Udava, Mallikarjun Bidari, Mahadeva Prasad, Venkata Raju, and Tushar Vrind. 2021. TraFic–A

systematic low overhead code coverage tool for embedded systems. In Proceedings of the IEEE International Conference

on Electronics, Computing and Communication Technologies (CONECCT’21). IEEE, 1–6.

[52] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing engine for C. ACM SIGSOFT Softw.

Eng. Not. 30, 5 (2005), 263–272.

[53] Wikipedia. 2022. Trie. Retrieved June 10, 2022 from https://en.wikipedia.org/wiki/Trie.

[54] Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping Chen, and Bing Mao. 2017. Postmortem program analysis with

hardware-enhanced post-crash artifacts. In Proceedings of the 26th USENIX Security Symposium (USENIX Security’17).

17–32.

[55] Carter Yagemann, Simon P Chung, Brendan Saltaformaggio, and Wenke Lee. 2021. Automated bug hunting with data-

driven symbolic root cause analysis. In Proceedings of the ACM SIGSAC Conference on Computer and Communications

Security. 320–336.

[56] Carter Yagemann, Matthew Pruett, Simon P. Chung, Kennon Bittick, Brendan Saltaformaggio, and Wenke Lee. 2021.

ARCUS: Symbolic root cause analysis of exploits in production systems. In Proceedings of the 30th USENIX Security

Symposium (USENIX Security’21). 1989–2006.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

https://man7.org/linux/man-pages/man1/gcov.1.html
https://github.com/lifting-bits/mcsema
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man1/perf-intel-pt.1.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://en.wikipedia.org/wiki/Trie

Adonis: Practical and Efficient Control Flow Recovery through OS-level Traces 2:27

[57] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar Pasupathy. 2010. Sherlog: Error di-

agnosis by connecting clues from run-time logs. In Proceedings of the 15th International Conference on Architectural

Support for Programming Languages and Operating Systems. 143–154.

[58] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. 2012. Characterizing logging practices in open-source software. In

Proceedings of the 34th International Conference on Software Engineering (ICSE’12). IEEE, 102–112.

[59] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. 2012. Improving software diagnosability

via log enhancement. ACM Trans. Comput. Syst. 30, 1 (2012), 1–28.

[60] Yongle Zhang, Serguei Makarov, Xiang Ren, David Lion, and Ding Yuan. 2017. Pensieve: Non-intrusive failure repro-

duction for distributed systems using the event chaining approach. In Proceedings of the 26th Symposium on Operating

Systems Principles. 19–33.

[61] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan Zhou. 2017. Log20: Fully automated

optimal placement of log printing statements under specified overhead threshold. In Proceedings of the 26th Symposium

on Operating Systems Principles. 565–581.

[62] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and Chuan He. 2019. Latent error prediction

and fault localization for microservice applications by learning from system trace logs. In Proceedings of the 2019

27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software

Engineering. 683–694.

[63] Zhiqiang Zuo, Lu Fang, Siau-Cheng Khoo, Guoqing Xu, and Shan Lu. 2016. Low-overhead and fully automated statis-

tical debugging with abstraction refinement. In Proceedings of the ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications. 881–896.

[64] Zhiqiang Zuo, Kai Ji, Yifei Wang, Wei Tao, Linzhang Wang, Xuandong Li, and Guoqing Harry Xu. 2021. JPortal:

Precise and efficient control-flow tracing for JVM programs with Intel processor trace. In Proceedings of the 42nd ACM

SIGPLAN International Conference on Programming Language Design and Implementation. 1080–1094.

Received 15 November 2022; revised 22 March 2023; accepted 17 May 2023

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 2. Pub. date: November 2023.

