
37

Characterizing and Detecting WebAssembly Runtime Bugs

YIXUAN ZHANG, Key Laboratory of High Confidence Software Technologies (Peking University), Min-

istry of Education; School of Computer Science, Peking University, China

SHANGTONG CAO, Beijing University of Posts and Telecommunications, China

HAOYU WANG, Huazhong University of Science and Technology, China

ZHENPENG CHEN, University College London, UK

XIAPU LUO, The Hong Kong Polytechnic University, China

DONGLIANG MU, Huazhong University of Science and Technology, China

YUN MA, Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of

Education; Institute for Artificial Intelligence, Peking University, China

GANG HUANG, School of Computer Science, Peking University; National Key Laboratory of Data Space

Technology and System, China

XUANZHE LIU, Key Laboratory of High Confidence Software Technologies (Peking University), Ministry

of Education; School of Computer Science, Peking University, China

WebAssembly (abbreviated WASM) has emerged as a promising language of the Web and also been used

for a wide spectrum of software applications such as mobile applications and desktop applications. These

applications, named WASM applications, commonly run in WASM runtimes. Bugs in WASM runtimes are

frequently reported by developers and cause the crash of WASM applications. However, these bugs have not

been well studied. To fill in the knowledge gap, we present a systematic study to characterize and detect

bugs in WASM runtimes. We first harvest a dataset of 311 real-world bugs from hundreds of related posts on

GitHub. Based on the collected high-quality bug reports, we distill 31 bug categories of WASM runtimes and

summarize their common fix strategies. Furthermore, we develop a pattern-based bug detection framework

to automatically detect bugs in WASM runtimes. We apply the detection framework to seven popular WASM

runtimes and successfully uncover 60 bugs that have never been reported previously, among which 13 have

been confirmed and 9 have been fixed by runtime developers.

CCS Concepts: • General and reference→ Empirical studies; • Software and its engineering→ Software

creation and management;

This work was supported by the National Key R&D Program of China (grant No. 2021YFB2701000), the National Natural

Science Foundation of China (grants No. 62102009 and No. 62072046), the Beijing Outstanding Young Scientist Program

(grant No. BJJWZYJH01201910001004), and Center for Data Space Technology and System, Peking University. Zhenpeng

Chen was supported by the ERC Advanced Grant No. 741278 (EPIC: Evolutionary Program Improvement Collaborators).

Xiapu Luo was supported by the Hong Kong RGC Project (No. PolyU15224121).

Authors’ addresses: Y. Zhang, Y. Ma (Corresponding author), G. Huang, and X. Liu, Peking University, No. 5 Yiheyuan

Road, Beijing, China; e-mails: {zhangyixuan.6290, mayun, hg, liuxuanzhe}@pku.edu.cn; S. Cao, Beijing University of Posts

and Telecommunications, Beijing, China; e-mail: shangtongcao@bupt.edu.cn; H. Wang (Corresponding author) and D. Mu,

Huazhong University of Science and Technology, Wuhan, China; e-mails: {haoyuwang, dzm91}@hust.edu.cn; Z. Chen,

University College London, London, UK; e-mail: zp.chen@ucl.ac.uk; X. Luo, The Hong Kong Polytechnic University, Hong

Kong, China; e-mail: csxluo@comp.polyu.edu.hk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/12-ART37 $15.00

https://doi.org/10.1145/3624743

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

https://orcid.org/0000-0003-3466-0165
https://orcid.org/0009-0007-4557-3813
https://orcid.org/0000-0003-1100-8633
https://orcid.org/0000-0002-4765-1893
https://orcid.org/0000-0002-9082-3208
https://orcid.org/0000-0001-8042-8928
https://orcid.org/0000-0001-7866-4075
https://orcid.org/0000-0002-4686-3181
https://orcid.org/0000-0002-7908-8484
mailto:permissions@acm.org
https://doi.org/10.1145/3624743
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624743&domain=pdf&date_stamp=2023-12-21

37:2 Y. Zhang et al.

Additional Key Words and Phrases: WebAssembly, WebAssembly runtime

ACM Reference format:

Yixuan Zhang, Shangtong Cao, Haoyu Wang, Zhenpeng Chen, Xiapu Luo, Dongliang Mu, Yun Ma, Gang

Huang, and Xuanzhe Liu. 2023. Characterizing and Detecting WebAssembly Runtime Bugs. ACM Trans. Softw.

Eng. Methodol. 33, 2, Article 37 (December 2023), 29 pages.

https://doi.org/10.1145/3624743

1 INTRODUCTION

WebAssembly (abbreviated WASM) has quickly emerged as a promising language of the Web in
recent years [55]. WASM is a binary instruction specification [55, 60, 71] for a stack-based vir-
tual machine and provides developers with an equivalent textual format [38] for reading, testing,
learning instructions, and debugging. Although WASM was initially proposed for Web applications
[69, 72], it is moving fast toward a much wider spectrum of domains, including desktop applica-
tions [24, 39], mobile applications [24], IoT [63, 74], blockchain [18, 19, 46], serverless computing
[24, 54], and edge computing [53, 65]. To develop these applications (named WASM applications),
developers can compile high-level programming languages to WASM binaries or convert the equiv-
alent manually written textual format to WASM binaries. WASM binaries are commonly executed
in WASM runtimes. A WASM runtime provides an efficient, memory-safe, sandboxed execution
environment for WASM applications [42]. However, a great variety of WASM runtime-specific
bugs have been reported by developers, inevitably impeding the development of the WASM appli-
cation ecosystem. Despite this, WASM runtime bugs have not been systematically studied by our
community. Therefore, there is a general lack of an understanding of these bugs, including their
root causes, fix patterns, and how to detect them in emerging WASM runtimes.

This Work. To fill in the knowledge gap, we present the first comprehensive study on charac-
terizing and detecting bugs in WASM runtimes. We focus our study on the three most popular and
representative WASM runtimes, including wasmtime [36], wasmer [33], and WebAssembly Micro
Runtime (WAMR) [40]. We first collect 903 bug-related posts from GitHub, a commonly used data
source for studying software bugs, and make an effort to identify 311 real-world bugs of these
WASM runtimes (see Section 3). Based on the collected bugs, we manually construct a taxonomy
of 31 bug categories (see Section 4), indicating the diversity of WASM runtime bugs. Moreover,
we summarize common fix patterns for each bug category (see Section 5). These empirical results
provide a high-level categorization that can serve as a guide for developers to resolve common
faults and for researchers to develop tools for detecting and fixing common WASM runtime bugs.

Furthermore, we develop a pattern-based bug detection framework based on the knowledge sum-
marized from the bug taxonomy to test the presence of bugs in WASM runtimes (see Section 6). To
evaluate the generalizability of our study, beyond the three analyzed WASM runtimes, we further
consider four emerging WASM runtimes (wasm3, WASMEdge, wasmer-go, and wasmer-python) for
bug detection. We have successfully identified 60 previously unknown bugs. We report these bugs
to the developers of corresponding WASM runtimes. By the time of this writing, 13 bugs have been
confirmed by the developers, and 9 of them have been fixed based on our suggestions.

To summarize, this article makes the following contributions:

• We conduct the first systematic study of bugs in WASM runtimes. We summarize common
bug categories and their corresponding fix strategies. Our results can help understand and
characterize bugs in WASM runtimes while shedding light on future WASM-related studies.
• We develop a pattern-based bug detection framework based on the knowledge summarized

from bug categories we created to automatically detect bugs in WASM runtimes. By ap-
plying the detection framework to real-world WASM runtimes, it shows that our proposed

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

https://doi.org/10.1145/3624743

Characterizing and Detecting WebAssembly Runtime Bugs 37:3

Fig. 1. An example of a wat format file.

framework can effectively detect bugs and provide useful information to facilitate bug diag-
nosis and fixing.
• We make the scripts, datasets, and bug detector available to the research community for

other researchers to replicate and build upon.

2 BACKGROUND

In this section, we introduce WASM binaries, Wat format, execution of WASM binaries, and WASM
runtime architecture.

2.1 WASM Binaries

WASM is a low-level assembly-like language that is designed for efficient execution and compact
representation. The WASM binary file is compact like Java class files and is saved with the .wasm
suffix [77]. The WASM specification defines a conceptual stack virtual machine for most WASM
instructions to work on, performing numbers’ pop and push and leaving the result on the stack.

2.2 Wat Format

Wat format is a pretty-printed textual format (i.e., .wat) [38] provided for developers, which can
be used to learn the syntax, understand the WASM module, test the WASM program, optimize
applications, debug code, write WASM programs by hand, and so forth.

Developers and users can use the wabt [20] tool to translate WASM binaries to WASM textual
format or vice versa. A module is the fundamental unit of code in WebAssembly, and it is repre-
sented as a tree of nodes that describe the module’s structure and code. This structure is depicted
using S-expressions, a simple and old textual format for representing trees. WebAssembly’s tree
is flat, mainly comprising lists of instructions. In binary and textual formats, the module serves as
the building block of WebAssembly programs. Each node in the tree goes inside a pair of parenthe-
ses (...). The simplest WASM module is as follows: (module). All code in a Webassembly module
is grouped into functions, which have the following structure: (func <signature> <locals> <body>).
The signature declares the function parameters and return values. The locals are declared with
explicit types. The body is just a linear list of WASM instructions [38]. As shown in Figure 1, the
function add in the WASM module accepts two i32 values as the parameters and returns the pulsed
value. The function add is exported with the name func1.

2.3 Execution of WASM Binaries

Before illustrating the execution process of WASM binaries, we first introduce some terms. High-

level language means the programming languages developers used to develop applications [68],
such as Java, Python, Go, Rust, C, C++, and JavaScript. Native code means the machine code that
is compiled to run directly on a specific processor or computer architecture without needing an
interpreter or virtual machine [77]. WASM code is the same as WASM binaries and represents the
equivalent Wat format. Frontend compiler means the WASM compilers that could compile high-
level languages into WASM binaries, such as Emscripten [43]. After illustrating related terms, we

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

37:4 Y. Zhang et al.

Fig. 2. The execution process of WASM binaries.

Fig. 3. The general architecture of a WASM runtime.

next show the execution of WASM binaries. As a binary instruction format, WASM is designed as a
portable compilation target for high-level programming languages [42]. As shown in Figure 2, de-
velopers can use WASM compilers (frontend compiler) to translate high-level language programs
into WASM binaries. There are dozens of compilers available to compile different source language
programs to WASM binaries, such as AssemblyScript, Emscripten, and Rustc/WASM-Bindgen [68].
WASM can be executed at native speed [55] on a wide range of platforms. The tool for this critical
process is a WASM runtime, an intermediate layer between the WASM binaries and the hardware
platforms. A WASM runtime should consider the structure, operating system, and other differences
between various platforms and provide a relatively secure execution environment for the WASM
binaries. As shown in Figure 2, developers can create applications in high-level languages, compile
them into WASM binaries [16, 68], and execute WASM binaries in WASM runtimes. Alternatively,
they could develop simple WASM programs in the textual format, convert them to WASM binaries
through wabt [20], and execute the binaries in WASM runtimes.

2.4 WASM Runtime Architecture

Based on the implementation of well-known WASM runtimes [23, 25, 26, 32, 33, 36, 40], we have
summarized the general architecture of WASM runtimes in Figure 3, which can be divided into six
major components.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

Characterizing and Detecting WebAssembly Runtime Bugs 37:5

Fig. 4. Overview of the methodology.

Backend compiler. WASM runtimes support executing WASM binaries in the following modes:
interpreter mode, ahead-of-time (AoT) compilation mode, and just-in-time (JIT) compilation
mode. WASM runtimes support compiling WASM binaries into native code before executing it
locally using AoT compilers. To speed up the execution efficiency, some WASM runtimes use the
just-in-time compilation of hot code through JIT compilers. JIT compilers and AoT compilers are
considered backend compilers in the WebAssembly workflow.

Interpreter. Some WASM runtimes provide interpretive execution on the WASM binaries.
Runtime environment. The runtime environment supports allocating memory, performing

stack operations, reporting execution error messages, and other features.
High-level language API. The WASM runtimes can be embedded in different high-level lan-

guages (e.g., C/C++, Java, Python, Rust, etc.) as a library to allow users to use WASM in any sce-
narios with various languages.

WebAssembly system interface. WASM runtimes provide WASM applications with the We-

bAssembly system interface (WASI) [41] as a modular system interface [23], focusing on secu-
rity and portability. WASI is the bridge between the sandbox environment and operating systems.
WASI is an API that provides access to several OS-like features, including file operation and clock.

Auxiliary tools. WASM runtimes also provide handy little tools for the users, such as WASM
module cache, WASM textual file format validation, and so forth.

3 STUDY DESIGN

3.1 Research Questions

We focus our analysis on the bugs in WASM runtimes. Specifically, we aim to address three research
questions that are concerned with bugs in WASM runtimes:

RQ1 Bug taxonomy. What are the root causes of the bugs in WASM runtimes?
RQ2 Fix strategies. What are the common fix strategies for different bug symptoms?
RQ3 Bug detection. What is the effectiveness of the proposed bug taxonomy in uncovering bugs?

We first perform an empirical study to characterize WASM runtime bugs. Specifically, we seek to
investigate (1) the taxonomy of bugs, i.e., the reasons leading to the bugs, and (2) the fix strate-

gies, i.e., how to address these bugs. Moreover, we construct the (3) bug detection framework

to identify bugs in WASM runtimes. Figure 4 shows the overview of our study methodology.

3.2 Collection of WASM Runtime Bugs

To approach the answer, we collect and analyze the bug reports posted on Github and Stack

Overflow, following the traditional empirical methods in the SE community [49, 52, 57, 67, 68, 70,
73, 76, 78, 79], as shown in Figure 4.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

37:6 Y. Zhang et al.

Table 1. Statistics of Our Harvested Dataset

Runtime Stars Commits Language GitHub issues SO Posts Total

wasmer 12,026 11,332 Rust 403 (179) 41 (0) 444 (179)
wasmtime 7,360 9,754 Rust 167 (94) 52 (0) 219 (94)
WAMR 2,720 686 C/C++ 333 (38) 4(0) 337 (38)

Total 903 (311) 97 (0) 1,000 (311)
∗The refined numbers are in the parentheses.

3.2.1 Selecting WASM Runtimes. As shown in Table 1, we select the three most popular WASM
runtimes as target, including wasmer [33], wasmtime [36], and wasm-micro-runtime (WAMR) [40].
We believe they are the most representative WASM runtimes for us to characterize real-world
WASM runtime bugs across different implementations, as (1) all of them are mature projects (with
over 100,000 LOC) that have gained thousands of stars on GitHub, (2) they have covered different
kinds of execution modes (i.e., Interpreter, JIT, and AoT), and (3) they are implemented in different
languages (i.e., Rust and C/C++).

3.2.2 Data Collection from GitHub. Following previous work [49, 67, 68, 73, 78, 79], we extract
issues in the official GitHub repositories of the selected WASM runtimes. GitHub issues contain
a wealth of bug-related information, such as source code, comprehensive reports, and contributor
discussions [51]. These characteristics make GitHub issues suitable for analyzing bug root causes
and summarizing fix strategies. For details, we use the GitHub API shown in the artifact [44] to
extract the related issues on May 14, 2022. GitHub issues include various topics, including bug
reports, feature requests, and documentation updates. Thus, to highlight the purposes of bugs, we
take advantage of the bug issue label to identify related issues. We collect issues related to wasmer
and wasmtime by filtering labels with “bug.” Because all the issues from WAMR are not labeled, we
extract all the issues from WAMR for further analysis. Overall, we obtain 403 issues from wasmer,
167 issues from wasmtime, and 333 from WAMR.

3.2.3 Data Collection from SO. Initially, we also consider posts from Stack Overflow. Each SO
question has at least one tag based on its topics. We extract the posts related to the selected WASM
runtimes on May 14, 2022. As a result, we obtain 41 posts for wasmer, 52 posts for wasmtime, and
4 posts for WAMR. Table 1 shows the collected raw data.

3.2.4 Refining the Dataset. We manually investigate the collected data from GitHub and Stack

Overflow. First, we filter out GitHub issues and SO posts with no definite answers to ensure the
accuracy and certainty of bugs and fix strategies. Second, we exclude installation/build bugs, doc-
umentation bugs, user misuse, and other issues and posts unrelated to WASM binaries’ execution
from the source data. Finally, as shown in Table 1, the total number of WASM runtime bugs is 311.
The scale of this dataset is comparable and more extensive than those used in existing bug-related
studies [45, 47, 49, 51, 68, 76, 78] that also require manual inspection. All the 311 issues are from
GitHub since the 97 SO posts are all excluded in the data refining process. This is probably because
there are few WASM experts on SO since WASM is an emerging language. Therefore, WASM de-
velopers tend to report the bugs they encounter to the official WASM runtime repositories to seek
immediate help.

3.3 Labelling Bugs and Fix Strategies

The refined 311 bug reports are used for distilling features and fix strategies through manual la-
beling by two authors and an intercessor.

3.3.1 Pilot Labeling. First, we randomly sample 50% of the posts (N = 155) from the selected
WASM runtimes for pilot labeling. The first two authors of the article jointly participate in the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

Characterizing and Detecting WebAssembly Runtime Bugs 37:7

Fig. 5. Taxonomy of bug symptoms. The number in the top right corner indicates the number of bugs for

each category.

process. According to the WASM runtime architecture and the root causes, they create the bug
categories and fix strategies by analyzing the GitHub issues.

3.3.2 Reliability Analysis. For reliability analysis, the first two authors independently label the
remaining 40% issues based on the taxonomy constructed in the prior stage. In detail, they mark
each issue with the posted bug, fix strategy categories, and the issues that cannot be classified into
the current taxonomies as a new category. To measure the reliability during the independent label-
ing, we employ the widely used Cohen’s Kappa indicator (κ) for bug and fix strategies of 0.921 and
0.915, respectively, indicating almost perfect agreement [50]. The agreement levels demonstrate
the reliability of our labeling.

The divergence in the labeling process is then discussed and settled after the labeling process.
For the newly added categories by the first two authors, we discuss them with the intercessor. As a
result, we add two new categories to the bug taxonomy and three new categories to the fix strategy
taxonomy. Furthermore, the first two authors independently label the remaining 10% of issues.
During this process, no more bug taxonomy or fix strategy is added, indicating saturation of the

taxonomy. After finishing the whole labeling stage, the Cohen’s Kappa indicator (κ) for bug and
fix strategies is 0.929 and 0.925, respectively, showing almost perfect agreement [50]. Additionally,
the three authors involved in the taxonomy check the final labeling result together. We will detail
the bugs and fix patterns in the following sections.

4 RQ1:TAXONOMY OF WASM RUNTIME BUGS

We present the hierarchical taxonomy of WASM runtime bugs according to the WASM runtime
architecture (see Section 2). As shown in Figure 5, the taxonomy is organized into three categories,
including a root category (WASM Runtime Bugs), four inner categories linked to different compo-
nents in a WASM runtime (e.g., Backend Compilation), and 31 specific leaf categories (e.g., Register

allocation error).
The backend compilers (JIT compilers and AoT compilers) of the architecture are summarized

into one inner bug category, called Backend Compilation (A), which converts WASM binaries into
native code. The bugs in the lowest part in a WASM runtime are called WASI Robustness (B). The
handy little tools in WASM runtimes are called Auxiliary Tools (D). Other bugs that occur while

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

37:8 Y. Zhang et al.

Fig. 6. Example (a): GitHub wasmtime issue #4170.

running WASM binaries are classified into Runtime Environment (C), including memory allocation,
calling host functions, and so on. It is worth mentioning that bugs that occur while using high-
level language API are either divided into Backend Compilation (A) or Runtime Environment (C).
WASM users could use the API to compile WASM binaries and take advantage of functionalities
in Runtime Environment, and it is an interface for users to make good use of a WASM runtime.
Moreover, the interpreter part is merged in a leaf category of Backend Compilation (A), as only
WAMR provides an interpreter, and only one bug is found in the interpreter.

4.1 Backend Compilation

As the first stage of executing WASM binaries, backend compilation is used to translate WASM
binaries into native code. In general, backend compilers convert WASM binaries into their in-

termediate representation (IR), allocate registers, and optimize the code. Note that backend
compilers could convert WASM binaries into the IR proposed in other compilation framework in-
frastructures (e.g., LLVM). The whole process needs to support various OSs and CPU architectures.
We observe 119 bugs in this category, accounting for 38.3% of all the classified bugs and covering
10 leaf categories.

Various backend compilers use their own IR as the intermediate step to translate WASM instruc-
tions to native code. During the process of compiling, compilers could generate incorrect IR or
incorrect native code during the translation of WASM binaries. Besides, optimizing the code could
also lead to an error. These bugs are summarized as Incorrect compilation (A.2). A compiler may
raise an exception when generating native code or even fail to generate the native node (A.3), which
accounts for 16.8% of bugs in Backend Compilation (A). Moreover, some WASM runtimes rely on the
existing compilation framework, such as LLVM. Thus, Using the incorrect version of infrastructure

(A.1) could lead to unexpected results, accounting for 2.5% bugs in Backend Compilation (A).
Besides converting WASM instructions into native machine instructions, the backend compilers

must allocate registers. However, they may result in the Incorrect register allocation (A.4), includ-
ing incorrectly using special registers, loading data from an unexpected register, and exhausting
registers. These bugs account for 7.6% of bugs in Backend Compilation (A). As shown in Example
(a) (Figure 6), the allocation of r15 poses a bug (lines 4, 6, and 7 with highlight) [37]. Before describ-
ing this example, let us introduce two concepts. A control and status register (CSR) is a special
type used to store control and status information about the processor or system. A pinned register
refers to a register that is fixed or restricted in its use. It has a specific role and cannot be used for
general-purpose operations like other registers. In wasmtime, the pinned register is enabled by the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

Characterizing and Detecting WebAssembly Runtime Bugs 37:9

Fig. 7. Example (b): GitHub wasmtime issue #3337.

enable_pinned_reg Cranelift (the backend compiler) setting and used via the get_pinned_reg
and set_pinned_reg CLIF ops. However, now the implementation of it is only supported when
Cranelift is embedded in SpiderMonkey. In other cases, such as aarch64, Cranelift cannot correctly
translate the usage of the pinned register in CLIF ops to native code, and Cranelift mistakenly uses
mov ops to read and write the pinned register (r15). As another example in Example (b) (Figure 7),
wasmtime allocates registers for the given wat file. However, the allocation of registers shows a bug
while lowering Single Instruction Multiple Data (SIMD) instructions (line 5 with highlight in
wat code) [15]. Vcode is a kind of IR used in wasmtime when lowering WASM binaries into native
code. The movdqa instruction in Vcode is used to move the data from v6 to v7, but v6 is never set
(line 6 with highlight in Vcode). This bug will cause panic during the execution of WASM binaries,
and the execution process cannot be completed. Most WASM runtimes only support JIT or AoT
compilation, while WAMR also provides an interpreter to deal with WASM. There is only one bug in
the interpreter. The interpreter could not correctly pass parameters to submodules, leading to an
incorrect result. Moreover, this is summarized into Others (A.10).

In the compilation process, WASM runtimes run the WASM file across various operating sys-

tems (A.5). They account for 7.6% of bugs in the current inner category. The backend compilers
encounter problems only caused by specific operating systems and lack consideration for their
particular circumstances. With its architecture and instruction set, WASM runtimes also run the
WASM files across different CPUs. Some problems are only present in specific CPUs or specific ar-
chitecture machines. These problems are summarized as Incomplete hardware support (A.6), which
account for 5.9% bugs in Backend Compilation.

Further, we observe 11.8% of bugs in Unsupported data operation (A.7). As an example, the back-
end compiler Cranelift used in wasmtime does not support srem.8 and srem.16 operations in
its IR [16, 17]. Although the WASM binaries can be translated into Cranelift IR using srem.8
and srem.16, the implementation of these operations in Cranelift is currently incomplete, as re-
ported in wasmtime issue #2826 [12]. Besides, the lowering from WASM binaries into cranelift IR

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

37:10 Y. Zhang et al.

in wasmtime could lack the design of supporting the data operation in big-endianness machines
(e.g., GitHub wasmtime issue #3288). Executing the clif file on s390 hardware shows wrong results
only for the i16, i32, and i64 types, while i8 passes these tests. The s390 architecture is big-endian,
while the data operation in wasmtime was taken from the lower bites. Thus, the data operation of
i16, i32, and i64 was not supported in the big-endianness machine. This kind of bug could pose
different execution results or execution exceptions. This bug can result in inconsistent results or
execution exceptions for the same WASM binaries executed on different machines. Besides, the
WASM specification introduced SIMD instructions to improve execution efficiency. Backend com-
pilers may lack the support for data operation related to SIMD instructions, such as the operation
of the v128 data type.

During the compilation process, the verifier must validate the legalization of IR, WASM instruc-
tions, and temporary files emitted by AoT compilers. The incorrectness or strictness of validation

(A.8) causes errors in the backend compilation process, accounting for 5.9% of bugs in Backend

Compilation (A). To make it easier for the users to utilize the WASM runtimes and learn about the
code error, the WASM runtime developers should consider the debugging information during the
backend compilation. The WASM debugging information (A.9) bugs lead to several consequences,
such as failing to provide debugging information or even influencing the compilation of WASM
information, accounting for 6.7% bugs in Backend Compilation (A).

4.2 WASI Robustness

WASI is the fundamental part of a WASM runtime, allowing WASM to run outside the Web. WASI
supports WASM with several OS-like features, including files, sockets, and the clock. Each WASM
runtime could implement its specific features. Bugs in this part account for 17.4% of our dataset.

WASI allows the WASM binaries to perform file operations, including making a new directory,
writing and reading files, deleting files, and so on. The most common bug related to WASI is File

operation error (B.1), which accounts for 27.8%. For example, users failed to rename a file through
WASI by applying wasmer in the wasmer issue #2297 [11]. Besides, Input and output stream er-

ror (B.4) and Clock Bugs (B.8) are also found in this part, accounting for 13.0% and 5.6% of bugs,
respectively, in WASI Robustness individually. Different WASM runtimes implement their own
WASI, which may lack the support for some operations (B.3). In WASI Robustness 9.3% of bugs are
triggered due to unsupported operations. For example, in the wasmer issue 1640 [7], the author
reported that when using the function siglongjmp in a WASM file, wasmer encounters an error. It
is due to setjmp and setlongjmp not being supported in WASI. For another example, in the wasmer
issue 1263 [4], the author reported that WASI syscalls lack support for pre-opened directories.

In addition to the basic functionalities, WASI relies on different WASI modules and versions.
Frontend compilers convert the high-level language into WASM binaries, which may include a
few WASI modules and different versions. WASM should import different WASI modules (B.2) to
support specific functionalities. These imports encounter a few bugs, such as module not found,
incompatible version, and so forth. These bugs account for 5.6% in WASI Robustness. Due to the
updated versions of runtimes, new WASI versions are continuously provided by the runtimes.
Using the incompatible WASI version (B.6) in WASM runtimes could be unsupported and account
for 7.4% of bugs in WASI Robustness.

Moreover, WASI is the bridge between WASM and the OS, which should support different OSs.
The diversity in these OSs can result in Operating system support error (B.5), accounting for 5.6%
of bugs in this category.

Furthermore, all the WASM runtimes should support WASI to interact with the low-level system,
and wasmer also provides another application binary interface (ABI) to do this. Bugs in this
part are regarded as Other counterpart error (B.7) and account for 9.3% of bugs in this category.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

Characterizing and Detecting WebAssembly Runtime Bugs 37:11

4.3 Runtime Environment

After compiling WASM to native code, WASM runtimes support the WASM with an execution en-
vironment. The runtime environment supports WASM with module import, trap message tracking,
metering computing cost, and other functionalities. Bugs happening in Runtime Environment (C)

account for 38.6% of bugs in total.
We observe a significant proportion (20%) of bugs about module operation in Runtime Environ-

ment, including Module instantiation bugs (C.1) and Module import error (C.2). Specifically, 13.3%
of bugs in this category are related to WASM module instantiation. The WASM module has to
be instantiated before execution. These bugs are related to the instance allocator, module loading,
multiple instantiation error, and so forth. High-level language API makes it easier for WASM de-
velopers to utilize WASM runtimes. The API could import modules from the host environment or
other WASM modules. These bugs are about unknown imports, calling host functions, and so forth.

Functions in WASM could call the host functions defined in high-level language (C.3) and account
for 10% bugs in Runtime Environment (C). This process contains bugs of parameter passing, finding
host functions, and so forth.

Memory issue (C.4) is a common kind of bug when executing the WASM binaries, accounting
for 15.8% of bugs in this category. These bugs are about memory management, including memory
allocation, multi-memory support, out-of-memory error, memory release, and memory growth.

When executing WASM binaries, WASM runtime could encounter bugs in dealing with traps

(C.5) and lead to an abortion, accounting for a total of 7.5% of bugs in this category. These bugs
are related to the process of the unreachable instructions in WASM binaries. Besides, WASM
runtimes sometimes do nothing with the errors, and the errors were not carefully reported to
users. The WASM runtime should generate an exception or return a well-defined error (C.10).

In executing native code generated from WASM, many users encounter Thread safety issue (C.7)

and Stack issue (C.8). Thread safety issue (C.7) refers to the thread safety when executing WASM
binaries. Stack issue (C.8) refers to the bugs about the stack, such as match rules for popping when
calling WASM functions. These bugs account for a total of 13.3% of bugs in Runtime Environment

(C).
We also observe three bugs about the entry point of a WASM module (C.9). The functions named

“_main”, “_start”, “main”, and “start” are regarded as entry points of a WASM module. A WASM
runtime will call the entry point function by default without setting the function name through
the command line or high-level language API. However, some WASM runtimes require each
WASM module to hold an entry point that is too strict. These bugs are summarized as Entry point

error (C.9).
Furthermore, when developers use high-level language API to do some operations of a WASM

module, they may encounter data type conversion problems (C.11), accounting for 3.3% of bugs in
the current inner bug category.

Besides, the Runtime Environment cannot meet all expectations of functionalities from users.
The Runtime Environment lacks support for some features (C.6) that users need, which account for
3.3% of bugs on its own.

4.4 Auxiliary Tools

Besides executing WASM files, WASM runtimes provide users with handy little tools related to
WASM, including validating the format of WASM files, WASM module cache, and Wat and WASM
file conversion and package manager. As different WASM runtimes differ significantly in this re-
spect, this category is not classified into leaf categories. This category accounts for 5.8% of all the
classified bugs. For example, in wasmer issue #2028 [8], when passing environment variables into
wasmer run via the –env flag, the program will fail if the environment variable contains an “=,”

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

37:12 Y. Zhang et al.

Table 2. Statistics of the Four Additional Runtimes

Runtime Stars Commits Language GitHub Issues

wasm3 6k 1,661 C/C++ 14 (8)
WasmEdge 5.8k 2,562 C/C++ 83 (42)
wasmer-python 1.8k 1024 Rust & Python 33 (6)
wasmer-go 2.4k 668 Go & C 54 (14)

Total 184 (70)
∗The refined numbers are in the parentheses.

which should be allowed. Moreover, when validating the format of WASM binaries, wasmer uses
command wasmer validate to do this. Although setting the parameter –enable-simd, it incorrectly
reports an error when validating a WASM module with SIMD.

4.5 Validity of the Taxonomy

Three WASM runtimes (wasmer[33], wasmtime[36], WAMR[40]) are considered to construct the
bug taxonomy. These three WASM runtimes are only implemented in Rust and C++. However,
it is unknown whether the bug taxonomy is generalizable. To address this concern, we need to
assess the taxonomy on other WASM runtimes to ensure its generalizability. Therefore, we in-
clude WASM runtimes implemented in different languages, including wasm3 [26], WasmEdge [32],
wasmer-python [35] and wasmer-go [34], to consider as diverse WASM runtimes as possible. We
extract closed Github issues with the bug label of the other four WASM runtimes (wasm3 [26],
WasmEdge [32], wasmer-python [35] and wasmer-go [34]) and classify them according to the
proposed taxonomy. First, we filter out issues with no definite answers to ensure the accuracy and
certainty of bugs and fix strategies. Second, we exclude installation/build bugs, documentation
bugs, and other issues unrelated to WASM binaries’ execution from the source data. Finally, as
shown in Table 2, the total number of the four WASM runtime bugs is 70.

As all the bugs in the four WASM runtimes can be classified according to the taxonomy men-
tioned above, the threat could be considered neutralized. Although WASM runtimes have their
characteristics, they show a similar architecture, as shown in Figure 3. The bug categories of all
the bugs from the four runtimes (wasm3, WasmEdge, wasmer-go, and wasmer-python) are also pub-
lished in the artifact [44].

Summary of answers to RQ1:

(1) We construct a taxonomy of 31 leaf bug symptom categories in WASM runtimes, indicating

the root causes and the diversity.
(2) Bugs in Backend Compilation account for 38.3% of WASM runtime bugs, covering 10 leaf

categories. A large proportion (23.5%) of these bugs are revealed with incorrect compilation.

(3) 17.4% of bugs are related to WASI implementation, covering nine symptom categories.
In particular, 46.3% of the bugs in this category are related to the basic functionalities of
WASI (i.e., B.1, B.2, and B.4).
(4) Most (i.e., 38.6%) bugs occur in the Runtime Environment, covering a broad spectrum
of symptoms (i.e., 12 leaf categories). Among them, memory issue is the most common,
accounting for 15.8% of bugs in this category.

5 RQ2: FIX STRATEGIES OF WASM RUNTIME BUGS

To figure out how developers fix various types of bugs, we distill their fix strategies in this section
for each inner bug category. Because bugs in the category Auxiliary tools are either too specific

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

Characterizing and Detecting WebAssembly Runtime Bugs 37:13

Fig. 8. Distribution of fix strategies for Backend Compilation.

or irrelevant to WASM runtime themselves, and they only account for 5.8% of bugs, we do not
study the fix strategies for them. We have summarized the general fix strategies for the remaining
three inner symptom categories. As shown in Figures 8, 11, and 12, the X axis shows each leaf bug
category in Figure 5, and the Y axis represents the corresponding fix strategies following by their
totally used frequency under the inner category. We elaborate on the summarized fix strategies of
their frequent symptoms and demonstrate some examples of bugs and corresponding fixes in the
real world.

5.1 Fix Strategies for Backend Compilation

We summarize eight systematic fix strategies for bugs in Backend Compilation and illustrate the
distribution of these strategies on leaf categories in Figure 8.

Fix compilation rules. In Backend Compilation 39.6% of bugs can be solved by modifying
compilation rules in different backend compilers. Compilation rules are the guide for translating
WASM instructions to native code. For example, wasmtime developers modify the files with the
.isle suffix to change the rules of emitting native code. As shown in Example (b) (Figure 7), dur-
ing the lowering of SIMD instructions, the allocation of registers in wasmtime shows a bug [15].
The movdqa instruction moves out of v6, but v6 is never set. This bug is because the SIMD low-
ering is missing an instruction somewhere. To fix this bug, the wasmtime contributors modify the
lower.isle file to complement the compilation rules for the i64x2, i32x4, and i16x8 extend in-
structions. Wasmer fixes the emitter file for different CPU architectures to emit native code. This
fix strategy covers five bug symptoms and is especially frequently adopted in the Incorrect compi-

lation (A.2) and Compilation failure (A.3) bug categories. After modifying the compilation rules in
the backend compilers to support more reasonable translation, 71.4% of Incorrect compilation (A.2)

bugs are fixed. As for Compilation failure (A.3) bugs, the backend compilers may encounter unex-
pected exceptions and abortion due to the unreasonable compilation rules. Therefore, developers
fix these bugs by changing the compilation rules to meet the actual requirements and support
emitting correct native code in most cases.

As shown in Example (c) (Figure 9), a developer reports that the i64.rotr instruction in WASM is
incorrectly compiled with LLVM in wasmer when given a rotate amount of 0 (line 5 with highlight)
[10]. The i64.rotr instruction takes two operands: the first operand is the value to be rotated (a 64-
bit integer), and the second operand specifies the number of bits to rotate. The instruction takes
the bits from the input value and shifts them to the right by the specified number of bits. The bits
that are shifted out from the right side reappear on the left side, creating a circular rotation. Rotate
by 0 should not change the first operand, and the expected result is 4. However, wasmer mistakenly
compiles the i64.rotr instruction with amount 0 and gets the result of -1. The contributors modified

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

37:14 Y. Zhang et al.

Fig. 9. Example (c): GitHub wasmer issue #2215.

the lowering rules for shift operations when translating from WASM instructions to LLVM IR. As
depicted in Figure 9, v1 represents the value to be rotated, and v2 is the number of bits to rotate.
The code uses a bitwise AND operation with a bit mask to ensure that the shift amount includes 0.
Specifically, the modified program creates a 64-bit integer constant with all bits set to 1, except for
the most significant bit (bit 63), which is set to 0. This mask ensures that the shift value falls within
the valid range. Subsequently, a bitwise AND operation is performed between v2 and the mask to
ensure the shift value v2 is between 0 and 63. The program then calculates the left and right parts
of the rotation using left and right bitwise shift operations, respectively. Furthermore, the program
combines these parts using the bitwise OR operation to obtain the final result. Finally, the result
is pushed back onto the stack. Compilation rules, such as lowering rules, provide guidance for
translating WASM instructions into native code.

Even worse than emitting incorrect native code is that the backend compilers fail to compile
some instructions or the whole WASM module. For example (wasmtime issue #2347 [5]), a user
reports that the backend compiler in wasmtime (V0.20 and main branch) fails to compile a WASM
module. The wasmtime developers fix it by modifying the compilation rules. In detail, they do block
manipulation in the wasmtime translation of some table-related instructions and explicitly call the
ensure_inserted_block().

Fix register allocation. In Backend Compilation, 16.2% of bugs, involving three frequent bug
categories, can be fixed by changing the register allocation. As aforementioned in Section 4, while
generating native code from WASM instructions, the backend compilers are expected to allocate
registers. Nevertheless, they may use incorrect registers, load data from an unexpected register,
exhaust registers, and so forth. Various WASM instructions and instruction set architectures

(ISAs) make it hard for the backend compilers to allocate suitable registers.
Fix data operation. The fix strategy is used for 9.0% of bugs in Backend Compilation, cover-

ing a wide range of bug categories, including Incorrect compilation (A.2), Compilation failure (A.3),

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

Characterizing and Detecting WebAssembly Runtime Bugs 37:15

Fig. 10. Example (d): GitHub wasmtime issue #3173.

Incomplete operating system support (A.5), and Unsupported data operation (A.7). The strategies in-
clude fixing data alignment, adding support for i8 and i16, fixing byte order, dealing with undefined
upper bits, converting data types, returning multi-value data, and supporting v128 data type.

Supplement validation rules. Supplement rules of the verifier will tackle the problems in
validation, repairing 8.1% of bugs in Backend Compilation, and mainly fix the Validation error (A.8).
For example (wasmer issues #2187 [9]), a developer reports that he cannot get the memory page
in WASM of 65536, although the user sets memory minimum and maximum sizes range 0.65536
inclusive by WASM instructions. The verifier is expected to block 65537 and higher. However,
wasmer only works on 65535 and lower. This corresponding fix strategy is to modify its validation
rules.

Fix debug information. This fix strategy repairs 7.2% of bugs in Backend Compilation (A),
dealing with 87.5% bugs in WASM debugging information error (A.9). WASM debugging information

error (A.9) may lead to the failure of providing incorrect debug information that misleads the users.
By fixing debug information, these bugs could be well settled.

Eliminate unreasonable operation. Some functionalities in backend compilers of WASM run-
times lead to an unexpected consequence. These functionalities are meaningless and need to be
limited. For example (wasmtime issue #2883 [13]), wasmtime users try to use ssub_sat with two
I64 values. They use cranelift-object with a triple in the IR in the wasmtime backend compiler. It
is worth mentioning that ssub_sat is a vector command, but it is used with a scalar. Moreover,
the developers eliminate the unreasonable operation, limiting saturating arithmetic instructions
uadd_sat, sadd_sat, usub_sat, and ssub_sat, and applying them only to vector types. This kind
of fix strategy fixes 4.5% of bugs in Backend Compilation.

Add compilation functionality for SIMD instructions. Some WASM runtimes do not sup-
port the intact functionalities to deal with SIMD instructions. Adding the support will address
the bugs. This strategy fixes three bugs in Incorrect compilation (A.2) or Compilation failure (A.3)

related to SIMD instructions. The select instruction allows for the conditional selection of one of
its first two operands, depending on whether its third operand is zero. When the third operand is
zero, the second operand is selected. Otherwise, the first operand is selected. However, as shown
in Example (d) (Figure 10), the select instruction in wasmtime fails an assertion when it is given
v128 types as operands (lines 3, 4, and 6 with highlight) [14]. It is because the vector types are not
supported for the select instruction. The contributors fix it by adding the vector types check for
SIMD instructions.

Using the correct version of the infrastructure. Since some backend compilers in WASM
runtimes rely on existing frameworks such as LLVM, adjusting the LLVM’s version can handle
some problems. This fix strategy fixes all the bugs in Incompatible infrastructure version (A.1).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

37:16 Y. Zhang et al.

Fig. 11. Distribution of fix strategies for WASI Robustness.

5.2 Fix Strategies for WASI Robustness

As illustrated in Figure 11, we identify seven frequent fix strategies for bugs in WASI Robustness.
Fix the file operation. This strategy fixes 35.6% bugs in WASI Robustness, including all the

bugs in File operation error (B.1) and half of the bugs in Operating system support error (B.5). For
example (wasmer issue #2297 [11]), a user reports that renaming a temporary file through a WASM
file fails and prints unable to rename temporary. The developers fix the implementation of WASI
to allow this operation.

Supplement features. WASM runtimes are expected to implement the necessary features.
However, some WASM runtimes do not fulfill this expectation. In such cases, WASM runtime devel-
opers need to implement the expected functionalities in WASI and thus the Unsupported operation

(B.3) bugs can be fixed.
Fix input and output stream error. When the required message is not successfully printed or

the necessary information is not correctly imported into WASM, the Input and output stream error

(B.4) occurs. In these cases, developers need to fix the input and output streams. This fix strategy
fixes 13.3% bugs in WASI Robustness.

Fix WASI import & Fix the WASI version. The two strategies are mainly used to tackle
the Import error (B.2) and WASI version error (B.6), which occur when using different modules
from WASI. The developers fix WASI import to use the suitable WASI module to support specific
functionalities, and fix the WASI version to make the WASM binaries compatible with the current
circumstances. The two strategies all fix 8.9% of bugs in WASI Robustness.

Fix counterpart error. This fix strategy can resolve the Other counterpart error (B.7), accounting
for 6.7% of bugs in WASI Robustness, which could be regarded as the repair method for all the
counterparts’ ABI.

Fix clock error. This fix strategy only focuses on the Clock bugs (B.8) in WASI Robustness and
resolves 6.7% of bugs.

5.3 Fix Strategies for Runtime Environment

We identify 11 frequent fix strategies for bugs in Runtime Environment, and Figure 12 shows the
distribution.

Fix memory allocation & Fix memory leak & Fix memory release. In Runtime Environ-
ment 29.4% of bugs can be resolved by the three fix strategies for memory management. The three
strategies mainly fix the Module instantiation bugs (C.1) and Memory issues (C.4). After compil-
ing the WASM binaries into native code, WASM runtimes need to instantiate the current WASM

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

Characterizing and Detecting WebAssembly Runtime Bugs 37:17

module. Errors about instance allocation and module loading errors could happen. Besides, other
bugs related to multi-memory support, out-of-memory, and memory growth could occur. The de-
velopers mainly use these methods to deal with such cases.

Fix error message. This fix strategy is to modify the error message to make it more reasonable
or catch unexpected failures with an error message. This strategy fixes 11.8% of bugs in Runtime
Environment. For instance, a user reports (wasmer issue #830) that the WASM runtime should
throw an error instead of panicking when a string is given instead of a digit in the WASM program
[2]. This issue needs to be addressed by modifying the error message. In response, a contributor
has added further details to the error message: “Cannot parse the provided argument as an integer.”

Complement unimplemented features. The fix strategy resolves a wide range of bugs in
Runtime Environment, including Module instantiation bugs (C.1), Module import error (C.2), Calling

host functions (C.3), Memory issue (C.4), Trap error (C.5), Unsupported features (C.6), and Thread

safety issue (C.7), accounting for 11.8% of the total number.
Fix thread operation. In Thread safety issue (C.7) 83.3% of bugs are fixed by this resolution.

For example (WAMR issue #1144 [3]), a user reports that the wasm_runtime_atomic_wait is not
thread-safe and one of the subthreads calls wasm_runtime_spawn_exec_env and returns nullptr.
The developers use this strategy to fix the atomic wait to be thread-safe by a lock.

Fix trap issue. This strategy is entirely used to fix Trap error (C.5), accounting for 7.8% of bugs
in Runtime Environment, including fixing trap catch, complementing the missing trap information,
and so on.

Repair data operation. In Runtime Environment 8.9% of bugs are fixed by repairing data op-
eration, which mainly addresses the data type mismatch between WASM and high-level language
API. Besides, it also fixes data alignment. All the Data type conversion (C.11) bugs are fixed by
repairing data operation.

Fix parameters and return values for host functions. As suggested in Figure 12, 25% of bugs
in Calling host functions (C.3) are fixed by modifying the parameters and return values because
there is a mismatch or passing error between the parameters and return values.

Fix entry point detecting. In Runtime Environment 2.9% of bugs are resolved by fixing the de-
tection of the default entry point. The WASM runtime needs to check the existence of the specially
named entry function before execution.

Fix stack operation. All the bugs in Stack issues (C.8) are resolved by this strategy. The WASM
runtime is expected to fix the order of the items when popped from the stack to match the WASM
invocation rules.

5.4 Validity of the Fix Strategies

The three WASM runtimes (wasmer, wasmtime, and WAMR) are studied to characterize fix strate-
gies of bugs. The threat identified in the bug taxonomy mentioned in Section 4 also exists in the
fix strategy. It also needs to be classified whether the fix strategies can be generalized to other
WASM runtimes. To validate the fix strategies, we also summarize the fix strategies of issues ex-
tracted from the four runtimes (wasm3, WasmEdge, wasmer-go, and wasmer-python), as illustrated
in Section 4.5.

The summarized bug fixing strategies are helpful for all the WASM runtimes as the fix strategies
in these four WASM runtimes could be classified into the existing fix strategies. The fix strategies
of all the bugs from the four runtimes (wasm3, WasmEdge, wasmer-go, and wasmer-python) are
also published in the artifact. For example, when the user tries to execute an exported WASM
function, wasmer-go would panic with “Host function 36 does not exist” (the index of the function
would vary as well). However, the user indeed registered more than 36 imported functions [6].
This is due to the function finalizer shown in Example (e) (Figure 13). While executing, all the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

37:18 Y. Zhang et al.

Fig. 12. Distribution of fix strategies for Runtime Environment.

Fig. 13. Example (e): GitHub wasmer-go issue #244.

hostFunctionStore functions are set to nil due to the early garbage collection in line 4, causing panic.
This bug in wasmer-go is classified to C.3 Calling host functions. The contributors are adding the
imports to the Instance struct to prevent this premature garbage collection from happening. The
fix strategy of this bug is classified to Fix memory release.

As all the bugs in the four WASM runtimes can be classified according to the taxonomy and
the summarized bug fixing strategies are helpful for all the WASM runtimes, the threat could be
considered neutralized.

Summary of answers to RQ2:

(1) We identify eight systematic fix strategies for bugs in Backend Compilation. The three
most common strategies are fixing compilation rules, registering allocation, and data op-
eration, resolving 39.6%, 16.2%, and 9.0% of bugs in this category, respectively.
(2) We distill seven systematic strategies for bugs in WASI Robustness. The most common
one is fixing the file operation, which resolves 35.6% of bugs in this category.
(3) The fix strategies for bugs in Runtime Environment are diverse, including fixing mem-
ory leaks, fixing memory allocation, complementing unimplemented features, and so forth.
Moreover, the most commonly used fix strategies in Runtime Environment are fixing mem-
ory allocation and fixing error messages.

6 RQ3: PATTERN-BASED BUG DETECTOR FOR WASM RUNTIMES

Our aforementioned analysis suggests that most bugs have specific patterns and share similarities
across different WASM runtimes. Thus, in this section, we seek to develop a pattern-based bug

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

Characterizing and Detecting WebAssembly Runtime Bugs 37:19

detection framework to identify bugs in WASM runtimes. Our key idea is to construct test cases
that can trigger various kinds of bugs we summarized in Section 4. Specifically, we seek to construct
one or more test cases to trigger each of the summarized bug categories. Note that either the
constructed test cases are re-constructed from the bug reports or we create them from scratch
according to the bug patterns.

Next, we will present the details of our bug-triggering test cases for the three major bug cat-
egories: Backend compilation (A), WASI Robustness (B), and Runtime environment (C). Note that
Auxiliary Tools (D) is an additional part provided by WASM runtimes, and the tools provided by
WASM runtimes in this part vary considerably. Thus, the category Auxiliary Tools (D) is not consid-
ered in this section. Further, for some leaf categories, it is hard for us to construct test cases, which
thus are not covered by our detection framework. In total, our detection framework is constituted
of the following 19 bug detectors.

6.1 Bug Detectors for Backend Compilation

[A.2] Incorrect compilation. SIMD instructions are the newly introduced features for WASM bi-
naries. WASM runtimes show the bug pattern when compiling specific SIMD instructions, such as
using i64x2 and i32x4 to simulate the v128 type and the optimization for them. To identify such
bugs, we select typical WASM binaries with these instructions to do the detection.

[A.3] Compilation failure. We develop the bug detector to identify two typical failures: a compila-
tion error that occurs when handling instructions with v128 (128-bit length vectors) as parameters
and a failure during the compilation of large WASM modules. The bug detector includes a WASM
program with the “select” instruction using v128 as the parameter. Additionally, we utilize an ex-
isting large WASM module named “Ti database,” which incorporates all its backend compilers for
WASM runtimes. Even worse, WASM runtimes could fail to generate native code for some instruc-
tions, especially those with v128 as parameters or the large WASM modules. We construct the bug
detector to detect the select instruction with v128 as the parameters. Moreover, we use the large
WASM module Ti database with all the backend compilers in WASM runtimes.

[A.4] Register allocation error. WASM runtimes could load data from an undefined regis-
ter or get fused with other instructions when compiling the specific instructions, such as
i64x2.extend_low_i32x4_u and f64x2.replace_lane. To identify such bugs, we select typical WASM
binaries with these instructions to do the detection.

We extract the specific OS-related bug-triggering WASM modules for [A.5] Incomplete operating

system support and unsupported data operation such as alignment of SIMD for [A.7] Unsupported

data operation.
We use the max value linear memory to detect the [A.8] Validation error and WASM binaries

from bug reports, which easily trigger debugging information to detect the [A.9] WASM debugging

information error.

6.2 Bug Detectors for WASI Robustness

[B.1] File operation error. Different WASM runtimes show similar bug patterns about file opera-
tion errors. These easily bug-triggering file operations include renaming, moving, counting, and
mapping. Thus, based on the shared file operation bug types mentioned in the bug issues, we de-
sign the bug detector to detect these bug types. For example, we test whether WASM runtimes
could rename a file or report error information when the file does not exist. Besides, the detector
could test whether WASM runtimes can move a file, count the file number in a directory, or do a
mapping operation.

[B.2] Import error. The most commonly found bug about import is that some WASM runtimes
could not support importing multiple WASI versions in one WASM module. Thus, we import both

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

37:20 Y. Zhang et al.

wasi_snapshot_preview1 and wasi_unstable, the most used WASI versions, in one WASM module
to detect this bug.

We extract the WASM binaries, including the unsupported pre-opened directories with / and ./
for WASI, to detect the bug in [B.3] Unsupported operation.

[B.4] Input and output stream error. To support detecting bugs about standard input and output
streams, we use C++ and compile the C++ program into WASM binaries by emscripten [43] to
see the rights and types in __wasi_filestat_t. If the WASM runtime could not successfully print the
expected result, it could be a bug. For example, wasmtime prints OS error when detecting this kind
of bug, which the developer confirms.

[B.5] Operating system support error. There are two OS-specific parts of WASI implementation:
clocks and polling. Due to the difference among OSs, the same operation could fail in a specific
OS. For example, the QuickJS engine based on WASM binaries only fails in Windows due to the
differences between POSIX and Windows async APIs. We extract the QuickJS engine from the bug
issue to detect this bug.

6.3 Bug Detectors for Runtime Environment

[C.1] Module instantiation faults. WASM runtimes provide various high-level language APIs for
users to execute WASM binaries embedded in different applications. When running WASM bina-
ries in a high-level language, the first step is to load the WASM module from a file or directly
load the textual format WASM module in a string variable. Then the WASM module is instanti-
ated, including validating the WASM module, compiling the WASM binaries with the appointed
backend compiler, allocating the memory allocation for the table, global, and so forth. However,
WASM runtimes could not support the instantiation for an empty module. Some WASM runtimes
will encounter memory leaks when instantiating multiple WASM modules in a short time. Thus,
we use the bug detector to detect whether WASM runtimes support instantiating an empty WASM
module and whether it will lead to memory leaks when instantiating multiple WASM modules in
a short period.

[C.2] Module import error. We observe that some WASM runtimes omit the step to check the
index of imported items, such as skipping reporting the index out of bounds errors when im-

port_global_index is greater than length of imported globals. We extract the related WASM binaries
from the raw bug report to detect this bug by the bug detector.

[C.3] Calling host functions. We use the bug detector for this kind of bug to detect whether WASM
runtimes could support importing a self-defined module, not only from env. Besides, some WASM
runtimes show the bug pattern of mis-mapping multiple host functions. We use the bug detector
to test whether WASM runtimes could successfully run the functions by importing them in the
correct order or if the runtime could inspect the mapping by importing them in the wrong order
and report the error message.

[C.4] Memory issue. By the bug detector, we detect whether WASM runtimes could grow the
linear memory dynamically. We extract the WASM module from bug issues and modify it to grow
the memory using the memory.grow instruction and using the memory.size instruction to check
the linear memory size after the growth.

[C.5] Trap error. These bugs are related to the process of the unreachable instructions in WASM
modules. By the bug detector, we use a WASM module with unreachable instructions to test
whether WASM runtimes could successfully break the execution and report the information in
the location where unreachable is.

[C.9] Entry point error. WASM runtimes are expected to regard the function labeled with “start”
or “_start” as the entry point and execute this function default and allow the WASM module with-
out an entry point. WASM runtimes show a similar bug pattern about the entry point: do not run

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

Characterizing and Detecting WebAssembly Runtime Bugs 37:21

the entry point function or reject the WASM modules without an entry point. We construct the
WASM module without or with an entry point to detect this kind of bug.

[C.10] Unhandled error. Some WASM runtimes usually encounter panic directly without any
operation to avoid it by reporting the error information. The most commonly found are unhandled
errors with unsupported operation and invalid access to the data section. We extract typical WASM
module examples to detect this bug.

6.4 Reliability of the Bug Detectors

As a portion of the bug detectors are curated by us based on the code snippets and bug description
provided in the bug reports, we first need to evaluate the reliability of the constructed bug detector.
Note that we already have the ground truth; i.e., WASM runtimes (with specific version) have some
kinds of bugs. Thus, we make an effort to reconstruct the environment (i.e., OS, WASM runtime
version, configuration, etc.) to replicate the reported bug for each category. At last, the bug detector
can trigger the reported bugs, which suggests the reliability of our detection framework.

6.5 Detecting New Bugs

As the bug detector we create was constructed based on the knowledge summarized from wasmer,
wasmtime, and WAMR, we further apply it to different WASM runtimes, seeking to identify new
bugs.

Experimental setting. In this experiment, we consider the seven mentioned WASM runtimes,
i.e., wasmer, wasmtime, WAMR, wasm3, WASMEdge, wasmer-python, and wasmer-go, to investigate
the generalizability of our study. The bug detector is applied to the following WASM run-
times: wasmer 2.3.0, wasmtime 0.38.0, WAMR 05-18-2022, wasm3 0.5.0, WASMEdge 0.9.1,
wasmer-python 1.1.0, and wasmer-go 1.0.4 on different execution modes (interpreter, AoT,
JIT) and across three different operating systems (macOS 10.15, Ubuntu 20.04, and Windows
11). However, wasmer-python and wasmer-go do not support Windows 11. Thus, the evaluation
of wasmer-python and wasmer-go are excluded.

Result. As shown in Table 3, we find 60 new bugs, covering all the tested WASM runtimes. By
the time of this submission, 13 of them have been confirmed by the developers, with 9 already
fixed in the main branch based on our suggestions. Moreover, the number of test cases and the
number of bugs found, confirmed, and fixed in leaf categories are shown in Table 4. To be more
rigorous, we only include the zero-day bugs that were first revealed by us. We also find some bugs
that have been reported by others, and these bugs are excluded from our statistical data.

Examples of bugs found. As shown in Figure 14, it is expected that the number 4 will be
printed when testing the rotr instruction for WASM binaries. However, the actual output in WAMR
is a random number. Every time executing, it leads to a different output. The developers have
confirmed it is a bug and fixed it in the main branch [21], dealing with the parameter 0 separately.
This bug belongs to Incorrect compilation (A.3).

An additional example is shown in Figure 15. It is expected that the correct directory number
203 will be printed when testing WASI in the runtime. However, WasmEdge prints 147 as a result,
which is already confirmed as a new bug by the developers [31]. Once the number of files is larger
than 147, it will be truncated in WasmEdge. Renaming files belonging to [B.1] File operation error

fails in wasm3, which is also confirmed and fixed [29].
As shown in Figure 16, it is expected that the linear memory will be allocated to the max value.

However, the allocation fails in WAMR and wasm3. This bug belongs to Validation error (A.8) since
the max value is not permitted by the validator. The developers in WAMR updated the max memory
page value in the interpreter [22], and the developers from wasm3 updated the max linear memory
pages from 32,768 to 65,535 [27].

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

37:22 Y. Zhang et al.

Table 3. The Experimental Results of the Bug Detector

Leaf Category wasmer wasmtime WAMR wasm3 WasmEdge Wasmer-python Wasmer-go

[A.2] 0 0 3 1 2 1 1
[A.3] 0 1 1 2 3 0 0
[A.4] 0 0 1 0 0 2 1
[A.5] 0 0 1 0 1 1 0
[A.7] 0 0 1 0 1 0 0
[A.8] 0 0 1 1 0 0 1
[A.9] 1 0 1 0 2 0 0
[B.1] 0 0 3 4 2 0 0
[B.2] 0 0 0 0 1 1 1
[B.3] 0 0 0 1 1 0 0
[B.4] 0 0 1 1 1 0 0
[B.5] 0 0 0 0 0 0 0
[C.1] 0 0 0 0 3 0 0
[C.2] 0 0 0 1 0 1 0
[C.3] 0 0 0 0 1 0 0
[C.4] 0 0 1 0 1 0 0
[C.5] 0 0 0 1 0 0 0
[C.9] 0 0 0 0 0 0 0
[C.10] 0 0 0 2 1 0 0

Bugs found 1 1 14 14 20 6 4

Total 60

We mark a leaf category on a WASM runtime as 0 if it passes all the execution modes across all the OS platforms.

Otherwise, it is marked with the number of detected bugs.

Table 4. The Test Case Numbers and the Bug Numbers of Found, Confirmed, and Fixed

Leaf Category #Test Case #Bugs Found #Bugs Confirmed #Bugs Fixed

[A.2]Incorrect compilation 7 8 2 2
[A.3]Compilation failure 5 7 3 2
[A.4]Register allocation error 3 4 0 0
[A.5]Incomplete operating system support 2 3 0 0
[A.7]Unsupported data operation 1 2 1 0
[A.8]Validation error 1 3 2 2
[A.9]WASM debugging information error 2 4 2 1
[B.1]File operation error 6 9 2 1
[B.2]Import error 1 3 0 0
[B.3]Unsupported operation 1 2 0 0
[B.4]Input and output stream error 1 3 0 0
[B.5]Operating system support error 1 0 0 0
[C.1]Module instantiation bugs 3 3 1 1
[C.2]Module import error 1 2 0 0
[C.3]Calling host functions 1 1 0 0
[C.4]Memory issue 1 2 0 0
[C.5]Trap error 1 1 0 0
[C.9]Entry point error 1 0 0 0
[C.10]Unhandled error 3 3 0 0

Total 42 60 13 9

As shown in Figure 17, it is expected that the value 340282366920938463463374607431768211455
will be printed when executing the func1 function in the WASM binaries. However, wasmer-go
prints the value 0. Wasmer-go could not correctly compile the f32x4.abs and v128.not instructions
in the WASM binaries.

Interestingly, we find that the test cases in our detection framework can trigger more than one
type of bug. For Example, the WASM module in Figure 18 is used to test whether WASM runtimes

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

Characterizing and Detecting WebAssembly Runtime Bugs 37:23

Fig. 14. Example of bug found in [A.3] Incorrect compilation.

Fig. 15. Example of bug found in [B.1] File operation error.

Fig. 16. Example of bug found in [A.8] Validation error.

Fig. 17. Example of bug found in [A.2] Incorrect compilation.

could successfully compile the div and copysign instructions for floating data ([A.3] Compilation

failure). Beyond this, we found that it can identify bugs that belong to [C.9] Entry point error in
wasm3. The WASM module could be successfully compiled in wasm3. However, “_start” is not con-
sidered the entry point in wasm3, although in other runtimes it is. The developer confirmed it
and considered fixing it by checking the return type of “_start” and acting according to it [28].

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

37:24 Y. Zhang et al.

Fig. 18. Example of bug found in [C.9] Entry point error.

Fig. 19. Example of bug found in [A.7] Unsupported data operatoin.

Moreover, the WASM module in Figure 19 is used to test whether WASM runtimes could success-
fully compile the select instruction with two v128 parameters ([A.3] Compilation failure). It detects
a bug in wasm3 that should be summarized to [A.7] Unsupported data operation. Although WasmEdge
could compile the module, it does not support printing v128 data. The developer confirmed that
they only support printing i32, i64, f32, and f64, which posed a bug, and they fixed it [30].

Summary of answers to RQ3:

(1) We provide 42 test cases in the bug detection framework.
(2) Our crafted bug detection framework can effectively detect bugs in real-world WASM
runtimes and provide helpful information to facilitate bug diagnosis and fixing. The bug
detection framework uncovered 60 bugs that have never been reported, among which 13
have been confirmed, and 9 have been fixed by runtime developers.
(3) Interestingly, we find that the test cases in our detection framework can trigger more
than one type of bug. It further suggests that the summarized bugs show similar patterns
among different WASM runtimes.

7 DISCUSSION

7.1 Implications

Given the rapidly increasing popularity of WASM, our study has timely and practical implications
for WASM runtime developers, users, and researchers. First, our contribution could help developers

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

Characterizing and Detecting WebAssembly Runtime Bugs 37:25

dive into and resolve common bugs in WASM runtimes more efficiently. The bug taxonomy in
Section 4 could be used as a checklist for the WASM runtime developers to check the commonly
occurring bugs. And the fix strategies summarized in Section 5 could be a guideline for developers
to fix bugs and optimize the WASM runtimes. For example, it may be hard for a developer to figure
out how to solve the [A.7] Unsupported data operation symptom, since the bugs could be caused
by SIMD instructions, endianness, and so forth. However, with our guidance, the developer could
know how this kind of bug is usually resolved in practice so that they could find a suitable solution
with less trial and error. Furthermore, due to the wide range of WASM runtime bugs that can occur,
it is difficult for developers to identify and resolve all of them manually. Therefore, to assist the
developers, we construct a bug detection framework that can trigger various bugs we summarized
in Section 4 and provide helpful information to facilitate bug fixing.

As an emerging research direction, our study sheds light on future studies on WASM, including
automated testing of WASM runtimes, bug fixing with advanced techniques, and so forth. As for
researchers focusing on WASM runtimes, it is promising to detect bugs based on the taxonomy and
detector framework we proposed. Moreover, we plan to extend the detector framework by mutat-
ing the test cases. Some advanced techniques like fuzzing and differential testing can be adopted
as a complement. Our proposed taxonomy is more general by summarizing common issues across
different WASM runtimes. In addition to that, we also identified some specific issues in different
WASM runtimes that we did not include. These issues are also worth further investigation. For
example, we discovered that WAMR excels in providing thread support among the three WASM run-
times. Developers more frequently utilize WAMR to implement threads compared to wasmer and
wasmtime, which in turn exposes more potential thread safety issues in WAMR.

7.2 Threats to Validity

First, our analysis pipeline involves a manual analysis of bugs, which might introduce bias to our
observations. To lower the influence of subjective threat, three authors take part in the analysis of
bug and fix strategy analysis, discussing the inconsistent issues until reaching an agreement.

Second, our empirical study only targets the most popular WASM runtimes; there are many
WASM runtimes in the wild, and they may pose other kinds of bugs that we did not cover in this
article. Thus, to validate the generalizability of the taxonomy, we select four additional WASM
runtimes and classify the closed Github issues with bug labels. As all the bugs in the four WASM
runtimes can be classified according to our proposed taxonomy, the threat could be considered
neutralized.

Third, it is difficult to ensure that our crafted bug detectors are sound and can cover all the bug
patterns of WASM runtimes. To deal with the problem, we evaluate the bug detector’s reliability
and show that they can trigger bugs in the known WASM runtimes. Nevertheless, for some bug
reports, we cannot reproduce them to trigger the bugs the authors mentioned. Since the bug detec-
tion framework uses a fixed set of test cases to detect bugs, it is limited once all these runtimes fix
the bugs. However, the test cases are constructed based on the issues from wasmer, wasmtime, and
WAMR. Interestingly, these test cases also could trigger bugs in wasm3, WasmEdge, wasmer-go, and
wasmer-python. In other words, different WASM runtimes show similar bug patterns. The bugs in
the aforementioned WASM runtimes could be fixed in the future. But the bug detection framework
will always be helpful for the newly developed WASM runtimes to detect new bugs continuously.

8 RELATED WORK

WebAssembly runtime. WASM runtime has been used in a wide spectrum of applications.
Ménétrey et al. proposed the WebAssembly trusted runtime TWINE [66] to execute unmodified,
language-independent applications. They leverage Intel SGX to build the runtime environment.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

37:26 Y. Zhang et al.

Gadepalli et al. [53] proposed a lightweight WASM runtime, Sledge, for edge computing. Wen and
Weber propose Wasmachine [74], an OS aiming to efficiently and securely execute WebAssembly
applications in IoT and Fog devices with constrained resources. WASM runtime is the fundamental
part of various applications. However, there are no studies about bugs in WASM runtimes. We
present the first comprehensive study on characterizing and detecting bugs in WASM runtimes.

Other WASM-related studies. WASM is a promising and newly emerged area. There have
been studies on several aspects of WASM, including the WASM execution efficiency [55, 56, 59, 72],
WASM compilers [1, 58, 68], and WASM binary security [1, 48, 57, 60, 61, 64]. As WASM runtime
is one of the fundamental components, our study provides timely insights to all stakeholders in
the ecosystem.

Empirical study on bugs. There have been a large number of empirical studies focusing on
software bugs across a wide range of applications. For example, Chen et al. [49] studied the faults
related to the deployment of DL models on mobile devices; Lu et al. [62] provided the compre-
hensive real-world concurrency bug characteristic study; Di Franco et al. [51] presented the first
comprehensive study of real-world numerical bugs; and Wen et al. conducted an empirical study
on challenges of application development in serverless computing [75]. Recently, the rapid devel-
opment of WebAssembly has inspired empirical studies on WebAsssmebly binaries and compilers.
For example, Romano et al. [68] conducted an empirical study of bugs in WebAssembly compilers.
They investigated 146 bug reports in Emscripten related to the unique challenges WebAssembly
compilers encounter compared with traditional compilers. Moreover, Hilbig et al. [57] presented a
comprehensive empirical study of 8,461 unique WebAssembly binaries. Following the widely used
bug-studying method in the prior studies [49, 75], we applied these bug characterization methods
to the bugs in a different domain, i.e., WebAssembly runtimes. Based on the architecture of WASM
runtimes, we first constructed four inner categories linked to different components in a WASM run-
time (e.g., Backend Compilation). Furthermore, we constructed the leaf categories according to the
root causes. Zhang et al. [78] conducted an empirical study of TensorFlow program bugs. However,
they used bug symptoms, such as error, as the categorization criterion, which could be much easier
to understand and follow than our work. With WASM runtime architecture as the categorization
criterion, our work could pose a threshold for researchers unfamiliar with WASM runtimes. How-
ever, Zhang et al.’s work could not demonstrate the domain-specific characteristics that ours does.
Romano et al. used the stages of compiling high-level language into WASM binaries as the bug cat-
egorization criterion in their empirical study [68]. This classification method could better describe
the stages when the bug was discovered than our work. Nevertheless, the taxonomy we proposed
could better show which part of the system the bug belongs to. Moreover, based on the character-
ization, we constructed a bug detector for these summarized bugs and found 13 confirmed bugs.

9 CONCLUSION

This article has presented the first comprehensive study of bugs and the corresponding fix strate-
gies of WASM runtimes. By manually analyzing 311 real-world bugs extracted from the most pop-
ular WASM runtimes, we have constructed a taxonomy of bug symptoms with 31 categories and
distilled the fix strategies for them. Based on the knowledge extracted, we further develop a pattern-
based bug detection framework to automatically detect bugs across WASM runtimes. By the time
of this study, we have identified 60 bugs that have never been reported in the community, and
13 of them have been confirmed by the official developers.

REFERENCES

[1] Nicolas Falliere. 2018. Reverse Engineering WebAssembly. https://www.pnfsoftware.com/reversing-wasm.pdf

[2] Wasmer. 2019. wasmer issue 830. https://github.com/wasmerio/wasmer/issues/830

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

https://www.pnfsoftware.com/reversing-wasm.pdf
https://github.com/wasmerio/wasmer/issues/830

Characterizing and Detecting WebAssembly Runtime Bugs 37:27

[3] Bytecode Alliance. 2020. WAMR issue 1144. https://github.com/bytecodealliance/wasm-micro-runtime/issues/1144

[4] Wasmer. 2020. wasmer issue 1263. https://github.com/wasmerio/wasmer/issues/1263

[5] Bytecode Alliance. 2020. wasmtime issue 2347. https://github.com/bytecodealliance/wasmtime/issues/2347

[6] Wasmer. 2021. wasmer-go issue 244. https://github.com/wasmerio/wasmer-go/issues/244

[7] Wasmer. 2021. wasmer issue 1640. https://github.com/wasmerio/wasmer/issues/1640

[8] Wasmer. 2021. wasmer issue 2028. https://github.com/wasmerio/wasmer/issues/2028

[9] Wasmer. 2021. wasmer issue 2187. https://github.com/wasmerio/wasmer/issues/2187

[10] Wasmer. 2021. wasmer issue 2215. https://github.com/wasmerio/wasmer/issues/2215.

[11] Wasmer. 2021. wasmer issue 2297. https://github.com/wasmerio/wasmer/issues/2297

[12] Bytecode Alliance. 2021. wasmtime issue 2826. https://github.com/bytecodealliance/wasmtime/issues/2826

[13] Bytecode Alliance. 2021. wasmtime issue 2883. https://github.com/bytecodealliance/wasmtime/issues/2883

[14] Bytecode Alliance. 2021. wasmtime issue 3173. https://github.com/bytecodealliance/wasmtime/issues/3173

[15] Bytecode Alliance. 2021. wasmtime issue 3337. https://github.com/bytecodealliance/wasmtime/issues/3337

[16] Chris Fallin. 2022. Cranelift Doc. https://hacks.mozilla.org/2020/10/a-new-backend-for-cranelift-part-1-instruction-

selection/

[17] Bytecode Alliance. 2022. Cranelift IR Doc. https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/docs/

ir.md

[18] EOSIO. 2022. EOS VM - A low-latency, high performance and extensible WebAssembly engine. https://github.com/

EOSIO/eos

[19] ewasm. 2022. hera - An ewasm (revision 4) virtual machine implemented in C++ conforming to EVMC ABIv9. https:

//github.com/ewasm/hera

[20] WebAssembly Community Group. 2022. WABT: The WebAssembly Binary Toolkit. https://github.com/WebAssembly/

wabt

[21] Bytecode Alliance. 2022. WAMR issue 1282. https://github.com/bytecodealliance/wasm-micro-runtime/issues/1282

[22] Bytecode Alliance. 2022. WAMR issue 1289. https://github.com/bytecodealliance/wasm-micro-runtime/issues/1289

[23] WebAssembly Community Group. 2022. WASI link. https://wasi.dev/

[24] WebAssembly Community Group. 2022. Wasm non web usage. https://webassembly.org/docs/non-web/

[25] Timothy McCallum. 2022. Wasm runtime architecture. https://medium.com/wasm/webassembly-wasm-runtimes-

522bcc7478fd

[26] Wasm3 Labs. 2022. wasm3 - The fastest WebAssembly interpreter, and the most universal runtime. https://github.

com/wasm3/wasm3

[27] Wasm3 Labs. 2022. wasm3 bug fix commit. https://github.com/wasm3/wasm3/commits/

fbbacefeaf28e019244bbfa281fc4dea3dbdedc9

[28] Wasm3 Labs. 2022. wasm3 issue 351. https://github.com/wasm3/wasm3/issues/351

[29] Wasm3 Labs. 2022. wasm3 issue 355. https://github.com/wasm3/wasm3/issues/355

[30] Cloud Native Computing Foundation. 2022. WasmEdge bug fix commit. https://github.com/WasmEdge/WasmEdge/

commit/4103613ff57341af346f7ff82bd0beb47e798474

[31] Cloud Native Computing Foundation. 2022. WasmEdge issue 1711. https://github.com/WasmEdge/WasmEdge/issues/

1711

[32] Cloud Native Computing Foundation. 2022. WasmEdge Runtime. https://github.com/WasmEdge/WasmEdge

[33] Wasmer. 2022. wasmer - A fast and secure WebAssembly runtime. https://github.com/wasmerio/wasmer

[34] Wasmer. 2022. wasmer-go - A complete and mature WebAssembly runtime for Go based on Wasmer. https://github.

com/wasmerio/wasmer-go

[35] Wasmer. 2022. wasmer-python - A complete and mature WebAssembly runtime for Python based on Wasmer. https:

//github.com/wasmerio/wasmer-python

[36] Bytecode Alliance. 2022. wasmtime - A standalone runtime for WebAssembly. https://github.com/bytecodealliance/

wasmtime

[37] Bytecode Alliance. 2022. wasmtime issue 4170. https://github.com/bytecodealliance/wasmtime/issues/4170

[38] MDN Web Docs Community. 2022. Wat file. https://developer.mozilla.org/en-US/docs/WebAssembly/Text_format_

to_wasm

[39] WAVM. 2022. WAVM - A WebAssembly virtual machine, designed for use in non-browser applications. https://github.

com/WAVM/WAVM

[40] Bytecode Alliance. 2022. WebAssembly Micro Runtime. https://github.com/bytecodealliance/wasm-micro-runtime

[41] Lin Clark. 2022. WebAssembly system interface Doc. https://hacks.mozilla.org/2019/03/standardizing-wasi-a-

webassembly-system-interface/

[42] WebAssembly Community Group. 2022. WebAssmebly Doc. https://webassembly.org/

[43] Emscripten community. 2023. Emscripten compiler. https://emscripten.org/

[44] Yixuan Zhang. 2023. Supplemental materials. https://github.com/bnmcxlzd/TOSEM2023_Complementary_materials

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

https://github.com/bytecodealliance/wasm-micro-runtime/issues/1144
https://github.com/wasmerio/wasmer/issues/1263
https://github.com/bytecodealliance/wasmtime/issues/2347
https://github.com/wasmerio/wasmer-go/issues/244
https://github.com/wasmerio/wasmer/issues/1640
https://github.com/wasmerio/wasmer/issues/2028
https://github.com/wasmerio/wasmer/issues/2187
https://github.com/wasmerio/wasmer/issues/2215
https://github.com/wasmerio/wasmer/issues/2297
https://github.com/bytecodealliance/wasmtime/issues/2826
https://github.com/bytecodealliance/wasmtime/issues/2883
https://github.com/bytecodealliance/wasmtime/issues/3173
https://github.com/bytecodealliance/wasmtime/issues/3337
https://hacks.mozilla.org/2020/10/a-new-backend-for-cranelift-part-1-instruction-selection/
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/docs/ir.md
https://github.com/EOSIO/eos
https://github.com/ewasm/hera
https://github.com/WebAssembly/wabt
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1282
https://github.com/bytecodealliance/wasm-micro-runtime/issues/1289
https://wasi.dev/
https://webassembly.org/docs/non-web/
https://medium.com/wasm/webassembly-wasm-runtimes-522bcc7478fd
https://github.com/wasm3/wasm3
https://github.com/wasm3/wasm3/commits/fbbacefeaf28e019244bbfa281fc4dea3dbdedc9
https://github.com/wasm3/wasm3/issues/351
https://github.com/wasm3/wasm3/issues/355
https://github.com/WasmEdge/WasmEdge/commit/4103613ff57341af346f7ff82bd0beb47e798474
https://github.com/WasmEdge/WasmEdge/issues/1711
https://github.com/WasmEdge/WasmEdge
https://github.com/wasmerio/wasmer
https://github.com/wasmerio/wasmer-go
https://github.com/wasmerio/wasmer-python
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime/issues/4170
https://developer.mozilla.org/en-US/docs/WebAssembly/Text_format_to_wasm
https://github.com/WAVM/WAVM
https://github.com/bytecodealliance/wasm-micro-runtime
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://webassembly.org/
https://emscripten.org/
https://github.com/bnmcxlzd/TOSEM2023_Complementary_materials

37:28 Y. Zhang et al.

[45] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez, Laura Moreno, Gabriele Bavota,

and Michele Lanza. 2019. Software documentation issues unveiled. In 2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE ’19). IEEE, 1199–1210.

[46] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. 2021. A survey on blockchain interoper-

ability: Past, present, and future trends. ACM Computing Surveys (CSUR) 54, 8 (2021), 1–41.

[47] Stefanie Beyer, Christian Macho, Massimiliano Di Penta, and Martin Pinzger. 2018. Automatically classifying posts

into question categories on stack overflow. In 2018 IEEE/ACM 26th International Conference on Program Comprehension

(ICPC ’18). IEEE, 211–21110.

[48] Shrenik Bhansali, Ahmet Aris, Abbas Acar, Harun Oz, and A. Selcuk Uluagac. 2022. A first look at code obfuscation

for WebAssembly. In Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks.

140–145.

[49] Zhenpeng Chen, Huihan Yao, Yiling Lou, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, and Xuanzhe Liu. 2021. An em-

pirical study on deployment faults of deep learning based mobile applications. In 2021 IEEE/ACM 43rd International

Conference on Software Engineering (ICSE ’21). IEEE, 674–685.

[50] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20,

1 (1960), 37–46.

[51] Anthony Di Franco, Hui Guo, and Cindy Rubio-González. 2017. A comprehensive study of real-world numerical bug

characteristics. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE ’17). IEEE,

509–519.

[52] Zhen Yu Ding and Claire Le Goues. 2021. An empirical study of OSS-Fuzz bugs. In 2021 IEEE/ACM 18th International

Conference on Mining Software Repositories (MSR ’21). IEEE, 131–142.

[53] Phani Kishore Gadepalli, Sean McBride, Gregor Peach, Ludmila Cherkasova, and Gabriel Parmer. 2020. Sledge: A

serverless-first, light-weight WASM runtime for the edge. In Proceedings of the 21st International Middleware Confer-

ence. 265–279.

[54] Phani Kishore Gadepalli, Gregor Peach, Ludmila Cherkasova, Rob Aitken, and Gabriel Parmer. 2019. Challenges and

opportunities for efficient serverless computing at the edge. In 2019 38th Symposium on Reliable Distributed Systems

(SRDS ’19). IEEE, 261–2615.

[55] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon

Zakai, and J. F. Bastien. 2017. Bringing the web up to speed with WebAssembly. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation. 185–200.

[56] David Herrera, Hangfen Chen, Erick Lavoie, and Laurie Hendren. 2018. WebAssembly and JavaScript challenge: Nu-

merical program performance using modern browser technologies and devices. University of McGill, Montreal: QC,

Technical Report SABLE-TR-2018-2.

[57] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An empirical study of real-world WebAssembly binaries:

Security, languages, use cases. In Proceedings of the Web Conference 2021. 2696–2708.

[58] Eric Holk. 2018. Schism: A self-hosting scheme to WebAssembly compiler. In Proceedings of the Scheme and Functional.

[59] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. 2019. Not so fast: Analyzing the performance of

WebAssembly vs. native code. In 2019 USENIX Annual Technical Conference (USENIX ATC ’19). 107–120.

[60] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything old is new again: Binary security of We-

bAssembly. In 29th USENIX Security Symposium (USENIX Security ’20). 217–234.

[61] Daniel Lehmann and Michael Pradel. 2022. Finding the dwarf: Recovering precise types from WebAssembly binaries.

In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementa-

tion. 410–425.

[62] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from mistakes: A comprehensive study on

real world concurrency bug characteristics. In Proceedings of the 13th International Conference on Architectural Support

for Programming Languages and Operating Systems. 329–339.

[63] Niko Mäkitalo, Tommi Mikkonen, Cesare Pautasso, Victor Bankowski, Paulius Daubaris, Risto Mikkola, and Oleg

Beletski. 2021. WebAssembly modules as lightweight containers for liquid IoT applications. In International Conference

on Web Engineering. Springer, 328–336.

[64] Brian McFadden, Tyler Lukasiewicz, Jeff Dileo, and Justin Engler. 2018. Security chasms of WASM. NCC Group

Whitepaper.

[65] Pankaj Mendki. 2020. Evaluating WebAssembly enabled serverless approach for edge computing. In 2020 IEEE Cloud

Summit. IEEE, 161–166.

[66] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. 2021. Twine: An embedded trusted runtime for

WebAssembly. In 2021 IEEE 37th International Conference on Data Engineering (ICDE ’21). IEEE, 205–216.

[67] Matteo Paltenghi and Michael Pradel. 2022. Bugs in quantum computing platforms: An empirical study. Proceedings

of the ACM on Programming Languages 6, OOPSLA1 (2022), 1–27.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

Characterizing and Detecting WebAssembly Runtime Bugs 37:29

[68] Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2021. An empirical study of bugs in WebAssembly

compilers. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE ’21). IEEE, 42–54.

[69] Alan Romano and Weihang Wang. 2020. WASim: Understanding WebAssembly applications through classification. In

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE ’20). IEEE, 1321–1325.

[70] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software engineering. IEEE Transactions on

Software Engineering 25, 4 (1999), 557–572.

[71] Quentin Stiévenart, David W. Binkley, and Coen De Roover. 2022. Static stack-preserving intra-procedural slicing

of WebAssembly binaries. In 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE ’22). IEEE,

2031–2042.

[72] Weihang Wang. 2021. Empowering web applications with WebAssembly: Are we there yet?. In 2021 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE ’21). IEEE, 1301–1305.

[73] Ziyuan Wang, Dexin Bu, Aiyue Sun, Shanyi Gou, Yong Wang, and Lin Chen. 2022. An empirical study on bugs in

python interpreters. IEEE Transactions on Reliability 1 ,1 (2022). DOI:10.1145/3624743

[74] Elliott Wen and Gerald Weber. 2020. Wasmachine: Bring IoT up to speed with a WebAssembly OS. In 2020 IEEE

International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops ’20). IEEE, 1–4.

[75] Jinfeng Wen, Zhenpeng Chen, Yi Liu, Yiling Lou, Yun Ma, Gang Huang, Xin Jin, and Xuanzhe Liu. 2021. An empirical

study on challenges of application development in serverless computing. In Proceedings of the 29th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 416–428.

[76] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019. An empirical study of common challenges in

developing deep learning applications. In 2019 IEEE 30th International Symposium on Software Reliability Engineering

(ISSRE ’19). IEEE, 104–115.

[77] Xiuhong Zhang. 2020. WebAssembly Principles and Core Technologies. China Machine Press.

[78] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018. An empirical study on TensorFlow

program bugs. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis.

129–140.

[79] Zhide Zhou, Zhilei Ren, Guojun Gao, and He Jiang. 2021. An empirical study of optimization bugs in GCC and LLVM.

Journal of Systems and Software 174 (2021), 110884.

Received 20 January 2023; revised 7 August 2023; accepted 16 August 2023

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 2, Article 37. Pub. date: December 2023.

https://doi.org/10.1145/3624743

