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ABSTRACT
We call a program that passes existing tests but still contains bugs
as a buggy plausible program. Bugs in such a program can bypass
the testing environment and enter the production environment,
causing unpredictable consequences. Therefore, discovering and
fixing such bugs is a fundamental and critical problem. However,
no existing bug dataset is purposed to collect this kind of bug,
posing significant obstacles to relevant research. To address this
gap, we introduce TrickyBugs, a bug dataset with 3,043 buggy
plausible programs sourced from human-written submissions of
324 real-world competition coding tasks. We identified the buggy
plausible programs from approximately 400,000 submissions, and
all the bugs in TrickyBugs were not previously detected. We hope
that TrickyBugs can effectively facilitate research in the fields of
automated program repair, fault localization, test generation, and
test adequacy.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
software testing, test generation, test adequacy, program repair,
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1 INTRODUCTION
Testing is a critical step in ensuring software quality. However, tests
are no proof of correctness [2]. This is because tests represent an
incomplete specification of the program requirements, and limited
test cases may miss certain corner cases.

We refer to a program that passes existing tests as a plausible
program, which may either be correct or buggy. Bugs in plausible
programs are typically harder to detect because plausible programs
exhibit correct behavior on existing test cases and only manifest
incorrect behavior on specific situations, which are often logical
corner cases. These undetected corner-case bugs can potentially
pass all tests in the testing environment and make their way into
the production environment, which may lead to unforeseen losses.

Existing bug datasets like Defects4J [5], CodeFlaws [18], and
QuxixBugs [9] have been widely used in the fields of automated
program repair and fault localization. These techniques typically
take a buggy program along with the test cases it passes and fails
as input, where the failed test cases are often crucial. Therefore,
most of the bugs in these datasets were identified by a simple and
ordinary test case and do not necessarily represent corner cases.

To address this gap, we introduce TrickyBugs, a dataset of 3,043
corner-case bugs in plausible programs sourced from 324 real-world
competition coding tasks. The bugs in Trickybugs were all previ-
ously undiscovered, and finding or fixing these bugs can be more
challenging.

TrickyBugs proposes a more practical and challenging problem:
how to fix and locate faults in the absence of failed test cases,
with only source code, passed test cases, and program specification
available? There have been several discussions regarding similar
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problems in recent research [7, 19]. Trickybugs provides an appro-
priate and effective evaluation dataset for such tasks.

Trickybugs can also facilitate research related to test adequacy
and unit test generation. The inability of the original test cases
to discover bugs in TrickyBugs is, in fact, an issue related to test
adequacy. As mentioned in our prior work [10], traditional test
adequacy metrics such as line/branch coverage and mutation score
have limitations when applied to TrickyBugs. Consequently, Trick-
yBugs can be utilized to study how to better measure and im-
prove test adequacy. Similarly, TrickyBugs is suitable for evaluating
tasks of generating failure-inducing test cases based on source
code and program specification. TrickyBugs is publicly available at
https://doi.org/10.5281/zenodo.7977255.

2 DATASET CONSTRUCTION
In this section, we first describe how we collect the programs and
find the buggy plausible programs by test generation, and then we
describe how we equip some of the buggy plausible programs with
their fixed versions.

2.1 Data Source
We collect our data from AtCoder, a highly popular and active
programming competition platform that has been used as a reliable
resource for different research purposes in the domain of computer
science [8, 15, 20]. In AtCoder, users are requested to submit their
code solutions for different coding tasks, and the backend test cases
will judge the submitted programs. A test case is an input/output
pair, and if a program’s output matches the test output exactly
when fed with the corresponding test input, it passes the test case;
otherwise, it fails.

We collect AtCoder submissions from CodeContests [8], where
the duplicate programs were removed. These submissions primarily
come from the years 2016 to 2021. As mentioned in Section 1, we are
not interested in bugs that the existing tests can detect; instead, we
are interested in the bugs that have not been discovered. Therefore,
we only retain the passing programs. At this step, we get approxi-
mately 230,000 human-written programs in C++, 140,000 programs
in Java, and 169,000 programs in Python from 939 coding tasks,
and then we will find the hidden bugs among these programs. We
also collect the original test cases and difficulty of the coding tasks
from an AtCoder’s official post [4] and a third-party website that
evaluates the difficulty of coding tasks based on AtCoder’s rating
system [13], respectively.

2.2 Bug Detection
After collecting a large number of plausible programs, the next
step is to find bugs among them. This is the core step for dataset
construction.

In summary, we randomly generate valid test inputs for each
coding task. Then, we address the test oracle problem through dif-
ferential testing to obtain test outputs. These test outputs and their
corresponding test inputs together form additional test cases. At
last, these additional test cases are used to identify buggy plausible
programs.

2.2.1 Test Input Generation. Each coding task in AtCoder provides
detailed constraints for inputs in its problem description. Any test

input fulfilling the constraints is a valid input. To generate such
valid test inputs, we manually write random test generator scripts
using the Python library cyaron [11] for each coding task according
to the input constraints. The generators can randomly produce
valid test inputs by uniform sampling. For example, to generate
a random integer, the generator samples the integer uniformly
from the range specified in the input constraints. We generate one
hundred additional test inputs for each coding task.

2.2.2 Test Oracle Generation. The test oracle problem refers to the
challenge of determining whether a program’s behavior is correct.
For example, given a test input, it involves figuring out whether the
program’s output is correct. This is indeed a classic and challenging
problem in the field of software testing [1]. To tackle the test oracle
problem, we employ the technique of differential testing [3], a
software testing technique that involves comparing the output of
two or more different implementations of the same functionality
to identify discrepancies between them. To ensure the validity of
differential testing, we need to filter out coding tasks with multiple
correct outputs for one input, retaining coding tasks with only one
correct test output per input. Therefore, for any valid test input,
discrepancies among outputs indicate the presence of at least one
buggy program that produces incorrect output. In this step, we
filtered out 48 (5.1%) unsuitable coding tasks and proceeded with
the remaining 891 coding tasks for the subsequent steps.

Then, it comes to the process of differential testing. We feed the
same generated test input to all the plausible programs of the same
coding task and collect their outputs. If there is any discrepancy
among the outputs, we find bugs. We designate the output that
dominates the others in terms of proportion as the correct test
output. We also call this output the major output, any output that
differs from the major output is incorrect, and the programs that
produce the incorrect outputs are buggy plausible programs. So far,
we have successfully identified bugs in plausible programs.

2.3 Bug Repair
We also provide the fixed version for some of the buggy plausible
programs. The fixed programs can be used for diverse software
engineering tasks such as fault localization. Due to the large dataset
scale and the various difficulties of the coding tasks, we utilize
Automated Program Repair (APR) techniques to assist us in fixing
these buggy plausible programs. According to recent studies [17?
], APR techniques based on Large Language Models (LLM) have
demonstrated state-of-the-art performance. Therefore, we employ
the gpt-3.5-turbomodel for the APR task. We combine the buggy
plausible program with the corresponding coding task’s problem
description as the prompt provided to LLM, then request the LLM
to generate a fixed version of the program. If a fixed program can
pass both the original test cases and additional test cases, we will
proceed to verify whether this fixed version is correct manually. If
the fixed program passes the manual verification, it is considered
valid and will serve as the fixed version of the corresponding buggy
program in the dataset. In total, We provide 1,361 fixed programs
for 224 coding tasks.
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3 TRICKYBUGS DATASET
In this section, we introduce TrickyBugs dataset, a dataset of buggy
plausible programs. This dataset contains 1,405 buggy programs in
C++, 792 in Java, and 846 in Python from 324 coding tasks. We also
provide 1,361 fixed programs from 224 coding tasks to broaden the
applicability of the dataset.

3.1 Data Structure
TrickyBugs dataset contains root directories of each coding task,
and each root directory is named as the pid of the coding task,
uniquely identifying the coding task within the dataset.

The root directory of each coding task contains the following
files and subdirectories:

(1) buggy_programs: A directory. This directory contains all
the buggy plausible programs we found. Programs in differ-
ent languages (C++, Java, or Python) are stored in separate
subdirectories.

(2) reference_programs: A directory. This directory contains
reference programs. A reference program always produces
the major output for any test input throughout the process of
our differential testing. Reference programs are considered
correct. We provide multiple reference programs (up to five)
because they can be used for preliminary verification of the
validity of an input. Specifically, for any given test input, if
all reference programs produce the same output, then this
test input is likely valid. Otherwise, it is highly probable to
be invalid.

(3) fixed_programs (optional): A directory. This directory con-
tains the fixed version of some buggy plausible programs.
Many bugs in TrickyBugs originate from logical corner cases,
therefore, the differences between the buggy program and
its fixed version may not be limited to one line. Not every
buggy program has a fixed version, and 224 out of 324 root
directories of coding tasks contain this subdirectory.

(4) original_test_cases (optional): A directory. This direc-
tory contains all the original test cases for the coding task on
AtCoder, and 274 out of 324 root directories of coding tasks
contain this subdirectory because AtCoder has not publicly
disclosed the test cases for some earlier coding tasks [4].
However, it is still possible and easy to determine whether
a program passes the original test cases by submitting the
code on AtCoder. The submission URL corresponding to the
coding task is provided in the metainfo.json. A plausible
program should pass all the original test cases.

(5) additional_test_cases: A directory. This directory con-
tains the additional test cases that have uncovered bugs
successfully. A bug-free program should pass all the original
and additional test cases.

(6) metainfo.json: A file. This file contains serval meta infor-
mation of the coding task. The URL is the source of this
coding task, which contains all the information about this
coding task except the original test cases. The test program
mapping displays the mapping between an additional test
case and the buggy plausible programs it has identified.

(7) problem_description.txt: A file. This file contains the
problem description, input constraints, and several pairs of

Table 1: Statistics of TrickyBugs.

Feature C++ Java Python Total
# Programs 1,405 792 846 3043
# Tasks 251 159 115 324
Average LOC 39.4 74.7 13.9 41.5
Average Diff. 1469.1 865.4 907.5 1098.9
Average # original tests / / / 28.2
Average # additional tests / / / 2.3

input/output examples for this coding task. It is a file version
of the content from the URL of the coding task and represents
a detailed program specification for the coding task.

3.2 Statistics
In this section, we introduce more details about TrickyBugs. Ta-
ble 1 presents some basic statistical information about TrickyBugs.
This table shows the number of buggy plausible programs (# Pro-
grams), the number of coding tasks that contain the buggy plausible
programs (# Tasks), the average lines of code (Average LOC), the
average difficulty of the coding tasks (Average Diff.), the average
number of original test cases (Average # original tests) and addi-
tional test cases (Average # additional tests) per coding task. The
average number and difficulty of C++ buggy plausible programs
are both the highest. This may be because C++ offers faster ex-
ecution speed and is the most mainstream language in program
competition platforms. Additionally, we also observed that each
coding task contains 28.2 original test cases on average. Despite
this relatively large size of tests (for one single functionality), many
bugs remain undiscovered, which indicates the challenging nature
of discovering these bugs.

4 DISCUSSION
4.1 Validity of the Additional Test Cases
For any coding task, as long as a test input is valid (it satisfies all
the constraints specified by the problem description), the test case
formed by the pair of this input and its correct output is valid. The
validity of the test inputs is confirmedmanually, and the correctness
of the test outputs is based on the majority rule. For example, if
99 programs output “yes" and only 1 program outputs “no" for the
same input, it is highly likely that “yes" is the correct output. In fact,
most of the situations we encounter during the step of test oracle
construction are quite similar to this example. For a given test input,
we refer to the proportion occupied by the output with the highest
occurrence among all obtained outputs as the dominance ratio. A
larger dominance ratio often indicates a more reliable test output.
For the example we just described, the dominance ratio is 0.99.

Figure 1 shows the cumulative distribution function (CDF) of the
dominance ratio of all additional test inputs in TrickyBugs. For the
three languages C++, Java, and Python, the respective proportions
of additional test inputs with a dominance ratio greater than than
0.95 are 89.7%, 83.1%, and 80.0%, which indicates that the corre-
sponding test outputs are highly reliable. We also manually check
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Figure 1: CDF of the dominance ratio of the additional test
inputs in TrickyBugs. For the three languages C++, Java, and
Python, the respective proportions of additional test inputs
with a dominance ratio greater than 0.95 are 89.7%, 83.1%, and
80.0%.
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Figure 2: Trendency of the number of discovered buggy plau-
sible programs (# Programs) and the number of coding tasks
that contain the programs (# Tasks) in tandem with the in-
crease in the number of generated test inputs.

all the test cases whose dominance ratio are lower than 0.95 to
guarantee their validity.

4.2 Adequacy of the Additional Test Cases
In Section 2.2.1, we generate 100 test inputs for each coding task,
and a possible question is whether 100 generated test inputs are
adequate to identify buggy plausible programs. To explore this ques-
tion, we illustrate how the number of generated inputs influences
the number of discovered buggy plausible programs and the number
of coding tasks that contain the programs in Figure 2. The x-axis
is the number of generated inputs. The blue line is the number
of discovered buggy plausible programs, which reaches a plateau
when there are around 95 inputs. The orange line is the number of
coding tasks that are detected to contain buggy plausible programs,
which reaches a plateau when there are around 15 inputs. These
observations indicate that generating 100 test inputs is generally

adequate to reach the upper limit of the capability of bug discovery
within our methodology.

4.3 Originality of TrickyBugs
We proposed TrickyBugs as a part of an empirical study of the test
cases of online coding tasks [10]. Since then, we have conducted a
comprehensive upgrade of the TrickyBugs dataset. We added refer-
ence programs for each coding task and added 1,361 fixed programs
for 224 coding tasks. We also filtered out some programs that did
not quite align with the definition of plausible buggy programs due
to issues related to uninitialized variables in C++ by adjusting the
compilation options. In summary, this new version of TrickyBugs
is more comprehensive and sound, making it a valuable resource
for research in various fields of software engineering.

5 RELATEDWORK
There are numerous bug datasets to support research in the field
of software engineering. Defects4J[5] is a database providing real
bugs from open-source programs in Java to enable reproducible
studies in software testing research.ManyBugs and IntroClass [6]
collect defects of C programs from student programming assign-
ments and open-source projects. BugSwarm is a collection of thou-
sands of real software bugs and corresponding fixes.Codeflaws[18]
collects buggy programs from Codeforces platform [12] and cate-
gorized these bugs based on program syntax. QuixBugs [9] is a
dataset of buggy programs in both Java and Python based on 40 cod-
ing tasks from the Quixey Challenge. ConDefects [20] is a dataset
with buggy programs extracted from recent AtCoder coding tasks
to address the issue of data leakage when evaluating the coding
capabilities of large language models. Some datasets of software
evolution [14, 16] contain undiscovered defects implicitly, but many
of these defects remain undiscovered not due to the inadequacy of
testing, but rather due to the absence of testing.

Most of the bugs in the datasets above have been discovered
by the existing test cases before they were collected. In contrast,
the bugs in Trickybugs were all previously undiscovered, which
suggests that the bugs are more challenging to detect and represent
more corner cases.

6 CONCLUSION
We introduce TrickyBugs, a dataset of 3,043 buggy plausible pro-
grams sourced from real-world submissions of 324 coding tasks. The
bugs in TrickyBugs were all previously undiscovered. TrickyBugs
is suitable for research related to program repair, fault localization,
test adequacy, and test generation. We will continue to update and
expand TrickyBugs, and we hope that TrickyBugs can effectively
contribute to the software engineering community.
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