
AutoML from Software Engineering Perspective:
Landscapes and Challenges

Chao Wang∗†, Zhenpeng Chen‡, Minghui Zhou∗†§
∗School of Computer Science, Peking University, Beijing, China

†Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing, China
‡University College London, London, United Kingdom

wchao@pku.edu.cn, zp.chen@ucl.ac.uk, zhmh@pku.edu.cn

Abstract—Machine learning (ML) has been widely adopted
in modern software, but the manual configuration of ML (e.g.,
hyper-parameter configuration) poses a significant challenge to
software developers. Therefore, automated ML (AutoML), which
seeks the optimal configuration of ML automatically, has received
increasing attention from the software engineering community.
However, to date, there is no comprehensive understanding of
how AutoML is used by developers and what challenges develop-
ers encounter in using AutoML for software development. To fill
this knowledge gap, we conduct the first study on understanding
the use and challenges of AutoML from software developers’
perspective. We collect and analyze 1,554 AutoML downstream
repositories, 769 AutoML-related Stack Overflow questions, and
1,437 relevant GitHub issues. The results suggest the increasing
popularity of AutoML in a wide range of topics, but also the lack
of relevant expertise. We manually identify specific challenges
faced by developers for AutoML-enabled software. Based on the
results, we derive a series of implications for AutoML framework
selection, framework development, and research.

Index Terms—AutoML, software engineering, application,
challenge

I. INTRODUCTION

The vast success of machine learning (ML) paves its way
into a wide range of software applications, including au-
tonomous driving [1], medical treatments [2], speech recogni-
tion [3], and natural language processing [4]. These software
applications (i.e., ML software) integrate ML models trained
using a large data corpus with ML programs. In ML programs,
software developers need to configure various settings, such
as the way of data processing, the choice of ML models, and
the hyperparameters of models.

Problematic configuration of these settings could make ML
software miss the functional requirements (e.g., correctness),
resulting in a lot of ML testing and repair efforts that need to
be invested later [5]. Moreover, manually configuring these
settings can be challenging for software developers, as it
requires a high level of domain knowledge. Therefore, how to
find the optimal configurations of ML programs automatically,
known as automated ML (AutoML), has been an urgent and
significant Software Engineering (SE) concern [6], [7], [8],
[9].

To help developers achieve AutoML, major software com-
panies have rolled out software frameworks, such as nni from

§ Corresponding Author

Microsoft [10] and autogluon from Amazon [11]. These
frameworks consider AutoML as a search-based SE problem
whose starting point is a default model configuration. They
provide off-the-shelf APIs to support the automated mutation
of the starting point and exploration of configuration space to
find the optimal one for the problem.

Despite the widespread interest in AutoML, there is no
comprehensive understanding of two fundamental questions:
how AutoML is used by developers (RQ1) and what chal-
lenges developers encounter in using AutoML for software
development (RQ2). For RQ1, the freshness of AutoML leaves
unclear basic problems in the AutoML software ecosystem,
e.g., whether AutoML is widely used in ML practice, what
kinds of repositories make use of AutoML frequently, and
whether different kinds of repository topics have different
preferences for AutoML frameworks. The exploration of the
use of different AutoML frameworks in different kinds of
applications could provide insights for software developers in
making decisions on framework selection. For RQ2, AutoML
poses specific programming challenges to developers (e.g.,
how to customize the search space), which are frequently
complained about and asked on GitHub and developers’ Q&A
forums [12], [13], [14]. Moreover, recent SE studies have
revealed that the AutoML practice enabled by existing frame-
works is fault-prone [8], time-consuming [6], and resource-
intensive [8]. Through uncovering the specific challenges and
software faults that developers frequently encounter about Au-
toML in software development, people could design automated
assistance tools (e.g., for testing and debugging) and improve
existing frameworks to help developers tackle these challenges
in a more targeted manner.

To fill the knowledge gap, we conduct the first comprehen-
sive study on analyzing the use and challenges of AutoML
in software development practice. In this study, we target
whoever uses AutoML frameworks, including application de-
velopers, data scientists, and so on. We collect 5,748 AutoML
downstream repositories that use AutoML frameworks (and
sample 1,554 repositories for further analysis), 769 AutoML-
related issues from Stack Overflow (SO), and 1,437 relevant
GitHub issues. Based on the collected data, we answer the
following sub-questions of RQ1 and RQ2.

RQ1.1 (popularity): How popular is AutoML in software
applications? We analyze the AutoML downstream reposito-

Optimizer Evaluator
Final

results

Configuration

Feedback

Search
space

Fig. 1. Basic AutoML workflow

ries and the AutoML-related SO questions in recent years.
The results indicate the increasing popularity of AutoML in
software development and demonstrate the timeliness of this
study.

RQ1.2 (applications): What software applications use
AutoML? We manually label the topics of AutoML down-
stream repositories and observe that AutoML has been used
in a wide range of repository topics. In addition, we find that
different kinds of applications have different preferences for
AutoML frameworks.

RQ2.1 (difficulty): How difficult is AutoML for software
developers? We use widely-adopted SE metrics to measure the
difficulty of AutoML based on the relevant SO questions. The
results suggest that AutoML lacks experts compared to other
SE topics.

RQ2.2 (challenges): What challenges do developers
frequently encounter when using AutoML in software
development? We identify developers’ challenges from the
SO posts and GitHub issues. We manually identify 26 spe-
cific challenges with AutoML in software development. The
resulting taxonomies indicate that developers face a wide
spectrum of challenges in AutoML, and call for actions by SE
researchers and AutoML framework vendors to tackle them.

As an additional contribution to the research community,
we make our code scripts and dataset publicly available for
researchers to replicate and build upon [15].

II. BACKGROUND AND RELATED WORK

AutoML workflow. ML techniques are frequently used
to derive actionable insights from datasets. Traditional ML
model development is time-consuming, resource-intensive, and
requires expertise to compare and train models, thus AutoML
is leveraged to automate the process. A simplified basic
workflow [16] for AutoML approaches is shown in Figure 1.
The optimizer generates model configurations based on given
search space and feedback from the evaluator and passes the
configuration to the evaluator. The evaluator measures the
model with assigned configuration on specific metrics and
gives feedback to the optimizer. The configuration includes the
constructed features, ML algorithms, model hyperparameters,
and so on. Overall, the configuration that achieves the best
performance within the given time and resource constraints
will be considered the final result. Studies on AutoML are
dedicated to improving the efficiency of the evaluator and the
effectiveness of the optimizer [17], [18], [19].

AutoML frameworks. As AutoML technologies grow ma-
ture, AutoML frameworks emerge rapidly. Existing AutoML

frameworks can be classified into two categories, open-source
frameworks and commercial frameworks. Open-source frame-
works contain frameworks from two sources, including auto-
sklearn [17], autokeras [20], and TPOT [21] that come from
academia and are based on existing ML frameworks; and
nni [22], H2O AutoML [23], and autogluon [24] that come
from industry. Open-source frameworks offer great flexibility
with extensive customization, while developers have to provide
their own computation resources. Commercial frameworks
provide paid AutoML solutions, including cloud providers
like Google Cloud AutoML [25] and Amazon SageMaker
Autopilot [26], and AutoML platforms targeting business users
like DataRobot [27]. Commercial frameworks usually provide
end-to-end services where developers only upload the dataset
and then easily obtain the trained model.

Related work. As we aim to understand the use and
challenges in AutoML, we discuss related work that enables
AutoML with efficient algorithms and helps developers to
better leverage AutoML. To automate the process of Au-
toML, many studies focus on feature engineering [28], [29],
[30], model selection [17], [18], [19], and neural architecture
search [31], [32], [33], [34], which support the emergence of
AutoML frameworks. With the growing popularity of AutoML
frameworks, researchers study how to assist developers to
use AutoML [6], [7], [8], [9], [12], [35]. Cambronero et
al. [7] propose AMS to assist developers in strengthening
the search space via mining complementary information from
related code corpus and API documents. Gao et al. [8]
design DnnSAT to help developers with configuration, which
estimates needed resources via constraint solving. Nguyen et
al. [6] accelerate the neural architecture search by replacing
the initial model with models mined from GitHub repositories.
Different from existing studies targeting specific challenges
encountered by developers, we conduct the first comprehensive
study on AutoML-related challenges and identify 26 categories
of challenges that provide in-depth insights.

III. DATA COLLECTION

We construct the dataset of our interest from three data
sources. First, we use the most commonly-used data sources
for studying challenges in development, i.e., SO and GitHub,
to collect AutoML-relevant issues that developers cannot
resolve and thus post online for technological advice. The
issues derived from the two sources are demonstrated to be
representative and align well with the real-world challenges
encountered by software practitioners [36], [37]. Second, to
investigate how AutoML is used by developers in the wild,
we collect relevant software repositories from World of Code
(WoC) [38], an infrastructure that contains massive git repos-
itories.

A. Mining Stack Overflow

We collect AutoML-related questions from the entire SO
dataset downloaded from its official Data Dump [39] on
December 6, 2021, which covers more than 20 million posts

2

TABLE I
STATISTICS OF SELECTED FRAMEWORKS

Project #Stars Creation date #Issues #Selected issues #Downstream repositories
Microsoft/nni [22] 12.1k 2018-06-01 1,450 498 321

EpistasisLab/tpot [21] 8.8k 2015-11-03 833 270 3,662
Keras-team/autokeras [20] 8.6k 2017-11-19 790 112 652
Automl/auto-sklearn [17] 6.6k 2015-07-02 811 425 930
awslabs/autogluon [24] 4.9k 2019-07-29 570 132 183

from July 31, 2008, to December 5, 2021. Each SO question
is tagged with one to five tags to indicate its topics.

To obtain AutoML-related SO questions, we first need to
identify AutoML-related tags. In line with previous work [40],
[41], we construct a set of AutoML-related tags with the
following steps: (1) We construct the initial set of tags with
the general keyword “automl”, i.e., Tini = {automl} . (2)
We collect a subset of posts Psub that contain any tag in Tini,
and we construct the candidate tag set Tcan with all tags of
posts in Psub. (3) We filter out tags in the Tcan with two
metrics significance and relevance, which are widely adopted
in previous work [40], [41], [42]. We calculate the significance
and relevance for each tag t in Tcan as follows (where pwitht
refers to posts with t):

Significance(t) =
| {p | p ∈ Psub ∧ pwitht} |

|Psub|
(1)

Relevance(t) =
| {p | p ∈ Psub ∧ pwitht} |
| {p | p ∈ Pall ∧ pwitht} |

(2)

A tag t is significantly relevant to AutoML if Significance(t)
and Relevance(t) are higher than specific thresholds. We use
the lowest thresholds among all previous studies [40], [41]
to collect the maximum number of relevant tags. We select
only the tags whose significance is higher than 0.005 and
whose relevance is higher than 0.05. As a result, we extract
six additional tags, “google-cloud-automl”, “google-cloud-
automl-nl”, “h2o.ai”, “tpot”, “auto-keras” and “neuraxle”.
We manually check the description of all retrieved tags and
find that all of them are AutoML frameworks, covering both
commercial and open-sourced frameworks. We also check
other popular AutoML framework names to expand the tag
set, e.g., “nni” and “autogluon ”, and these tags only contain
a small number of posts so we do not include them. We extract
questions tagged with “automl” or any of the six tags from the
SO dataset and thus obtain 769 AutoML-related SO questions.

B. Mining GitHub Issues

Following previous work [43] that selects frameworks by
the star count filtering and manual check of repository de-
scriptions, we first identify popular AutoML frameworks on
GitHub, and then mine issues in their official repositories to
uncover the challenges that developers encounter when using
them. Developers raise issues (with detailed descriptions such
as fault symptoms and running environment) in GitHub repos-
itories to seek technical advice when they face difficulties.
The detailed descriptions of issues as well as the following

discussions allow us to distill developers’ challenges from
them easily. Thus, following previous work in SE [44], [45],
[46], [47] that summarize challenges in software development
from GitHub issues, we employ GitHub issues as a data source
for the following analysis.

1) Identification of AutoML frameworks: To understand
how AutoML is used by developers, we target open-source
AutoML frameworks on GitHub that are representative and
widely used. We do not investigate the use of commercial
frameworks because developers interact with the platform
UI directly in most cases and we cannot track their use.
To identify representative open-source AutoML frameworks,
we retrieved the top 10 projects sorted with “most stars”
under the “automl” topic, and manually check their description
and documentation. We identify 5 projects that are actually
AutoML frameworks, shown in Table I with statistics. These
frameworks provide a complete solution for developers to
obtain the optimal model for the specific dataset, and sup-
port typical AutoML tasks including feature selection, model
selection, and parameter tuning. They support traditional ML
techniques, e.g., tpot and auto-sklearn (both based on
Scikit-learn [48]), as well as deep learning, e.g., autokeras
(based on Keras [49]), autogluon (supporting PyTorch [50]
model tuning), and nni (supporting neural architecture search
for both PyTorch [50] and TensorFlow [51]), which indicates
the representativeness of selected frameworks.

2) Extraction of GitHub Issues: We use the official GitHub
API [52] to mine all the issues of the selected frameworks
on January 1, 2022. Developers open issues on GitHub for
various reasons, e.g., bug reports and feature requests, so we
filter out irrelevant issues with three rules. First, in line with
previous work [44], [45], we filter out issues via labels. We
manually inspect all issue labels in selected frameworks, and
identify all labels that correspond to specific development
tasks, e.g., “bug”, “todo”, and “help wanted”. We excluded
issues with identified labels. However, not all issues are tagged
with corresponding labels, so we further filter task issues
related to the pull requests and commits. Then, we obtain
all pull requests and commits of selected frameworks via a
web crawler, and filtered out all issues mentioned in the pull
requests or commits, which are likely to be bound up with
specific developing tasks. Next, following previous work [44],
we extract all closed issues with at least one response to ensure
the quality of selected issues. Overall, as shown in Table I, we
collect 1,437 issues.

3

2016 2017 2018 2019 2020
Year

0

250

500

750

1000

1250

1500

1750

of
 d
ow

ns
tre

am
 re

po
st
io
rie

s
microsoft/nni
EpistasisLab/tpot
automl/auto-sklearn
keras-team/autokeras
awslabs/autogluon

(a) The number of new downstream
repositories per year

2016 2017 2018 2019 2020 2021
Year

0

50

100

150

200
#posts
#users

(b) The number of new AutoML
questions and involved users on SO
per year

Fig. 2. The popularity trend of AutoML

C. Mining World of Code

To understand the use of AutoML in real-world software
applications, we use the World of Code (WoC) [38] to
collect the downstream repositories of the selected AutoML
frameworks. WoC is an infrastructure storing massive open-
source Git (version control system) data and it mines Git
objects of open source repositories across major code hosting
platforms, including GitHub, GitLab, Bitbucket, and so on.
Specifically, we use version T of WoC [53], which contains
code of more than 140 million distinct repositories by February
2021. Following the definition of software chain proposed
by Tan et al. [54], we define the downstream repositories
as repositories that import specific frameworks. We extract
downstream repositories of each AutoML framework via WoC,
which identified downstream repositories by import state-
ments. Forked repositories are excluded to avoid duplication.
Overall, we collect 5,748 downstream repositories, and the
number for each framework is shown in Table I.

IV. RQ1.1: POPULARITY

A. Methodology

To illustrate the popularity trend of AutoML usage, we
employ two metrics to measure the popularity trend: the
number of repositories using AutoML, and the number of
developers using AutoML. For the number of repositories,
we measure the popular trend of downstream repositories of
AutoML frameworks. We consider the committed time of
the first AutoML framework-related import statement as the
creation time and calculate the number of created downstream
repositories per year. For the number of developers using Au-
toML, it is tricky to count developers directly. Thus, following
previous work [55], [56], [57], we target users involved in
AutoML-related SO questions, which can reflect the amount of
AutoML users. We calculated the number of AutoML-related
SO questions per year, as well as involved SO users within
these questions.

B. Results

Figure 2(a) shows the popularity trend of downstream repos-
itories, which illustrates that all AutoML frameworks have
continuous growth in the number of downstream repositories.
Both nni, a new framework, and tpot, a mature framework,
show more than 100% growth of new downstream repositories

in 2020 compared to 2019. The growth trend of downstream
repositories with autokeras stabilizes in recent years because
it is out of maintenance for a period of time in 2019 [58].
The overall rapidly growing trend suggests that AutoML is
increasingly used in ML development, and demonstrates the
timeliness of this study.

Figure 2(b) shows the trend of AutoML-related SO ques-
tions and involved users. The figure illustrates that, with the
emergence of extensive studies on AutoML and the matu-
rity of AutoML frameworks, AutoML-related questions and
users increased rapidly in 2018 and 2019. We can observe a
more than 1.8x increase in the number of involved users in
2019 compared to 2018. The increasing trend suggests that
a growing number of developers are using AutoML in ML
development. Meanwhile, the increase also suggests that devel-
opers often encounter challenges with AutoML frameworks,
and seek solutions online, again demonstrating the timeliness
of this study.

Findings 1: The numbers of repositories using AutoML
and developers involved in AutoML are both showing rapid
growth, suggesting the growing willingness of developers
to use AutoML in ML development.

V. RQ1.2: APPLICATIONS

A. Methodology

As explained in Section III-C, we collect 5,748 downstream
repositories of AutoML frameworks. Following the threshold
of sampling in previous work [55], [59], [60], ensuring a 95%
confidence level and a 5% confidence interval, we randomly
sample 350 downstream repositories for each framework. For
frameworks with less than 350 downstream repositories (nni
and autogluon), we select all their downstream repositories.
In total, we collect 1,554 downstream repositories. Next, we
present the procedures of the taxonomy construction.

1) Pilot Construction: To get familiar with the dataset, two
authors, who have three and five years of ML experience,
respectively, carefully read all introductions and README
files in all downstream repositories. They follow the standard
open coding procedure [61] to construct the pilot taxonomy for
randomly sampled 30% of the dataset. The detailed procedures
are described below.

Two authors read and reread the introduction and the
README file of sampled downstream repositories. They
generate short descriptions as initial codes to indicate the topic
that shows the purpose of the repository.

With initial codes, two authors construct the taxonomy
for downstream repository topics with the following steps.
(1) Iteratively group similar initial codes into categories. (2)
Consider each category, whether it contains sub-categories,
and how these sub-categories interact and relate to the main
category. (3) Define the final categories. Each repository is
assigned to one topic category. Repositories without sufficient
information to understand the circumstance would be labeled
with “unclear”.

4

TABLE II
THE TAXONOMY OF AUTOML DOWNSTREAM REPOSITORY TOPICS

Inner-
category

Category Category description #Downstream
repositories

Software
application
(35.3%)

NLP application Applications on natural language processing tasks, including semantic
analysis, named entity recognition, text classification, and so on.

36 (4.55%)

CV application Applications on computer vision tasks, including object detection, image
classification, face parsing, and so on.

34 (4.30%)

AutoML implementation Applications that implement and reproduce algorithms in AutoML stud-
ies.

14 (17.70%)

Other CS-related appli-
cation

Applications on classic CS-related topics, including recommendation
systems (13), audio processing (5), time-series data procession (3), and
so on.

36 (4.55%)

Game Applications that are games or just for entertainment. 7 (0.88%)
Biology and Medicine Applications related to challenges in Biology or Medicine. 46 (5.82%)
Business and Marketing Applications related to challenges in Business and Marketing. 40 (5.06%)
Other practical challenge Applications related to other practical challenges that cannot fit in other

categories, including air quality prediction, grain production prediction,
traffic simulator, and so on.

66 (8.34%)

Software
education
(23.89%)

Learning project Projects that store course materials, tutorials, or source code for home-
work.

189 (23.89%)

Software
toolkit (9.61%)

Library and toolkit Projects that are libraries, wrappers, or toolkits providing easily acces-
sible API for ML or AutoML.

76 (9.61%)

Crowd-sourced
competition
(8.47%)

Competition source code Projects that stores source code of solutions for competitions like Kaggle
and hackathons.

67 (8.47%)

Paper
experiment
(7.84%)

Paper in CS Projects that store source code for research papers of different domains
in Computer Science(CS), including AutoML (18), computer vision (9),
model theory (7), security (4), code analysis (3), and so on.

53 (6.70%)

Paper in other subjects Projects that store source code for research papers in other subjects,
including Biology (6) and Physics (3).

9 (1.14%)

Benchmark
(3.54%)

Benchmark project Projects that compare the performance of different AutoML frameworks. 28 (3.54%)

Others
(11.38%)

Other project Projects including personal project collection, templates code, toy
projects, and so on.

90 (11.38%)

Total 791 (100.00%)

2) Reliability Analysis: Two authors independently label
the rest 70% of the dataset based on taxonomies generated
in the pilot construction. Repositories that cannot fit in any
category in the taxonomy are labeled with “pending”. The
Cohen’s Kappa is employed to measure the inter-rater agree-
ment during the labeling. The Kappa value is 0.95, indicating
the substantial agreement and the reliability of the coding
procedure.

The conflicts in independent labeling are discussed by
two authors. If they cannot reach an agreement, the conflict
would be resolved by a non-author arbitrator, who has rich
experience in both ML and AutoML. All repositories labeled
with “pending” are also discussed by two authors and the
arbitrator, to see if they can be assigned to existing categories,
or if new categories need to be added. One category is added
at the end.

Overall, we identify topics of 1,554 repositories and con-
struct the taxonomy for the topics of AutoML downstream
repositories.

B. Results

Table II presents the taxonomy of AutoML downstream
repository topics, which contains 15 categories. Two types of
repositories are excluded in the taxonomy: projects that cannot
be accessed due to removal or turning to private (152), and
projects that cannot be classified due to the lack of informa-
tive introductions and README files (611). We also merge
categories that account for a relatively small percentage, e.g.,
we merge the categories like applications for recommendation
systems, audio processing, time-series data procession, and so
on, into one category.

The taxonomy illustrates that AutoML frameworks are
frequently used in Computer Science (CS) studies and soft-
ware development, suggesting the usefulness of AutoML in
assisting ML development. Meanwhile, AutoML frameworks
are used to conduct research in other subjects like Biology
and Physics and address interdisciplinary challenges including
Biology, Business, Environment, and so on, where developers
may not have rich ML background knowledge. AutoML
frameworks are often introduced in ML courses and tutori-
als, and frequently used in homework and competitions to

5

nn
i

tp
ot

au
to

ke
ra

s

au
to

sk
le

ar
n

au
to

gl
uo

n0.0

0.2

0.4

0.6

0.8

1.0

2016 2017 2018 2019 20200.0

0.2

0.4

0.6

0.8

1.0 NLP application
CV application
AutoML implementation
Other CS-related application
Game
Biology and Medicine
Business and Marketing
Other practical challenge
Learning project
Library and toolkit
Competition source code
Paper in CS
Paper in other subjects
Benchmark project

Fig. 3. The topics of downstream repositories of different AutoML frame-
works and in different years

efficiently build the model, suggesting the extensive interest
AutoML has received from software educators and beginners.

Figure 3 presents the distribution of downstream repository
topics within different AutoML frameworks, indicating that
AutoML frameworks vary in terms of application scenarios.
As a new AutoML framework developed and promoted by
Microsoft, providing support for the implementation of various
state-of-the-art AutoML algorithms, nni is widely used in
CS-related applications (34%) and studies (17%). Conversely,
tpot has a high proportion of applications on interdisciplinary
applications (38%), learning projects (35%), and competitions
(13%). Meanwhile, the selection of frameworks varies from
domain to domain. For example, developers tend to choose
nni, autokeras, and autogluon for CV applications, which
support automation on deep learning techniques that suffi-
ciently support CV tasks.

Figure 3 also presents the evolution of downstream repos-
itory topics, which shows the distribution of newly created
downstream repositories by topic categories per year, illustrat-
ing that the distribution fluctuates over time since 2018. Over
time, the repositories that use AutoML have become more
diverse, starting with easy tasks using tabular datasets, and
then gradually applying to cutting-edge domains. The emer-
gence of AutoML studies since 2018 and the implementation
of state-of-the-art AutoML algorithms may play a driving role
in the evolution [62]. Notably, learning projects always take
the largest share whose percentage exceeds 20% every year,
suggesting that beginners constantly have a strong interest and
need to learn and use AutoML.

Findings 2: (1) The AutoML is widely used in practice,
ranging from research, interdisciplinary applications (e.g.,
application in Biology), to education and programming
competitions like Kaggle. (2) Different frameworks vary
in prevalence in different domains, e.g., nni, autokeras,
and autogluon have a relatively higher proportion on
CV applications. (3) The diversity of AutoML downstream
repository topics increased over time, and the learning
projects have always been proportionally dominant, sug-

0 200 400 600 800 1000 1200 1400

AutoML-related

All

Response time (minutes)

Fig. 4. The distribution of response time

gesting the strong need from beginners.

VI. RQ2.1: DIFFICULTY

A. Methodology

To measure the difficulty of AutoML challenges, following
previous work [41], [42], [55], [56], [63], [64], [65], [66],
we use two widely used metrics, the percentage of questions
without any accepted answer (%no acc) and the response
time for a SO question to receive an accepted answer. For
%no acc, we calculated the percentage among AutoML-
related SO questions and all SO questions, and compare them
with other topics reported in previous work. For response time,
we calculate the time interval from when the question is posted
to when the accepted answer is created, for both AutoML-
related questions and all SO questions with accepted answers.
The above two indicators suggest the degree of scarcity of
relevant expertise.

B. Results

The percentage of AutoML-related SO questions without
accepted answers (%no acc) is 73.0%, which is much higher
than the percentage of all SO questions (%no acc = 51.4%).
AutoML-related SO questions also have a higher %no acc
than other well-studied topics in SE, including deep learning
software deployment (%no acc = 70.7% [55]), serverless
computing(%no acc = 61.5% [64]), big data (%no acc =
60.5% [41]), mobile (%no acc = 55.0% [65]), and concur-
rency (%no acc = 43.8% [63]).

Figure 4 shows the distribution of response time of
AutoML-related questions and all questions on SO. The figure
illustrates that AutoML-related questions have a much longer
response time, which is about 413.5 minutes in the median,
compared with 35 minutes for all SO questions in the median.
The median value of response time is also higher than other
topics reported in previous work, including deep learning
deployment (405 minutes [55]), big data (198 minutes [41]),
serverless computing (190 minutes [64]), mobile (55 min-
utes [65]), and concurrency (42 minutes [63]).

AutoML-related questions have a higher %no acc and a
longer response time than other popular topics with sev-
eral potential factors: the complex nature of AutoML-related
questions, the confusing formalization or description from
inexperienced questioners, and the lack of experts and domain
knowledge for such a novel topic. Whatever the reason, the
higher value of the two metrics reveals the high difficulty of
asking for a technical solution online with AutoML-related
challenges, and the lack of expertise, which again rationalizes

6

the necessity of our study that systematically and comprehen-
sively organizes AutoML-related challenges.

Findings 3: Compared to other topics, AutoML-related
questions present a significantly higher percentage without
accepted answers, and a significantly longer time to receive
an accepted answer, suggesting the difficulty in answering
AutoML-related questions and the lack of relevant exper-
tise.

VII. RQ2.2: CHALLENGES

A. Methodology

To understand the challenges in AutoML use, we manually
analyze AutoML-related questions. We collect 208 SO ques-
tions with accepted answers from all 769 questions retrieved in
Section III-A following previous work [40], [55], and all 1,437
GitHub issues collected in Section III-B2. In total, we collect
1,645 posts (i.e., GitHub issues and SO questions) for the
taxonomy construction. The size of the dataset is comparable
and even larger than previous work [37], [55], [67], [64], [68],
[69] that manually analyze GitHub issues and SO questions.

Following the same procedure described in Section V-A1,
two authors randomly sample 30% of posts and generate initial
codes for them. For each post, they generate initial codes to
indicate the challenge that describes the topic of the problem
developers encountered. Posts that are not exactly questions
proposed by developers would be labeled with “false positive”,
e.g., discussions on the function design. Posts with questions
that are actually triggered by confirmed bugs are also labeled
with “false positive”.

Two authors labeled the rest 70% of posts following the
same schema in Section V-A2. Note that each post can be
assigned to multiple relevant categories of challenges. The
Kappa value for the challenges is 0.81, indicating the sub-
stantial agreement and the reliability of the coding procedure.
One category is added within the reliability analysis. Overall,
we identify the challenges of 1,645 posts.

We further investigate the variation in challenges across
AutoML frameworks and the evolution of AutoML challenges.
For five selected open-source AutoML frameworks, we cal-
culate the distribution of GitHub issues in each framework
by challenges categories. We also consider Google Cloud

AutoML(GCA), which is a representative commercial AutoML
framework, and 47% (98/208) of SO questions in our dataset
have corresponding labels. We calculate the distribution for
GCA with the above 98 SO questions. To investigate the
evolution of AutoML challenges, we calculate the distribution
of challenge categories per year.

B. Results

1) Challenge categories: After excluding “false positive”
(298) and “Unclear” (190) posts, we have 1,157 posts with
1,170 labels for the taxonomy of challenges. Figure 5 il-
lustrates the hierarchical taxonomy of challenges, indicating
a wide range of challenges that developers encounter. The
taxonomy has 6 inner categories and 26 leaf categories and the

percentage of labels in each category is presented in Figure 5.
We further classified 26 challenge categories into three types:
challenges with practical solutions (marked with green back-
ground in Figure 5), challenges that require more engineering
support (marked with a yellow background in Figure 5), and
challenges that require more theoretic support (marked with
red background in Figure 5). A detailed description of each
category can be found in the supplementary material [15].
In the following section, we describe and exemplify each
challenge category except for resolved challenges as follows.

(1) Environment. This inner category covers challenges that
developers encounter with setting up the environment.

GPU scheduling. Developers encounter challenges in the
configuration of GPU, including introducing GPU to the
trial [70] and scheduling the trial on multiple GPUs [71],
accounting for 3.18% of all challenges.

Compatibility with ML frameworks. The rapid evolution
of ML frameworks [54] leads to challenges for the use and
maintenance of AutoML framework. Framework vendors need
a strategy for dependency maintenance to balance the update
cost and users’ needs [72], while related knowledge remains
sparse. Framework users need to use the specific version of
ML frameworks to ensure compatibility [73], which may lead
to functional limitations of the trial.

(2) Data preparation. This inner category covers chal-
lenges developers encountered when preparing the dataset,
including challenges in data cleaning, data adaption, and data
type/format conversion.

(3) Trial. This inner category covers challenges that de-
velopers encounter in the setup and procedure of AutoML
trials, which accounts for 23.57% and covers AutoML-specific
challenges.

Metric selection/customization. The metric used to assess
the effectiveness of candidate models is essential to the
trial, which should be selected appropriately and receive
great concerns (5.56%). The improper metric may lead to
unsatisfied performance (e.g., using accuracy for an imbal-
anced dataset [74]), or even faults (e.g., using precision in
multiclass classification [75]). Despite various metrics being
implemented by AutoML frameworks, developers still have
a demand for customizing the metric for specific purposes,
e.g., the Sharpe ratio [76]. Developers propose questions on
how to customize the metric [77], and encounter errors if the
customized metric is not implemented correctly [78], [79].

Search space customization. The set of search space plays
a significant role in AutoML algorithms, which frequently
bothers developers (5.91%). Developers lacking sufficient
expertise may encounter difficulties in defining a suitable
search space, who are unclear about which variables can be
searched [80], and how to specify the scope [13]. Overly
broad, restricted, or unrealistic search space may lead to poor
performance of the obtained model or even faults, e.g., the
inapplicable preprocessor setting in search space brings the
error [81].

Intermediate results presentation. Despite AutoML frame-
works assisting developers on ML, AutoML remains the

7

AutoML Challenges

Data preparation (9.32%)

Trial (23.57%)

Model building (11.87%)

Environment (28.54%)

Efficiency (8.79%)

General questions (17.91%)

Data cleaning (0.45%)

Data adoption (4.50%)

Data type/format (4.37%)

Metric selection/customization (5.06%)

Algorithm selection (0.75%)

Search space customization (5.91%)

Overfitting (0.84%)

Intermediate results presentation (4.49%)

Resuming trial (1.86%)

Reproducibility (1.04%)

Model compression (2.53%)

Meta-learning (1.09%)

Result interpretation (4.94%)

Model reproduction (6.93%)

Installation (8.52%)

Environment configuration (8.42%)

GPU scheduling (3.18%)

Compatibility with ML frameworks (3.75%)

Compatibility with other dependencies (4.67%)

Memory management (2.83%)

Time management (2.63%)

Paralleling/distributed computing (3.33%)

API usage/selection (6.12%)

Function design (2.03%)

Limitation (5.65%)

Background knowledge (4.20%)

Fig. 5. The taxonomy of challenges, including challenges with practical solutions (green background), challenges that require more engineering support
(yellow background), and challenges that require more theoretic support (red background)

“black box” for many developers. Thus, to obtain the final
optimal model, developers seek the support of monitoring the
entire search process, which accounts for a relatively large
percentage (4.49%). Developers want to collect information
about which models are tested in the trial and how they
perform [82], [83] to rationalize the obtained optimal model.

Model compression. Model compression is a new research
subfield of AutoML and related algorithms are implemented
by AutoML frameworks like nni, which help developers to
reduce the model size and accelerate model inference without
losing performance significantly. However, developers are not
familiar with model compression, which leads to challenges.
Developers are unclear about some basic concepts like what
models are supported [84] and the difference between algo-
rithms [85]. They also often fail to compress the model due
to erroneous operation, e.g., forgetting to unwrap the original
model [86]. Despite a new subfield, considerable related
questions (2.63%) concern model compression, demonstrating
its high difficulty.

Meta-learning. Meta-learning is also a new subfield of
AutoML, where the metadata of datasets is used for model
selection and algorithm tuning. Developers are unfamiliar with
meta-learning, so they wonder how meta-learning works [87]
and how to set relevant configurations [88]. Another common
issue is that developers are unaware of the involvement of
meta-learning in AutoML, where they obtain the same results
with random seeds because meta-learning is used to warm start
the optimization procedure [89].

(4) Model building. After the trial, developers need to
reproduce the optimal model with results for further inference,
where challenges within this inner category exist.

Results interpretation. ML frameworks already have so-
phisticated tools for model analysis and visualization, whereas
AutoML frameworks do not, which leads to numerous ques-
tions (4.94% of all categories) about how to understand given
results and retrieve more information for the optimal model.
Developers encounter challenges with how to retrieve and
understand the architecture of the best model, e.g., in tpot,

the obtained model is present in the form of pipelines, which
leads to confusion [90] and misunderstanding [91] on complex
pipelines with multiple steps. Apart from the architecture,
developers also call for more information to evaluate the
obtained model and assess whether more trials are needed,
e.g., CV scores [92], confusion matrix [93], and feature
importance [94].

Model reproduction. The relatively high percentage
(6.93%) of this category suggests that developers often en-
counter challenges with model building and inference. In
some cases, the optimal model is already fitted with test
data. Developers have questions about how to save the model
properly and reload it for further training and prediction, e.g.,
developers wonder how to save the model that can be loaded
later [95]. In other cases, AutoML frameworks only provide
the architecture of the optimal model. Developers seek ways
to automatically convert the architecture string to modeling
code in ML frameworks such as scikit-learn, which they
do it manually now [96], [97], [98]. Incorrect operations in
model reproduction lead to faults, e.g., using the unfitted
model directly [99].

(5) Efficiency. Efficiency plays a significant role in AutoML
frameworks and the optimal solution is required to be obtained
with limited resources and time. This inner category includes
challenges related to memory and time management, as well
as paralleling and distributed computing.

Memory management. AutoML trials are instinctively
memory-consuming, thus AutoML frameworks provide the
ability to limit memory usage for trials, and usually set
default limitations on memory. Inexperienced developers have
difficulty in estimating the amount of memory needed for
trials and relevant knowledge is lacking [100]. Some are
even unaware of the default memory limitation [101], which
leads to errors. Moreover, developers have trouble with large
datasets in AutoML, and they are recommended to increase the
memory limitation and running time [102] or use the subset
of the dataset [103].

Time management. Developers have to limit the duration

8

of trials so that the search can end in a limited time. AutoML
frameworks provide APIs for time management, including
setting time limitations on each iteration and the whole search.
How to estimate the trial time and properly set the limitation
is challenging to inexperienced developers, accounting for
2.63% of all categories. Related expertise is still missing,
e.g., developers ask for the rule of thumb choosing time
limitation on each trial, whereas the best practice is still
unclear according to the feedback [104]. Unreasonable time
limits can drive issues, where overly long time limitations lead
to substantial time costs, and short time limitations may cause
unexpected faults [105].

Parallel/distributed computing. Parallel computing and dis-
tributed computing are widely used in AutoML frameworks to
improve efficiency. Developers encounter challenges in paral-
lel computing and distributed computing, including resource
sharing [106], [107] and related configuration, accounting for
3.33% of all categories.

(6) General questions. This inner category includes ques-
tions developers have on general principles.

Background knowledge. This category includes questions
about the general procedure of conducting the AutoML trial,
e.g., “What’s the input and the output of nni?” [108], and
the background theory, e.g., “How TPOT tune the parame-
ters?” [109]. The relatively high percentage (4.20%) suggests
that not all users clearly understand how AutoML works.
These questions are proposed by developers without expertise
in AutoML or even ML, and can be easily solved with more
examples and explanations in the document [110].

Findings 4: We build a taxonomy of challenges in using
AutoML frameworks with 26 categories, illustrating a wide
spectrum of challenges developers face in AutoML. The
frequent categories range from general challenges like
Installation (8.52%), Environment configuration (8.42%),
and API usage/selection (6.12%), to AutoML specific
challenges like Model reproduction (6.93%), Search space
customization (5.91%), and Metric selection/customization
(5.06%).

2) Distribution of challenges among frameworks: Figure 6
illustrates the distribution of challenges categories in different
frameworks, suggesting that developers encounter different
challenges within different AutoML frameworks.

Commercial AutoML frameworks pose different difficulties
for developers compared with open-source frameworks. As
a representative commercial platform that provides AutoML
cloud solutions, GCA has a distinctive workflow from open-
source frameworks, which leads to a distinct pattern of
challenges. Developers mainly have challenges with how to
properly prepare the dataset, how to correctly interact with the
platform, how to save and deploy the trained model, and how
to adapt the model for inference, instead of how to conduct
the trial.

The variance also exists between different open-source Au-
toML frameworks. In nni, developers often have challenges

GC
A

nn
i

tp
ot

au
to
ke

ra
s

au
to
sk

le
ar
n

au
to
gl
uo

n

Installation
Environment configuration

GPU scheduling
Compatibility with ML frameworks

Compatibility with other dependencies
Data cleaning
Data adaption

Data type/format
Metric selection/customization

Algorithm selection
Search space customization

Overfitting
Intermediate results presentation

Resuming trial
Reproducibility

Model compression
Meta-learning

Results interpretation
Model reproduction

Memory menagement
Time mamagement

Paralleling/distributed computing
API usage/selection

Function design
Limitation

Background knowledge

0.020 0.079 0.032 0.058 0.171 0.080
0.143 0.215 0.023 0.043 0.007 0.000
0.000 0.095 0.005 0.029 0.003 0.034
0.000 0.047 0.051 0.043 0.034 0.046
0.000 0.028 0.018 0.058 0.099 0.069
0.010 0.000 0.014 0.000 0.003 0.000
0.112 0.022 0.065 0.072 0.024 0.046
0.102 0.009 0.078 0.058 0.027 0.000
0.000 0.006 0.147 0.014 0.045 0.023
0.000 0.016 0.005 0.000 0.007 0.011
0.010 0.047 0.088 0.014 0.058 0.161
0.000 0.000 0.018 0.000 0.017 0.011
0.000 0.063 0.051 0.043 0.041 0.023
0.010 0.025 0.014 0.029 0.017 0.034
0.000 0.003 0.014 0.029 0.010 0.011
0.000 0.091 0.005 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.045 0.000
0.061 0.006 0.060 0.014 0.075 0.046
0.184 0.038 0.023 0.174 0.062 0.069
0.000 0.019 0.028 0.043 0.051 0.023
0.051 0.006 0.028 0.014 0.034 0.057
0.000 0.041 0.032 0.058 0.031 0.011
0.153 0.038 0.055 0.029 0.041 0.149
0.010 0.032 0.032 0.014 0.010 0.023
0.082 0.041 0.065 0.116 0.062 0.023
0.051 0.032 0.051 0.043 0.024 0.046

2017 2018 2019 2020 2021

0.1950.0610.1100.0580.047
0.0240.0710.1050.1090.107
0.0000.0140.0350.0510.051
0.0330.0140.0180.0420.056
0.0730.0520.0310.0420.023
0.0160.0050.0000.0030.000
0.0330.0520.0440.0320.056
0.0490.0380.0440.0380.042
0.0980.0940.0440.0130.033
0.0000.0090.0180.0100.000
0.0650.0710.0220.0700.070
0.0000.0090.0090.0160.000
0.0240.0420.0610.0380.065
0.0080.0240.0130.0220.023
0.0160.0090.0090.0060.014
0.0080.0000.0000.0450.070
0.0000.0140.0180.0130.005
0.0810.0520.0350.0320.065
0.0330.0610.0830.0930.065
0.0330.0420.0390.0260.005
0.0160.0190.0350.0260.019
0.0330.0380.0260.0380.028
0.0490.0520.0790.0770.047
0.0080.0240.0220.0290.019
0.0570.0850.0480.0480.051
0.0490.0470.0530.0260.042

0.00

0.05

0.10

0.15

0.20

0.25

Fig. 6. The distribution of challenges among different AutoML frameworks
and years

in Environment configuration (21.5%) due to its complex
architecture, and almost all Model compression posts are
related to nni because only nni implements model compres-
sion algorithms. Meanwhile, developers often encounter chal-
lenges of Metric selection/customization (14.7%) and Search
space customization (8.8%) in tpot; Model reproduction
(17.4%) and Limitation (11.6%) in autokeras; installation
(17.1%), Compatibility with other dependencies (9.9%), and
Results interpretation (7.5%) in autosklearn; Search space
customization (16.1%) and API usage/selection (14.9%) in
autogluon. While, some categories are widespread across
open-source AutoML frameworks, including Search space
customization, Model reproduction, and Data adaption, where
best practices and supporting tools are missing.

Findings 5: The distribution of challenges varies from
commercial frameworks to open-source frameworks, while
widespread categories across all frameworks exist, includ-
ing Search space customization, Model reproduction, and
Data adaption.

3) Evolution of AutoML challenges: Figure 6 also il-
lustrates the evolution of AutoML challenges, showing the
distribution of challenges reported per year. Categories like
Installation and Compatibility with other dependencies have a
downward trend due to the increasing maturity of the AutoML
frameworks. In contrast, some categories show an increasing
trend, including Environment configuration due to the increas-
ing architecture complexity of AutoML frameworks, GPU
scheduling due to the more frequent involvement of GPU in
AutoML trials, and Model compression because it receives
increasing attention in recent years as a new topic. We can
observe that developers constantly encounter challenges of
Search space customization, Results interpretation, and Model

9

reproduction over time, where more support is needed.

Findings 6: Categories like Search space customization
and Model reproduction have been constantly reported
by developers over time. GPU scheduling and Model
compression even have an increasing trend in recent years.

VIII. IMPLICATION

Based on our results, we propose suggestions for AutoML
framework selection, AutoML framework development, and
potential research topics.

A. AutoML framework selection

Our results suggest that the usage of different frameworks
varies in prevalence in different domains, e.g., developers
tend to select nni, autokeras, and autogluon for CV
applications. Developers can make a proper choice on AutoML
framework selection based on their needs with our results, e.g.,
for a CV application, nni may be a better choice than tpot

according to the distribution of their downstream repository
topics.

Meanwhile, developers can benefit from the distribution of
challenges encountered within different frameworks, which
demonstrates differences in environment configuration, results
analysis, and model reproduction across different frameworks.
Developers may select the AutoML framework accordingly
based on their demands, e.g., if developers are interested
in how the specific model configuration is identified, it is
more appropriate for them to select frameworks with fewer
challenges on intermediate results presentation.

B. AutoML framework development

Our results suggest that AutoML frameworks are used in
increasingly diverse domains. Thus, we suggest more domain-
specific AutoML support in frameworks to efficiently serve
developers with various purposes to meet extensive application
scenarios of AutoML, e.g., providing APIs for typical usages
like object detection applications that cannot be directly served
by existing frameworks.

Our proposed taxonomy of challenges in AutoML develop-
ment presents challenges that require additional engineering
efforts. We suggest framework vendors provide more sup-
port for these challenges, especially those challenges with a
higher proportion, e.g., providing clearer visualization so that
developers can better access the progress and make optimal
decisions for the next move. Our results also suggest that
the challenges vary in different frameworks. There is no
silver bullet for addressing challenges across all AutoML
frameworks, and we suggest framework vendors tailor support
for framework-specific frequent challenges according to our
results, where the priority of challenges may vary in different
frameworks.

We present the evolution of challenges developers encoun-
tered in using AutoML frameworks. We suggest framework
vendors offer additional support for persistent and increasing
challenges based on the evolution of challenges, e.g., providing

automation on model construction in related ML frameworks,
providing more AutoML-specific GPU support to accelerate
AutoML, and providing more principle documentation on
state-of-the-art techniques.

C. Potential research topics

Our taxonomy presents challenges that cannot be easily
solved and require more theoretical support. Researchers may
target such challenges, e.g., the automatic setup of AutoML
trials, including search space setting, time estimation, and
memory estimation, where SE researchers have made a pre-
liminary attempt [7]. We also encourage researchers to mine
software repositories for the embedding of prior experience
rules to facilitate automated solutions to persistent challenges,
e.g., recommend the search space based on configurations of
similar projects mined from open-source platforms.

IX. THREATS TO VALIDITY

In this section, we discuss threats to the validity of our
study.

Selection of frameworks. Our mining of downstream
repositories and GitHub issues is based on the five selected
open-source frameworks, which may lead to bias. To mitigate
the bias on selection, we select widely-used representative
AutoML frameworks, which have numerous stars on GitHub
and considerable downstream repositories. They also cover all
AutoML domains and implement state-of-the-art algorithms.
Moreover, we introduce SO questions in the analysis of
AutoML challenges to complement the commercial AutoML
framework perspective.

Construction of the tag set. We mine SO questions based
on the constructed tag set. We cannot guarantee we collect all
AutoML-related tags in SO, which may lead to bias in our
dataset. To mitigate the bias, we follow previous work [40],
[41], [42], constructing the tag set with two widely adopted
metrics significance and relevance, and we use the lowest
thresholds in previous work [40], [41]. We collect as many
tags as possible with the lowest thresholds and manually check
all selected tags to ensure accuracy.

Limitations of data sources. To understand the challenges
in AutoML development, we mine related SO questions and
GitHub issues following previous work [40], [44], [55]. Thus,
we may overlook important insights from other common
sources, e.g., discussion forums, mailing lists, and technical
support of commercial frameworks. Our results may miss
challenges developers encountered in commercial AutoML
frameworks. We plan to extend our study to comprehensive
data sources and validate our results in future work.

Subjectivity of researchers. The subjectivity of researchers
may lead to bias in manual labeling. To mitigate the bias, each
data item is independently labeled by two authors and all con-
flict cases are resolved by an experienced arbitrator. Moreover,
we have a high inter-rater agreement in the reliability analysis,
indicating the reliability of the coding schema and procedure.

10

X. CONCLUSION

We have presented a comprehensive study on the use and
challenges of AutoML. We demonstrate the increasing trend
of AutoML use, but also the high difficulty and lack of
expertise in AutoML. An investigation of 1,554 repositories
using AutoML frameworks identify a wide range of AutoML
application topics. A manual analysis of 1,437 GitHub issues
and 208 SO questions identifies 26 challenges in AutoML.
We also demonstrate the diversity of application scenarios and
challenges between different AutoML frameworks, as well as
their evolution. We also demonstrate the diversity of AutoML
frameworks on usage and challenges. We believe that our
findings will be valuable to both practitioners and researchers,
and will facilitate the more effective utilization of AutoML.

XI. DATA AVAILABILITY

We make the replication package publicly available [15]. It
contains 1) the coding books and labels for thematic analysis,
2) the dataset containing all retrieved downstream repositories,
SO posts, and GitHub issues, and 3) the scripts to reproduce
the results in the paper.

ACKNOWLEDGEMENT

Chao Wang and Minghui Zhou are supported by the Na-
tional Natural Science Foundation of China under Grant Nos.
61825201 and 62142201. Zhenpeng Chen is supported by the
ERC advanced fellowship under Grant No. 741278 (EPIC:
Evolutionary Program Improvement Collaborators).

REFERENCES

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[2] L. Ma, C. Zhang, Y. Wang, W. Ruan, J. Wang, W. Tang, X. Ma,
X. Gao, and J. Gao, “Concare: Personalized clinical feature embedding
via capturing the healthcare context,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 01, 2020, pp. 833–
840.

[3] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn,
and D. Yu, “Convolutional neural networks for speech recognition,”
IEEE/ACM Transactions on audio, speech, and language processing,
vol. 22, no. 10, pp. 1533–1545, 2014.

[4] Z. Chen, S. Shen, Z. Hu, X. Lu, Q. Mei, and X. Liu, “Emoji-powered
representation learning for cross-lingual sentiment classification,” in
Proceedings of The World Wide Web Conference, WWW 2019, 2019,
pp. 251–262.

[5] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, vol. 48, no. 2, pp. 1–36, 2022.

[6] G. Nguyen, J. Islam, R. Pan, and H. Rajan, “Manas: Mining software
repositories to assist automl,” in Proceedings of the IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022, 2022.

[7] J. P. Cambronero, J. Cito, and M. C. Rinard, “Ams: Generating automl
search spaces from weak specifications,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020,
pp. 763–774.

[8] Y. Gao, Y. Zhu, H. Zhang, H. Lin, and M. Yang, “Resource-guided
configuration space reduction for deep learning models,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 2021, pp. 175–187.

[9] R. K. Saha, A. Ura, S. Mahajan, C. Zhu, L. Li, Y. Hu, H. Yoshida,
S. Khurshid, and M. R. Prasad, “Sapientml: Synthesizing machine
learning pipelines by learning from human-written solutions,” in Pro-
ceedings of the IEEE/ACM 44th International Conference on Software
Engineering, ICSE 2022, 2022.

[10] mircosoft, “nni,” [EB/OL], https://github.com/microsoft/nni.
[11] awslabs, “autogluon,” [EB/OL], https://github.com/awslabs/autogluon.
[12] D. Xin, E. Y. Wu, D. J.-L. Lee, N. Salehi, and A. Parameswaran,

“Whither automl? understanding the role of automation in machine
learning workflows,” in Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, 2021, pp. 1–16.

[13] https://github.com/EpistasisLab/tpot/issues/701, on Feb 2022.
[14] https://stackoverflow.com/questions/63182360, on Feb 2022.
[15] “Supplementary material,” https://zenodo.org/record/7726459.
[16] Q. Yao, M. Wang, Y. Chen, W. Dai, Y.-F. Li, W.-W. Tu, Q. Yang,

and Y. Yu, “Taking human out of learning applications: A survey on
automated machine learning,” arXiv preprint arXiv:1810.13306, 2018.

[17] M. Feurer, A. Klein, J. Eggensperger, Katharina Springenberg,
M. Blum, and F. Hutter, “Efficient and robust automated machine
learning,” in Advances in Neural Information Processing Systems 28
(2015), 2015, pp. 2962–2970.

[18] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-
Brown, “Auto-weka: Automatic model selection and hyperparameter
optimization in weka,” in Automated Machine Learning. Springer,
Cham, 2019, pp. 81–95.

[19] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6765–6816, 2017.

[20] H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural archi-
tecture search system,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.
ACM, 2019, pp. 1946–1956.

[21] T. T. Le, W. Fu, and J. H. Moore, “Scaling tree-based automated
machine learning to biomedical big data with a feature set selector,”
Bioinformatics, vol. 36, no. 1, pp. 250–256, 2020.

[22] Q. Zhang, Z. Han, F. Yang, Y. Zhang, Z. Liu, M. Yang, and L. Zhou,
“Retiarii: A deep learning exploratory-training framework,” in Proceed-
ings of the 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), 2020, pp. 919–936.

[23] “Automl: Automatic machine learning - h2o.ai documentation,” https:
//docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html, on Feb 2022.

[24] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li,
and A. Smola, “Autogluon-tabular: Robust and accurate automl for
structured data,” arXiv preprint arXiv:2003.06505, 2020.

[25] “Cloud automl custom machine learning models,” https://cloud.google.
com/automl, on Feb 2022.

[26] “Automl - automated machine learning - amazon web services,” https:
//aws.amazon.com/sagemaker/autopilot/, on Feb 2022.

[27] “Datarobot ai cloud - the next generation of ai,” https://www.datarobot.
com/, on Feb 2022.

[28] Q. Meng, D. Catchpoole, D. Skillicom, and P. J. Kennedy, “Relational
autoencoder for feature extraction,” in 2017 International Joint Con-
ference on Neural Networks (IJCNN). IEEE, 2017, pp. 364–371.

[29] J. M. Kanter and K. Veeramachaneni, “Deep feature synthesis: Towards
automating data science endeavors,” in 2015 IEEE international con-
ference on data science and advanced analytics (DSAA). IEEE, 2015,
pp. 1–10.

[30] F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, and D. S.
Turaga, “Learning feature engineering for classification.” in Ijcai, 2017,
pp. 2529–2535.

[31] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in International conference
on machine learning. PMLR, 2018, pp. 4095–4104.

[32] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

[33] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2820–2828.

[34] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

11

[35] A. Crisan and B. Fiore-Gartland, “Fits and starts: Enterprise use of
automl and the role of humans in the loop,” in Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, 2021, pp.
1–15.

[36] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella, “Taxonomy of real faults in deep learning systems,”
in Proceedings of the 42nd International Conference on Software
Engineering, ICSE 2020, 2020, pp. 1110–1121.

[37] E. Aghajani, C. Nagy, M. Linares-Vásquez, L. Moreno, G. Bavota,
M. Lanza, and D. C. Shepherd, “Software documentation: the practi-
tioners’ perspective,” in Proceedings of the 42nd International Confer-
ence on Software Engineering, ICSE 2020, 2020, pp. 590–601.

[38] Y. Ma, C. Bogart, S. Amreen, R. Zaretzki, and A. Mockus, “World
of code: an infrastructure for mining the universe of open source vcs
data,” in 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 2019, pp. 143–154.

[39] “Stack exchange data dump : Stack exchange, inc. : Free download,
borrow, and streaming : Internet archive,” https://archive.org/details/
stackexchange Accessed April 4, 2010.

[40] Y. Lou, Z. Chen, Y. Cao, D. Hao, and L. Zhang, “Understanding build
issue resolution in practice: symptoms and fix patterns,” in Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, 2020, pp. 617–628.

[41] M. Bagherzadeh and R. Khatchadourian, “Going big: A large-scale
study on what big data developers ask,” in Proceedings of the 2019
27th ACM joint meeting on european software engineering conference
and symposium on the foundations of software engineering, 2019, pp.
432–442.

[42] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security
questions do developers ask? a large-scale study of stack overflow
posts,” Journal of Computer Science and Technology, vol. 31, no. 5,
pp. 910–924, 2016.

[43] H. B. Braiek, F. Khomh, and B. Adams, “The open-closed principle
of modern machine learning frameworks,” in 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories (MSR).
IEEE, 2018, pp. 353–363.

[44] Z. Chen, H. Yao, Y. Lou, Y. Cao, Y. Liu, H. Wang, and X. Liu, “An
empirical study on deployment faults of deep learning based mobile
applications,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 674–685.

[45] A. Di Franco, H. Guo, and C. Rubio-González, “A comprehensive study
of real-world numerical bug characteristics,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2017, pp. 509–519.

[46] J. Han, E. Shihab, Z. Wan, S. Deng, and X. Xia, “What do programmers
discuss about deep learning frameworks,” Empirical Software Engi-
neering, vol. 25, no. 4, pp. 2694–2747, 2020.

[47] H. Li, F. Khomh, M. Openja et al., “Understanding quantum software
engineering challenges an empirical study on stack exchange forums
and github issues,” in 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2021, pp. 343–354.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[49] F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/
fchollet/keras

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[51] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), 2016, pp. 265–283.

[52] “Github rest api,” https://docs.github.com/en/rest, on Feb 2022.

[53] “World of code(woc),” https://worldofcode.org/, on Feb 2022.
[54] X. Tan, K. Gao, M. Zhou, and L. Zhang, “An exploratory study of

deep learning supply chain,” in 2022 44th International Conference on
Software Engineering (ICSE ’22). ACM, 2022.

[55] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu, “A com-
prehensive study on challenges in deploying deep learning based
software,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 750–762.

[56] M. Alshangiti, H. Sapkota, P. K. Murukannaiah, X. Liu, and Q. Yu,
“Why is developing machine learning applications challenging? a study
on stack overflow posts,” in 2019 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE,
2019, pp. 1–11.

[57] K. Gao, Z. Wang, A. Mockus, and M. Zhou, “On the variability of
software engineering needs for deep learning: Stages, trends, and ap-
plication types,” IEEE Transactions on Software Engineering, vol. 49,
no. 2, pp. 760–776, 2023.

[58] https://github.com/automl/auto-sklearn/issues/752, on Feb 2022.
[59] C. Wang, H. He, U. Pal, D. Marinov, and M. Zhou, “Suboptimal

comments in java projects: From independent comment changes to
commenting practices,” ACM Transactions on Software Engineering
and Methodology, 2022.

[60] K. Liu, Y. Han, J. Zhang, Z. Chen, F. Sarro, M. Harman, G. Huang,
and Y. Ma, “Who judges the judge: An empirical study on online judge
tests,” in ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA) 2023, 2023.

[61] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Transactions on software engineering, vol. 25,
no. 4, pp. 557–572, 1999.

[62] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-of-the-art,”
Knowledge-Based Systems, vol. 212, p. 106622, 2021.

[63] S. Ahmed and M. Bagherzadeh, “What do concurrency developers ask
about? a large-scale study using stack overflow,” in Proceedings of
the 12th ACM/IEEE international symposium on empirical software
engineering and measurement, 2018, pp. 1–10.

[64] J. Wen, Z. Chen, Y. Liu, Y. Lou, Y. Ma, G. Huang, X. Jin, and X. Liu,
“An empirical study on challenges of application development in
serverless computing,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 416–428.

[65] C. Rosen and E. Shihab, “What are mobile developers asking about? a
large scale study using stack overflow,” Empirical Software Engineer-
ing, vol. 21, no. 3, pp. 1192–1223, 2016.

[66] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider,
“Classifying stack overflow posts on api issues,” in 2018 IEEE 25th
international conference on software analysis, evolution and reengi-
neering (SANER). IEEE, 2018, pp. 244–254.

[67] T. Zhang, C. Gao, L. Ma, M. Lyu, and M. Kim, “An empirical
study of common challenges in developing deep learning applications,”
in 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2019, pp. 104–115.

[68] S. Beyer, C. Macho, M. Di Penta, and M. Pinzger, “Automatically
classifying posts into question categories on stack overflow,” in 2018
IEEE/ACM 26th International Conference on Program Comprehension
(ICPC). IEEE, 2018, pp. 211–21 110.

[69] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation is-
sues unveiled,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 1199–1210.

[70] https://github.com/EpistasisLab/tpot/issues/1102, on Feb 2022.
[71] https://github.com/microsoft/nni/issues/4105, on Feb 2022.
[72] https://github.com/automl/auto-sklearn/issues/768, on Feb 2022.
[73] https://github.com/microsoft/nni/issues/431, on Feb 2022.
[74] https://github.com/automl/auto-sklearn/issues/633, on Feb 2022.
[75] https://github.com/EpistasisLab/tpot/issues/700, on Feb 2022.
[76] https://github.com/automl/auto-sklearn/issues/1167, on Feb 2022.
[77] https://github.com/EpistasisLab/tpot/issues/301, on Feb 2022.
[78] https://github.com/EpistasisLab/tpot/issues/557, on Feb 2022.
[79] https://github.com/microsoft/nni/issues/4342, on Feb 2022.
[80] https://github.com/microsoft/nni/issues/3149, on Feb 2022.
[81] https://github.com/automl/auto-sklearn/issues/1064, on Feb 2022.
[82] https://github.com/EpistasisLab/tpot/issues/652, on Feb 2022.
[83] https://github.com/EpistasisLab/tpot/issues/736, on Feb 2022.

12

[84] https://github.com/microsoft/nni/issues/2130, on Feb 2022.
[85] https://github.com/microsoft/nni/issues/4336, on Feb 2022.
[86] https://github.com/microsoft/nni/issues/4230, on Feb 2022.
[87] https://github.com/automl/auto-sklearn/issues/606, on Feb 2022.
[88] https://github.com/automl/auto-sklearn/issues/607, on Feb 2022.
[89] https://github.com/automl/auto-sklearn/issues/587, on Feb 2022.
[90] https://github.com/EpistasisLab/tpot/issues/698, on Feb 2022.
[91] https://github.com/EpistasisLab/tpot/issues/360, on Feb 2022.
[92] https://github.com/automl/auto-sklearn/issues/268, on Feb 2022.
[93] https://github.com/automl/auto-sklearn/issues/1255, on Feb 2022.
[94] https://github.com/EpistasisLab/tpot/issues/459, on Feb 2022.
[95] https://github.com/automl/auto-sklearn/issues/184, on Feb 2022.
[96] https://github.com/EpistasisLab/tpot/issues/516, on Feb 2022.
[97] https://github.com/automl/auto-sklearn/issues/750, on Feb 2022.
[98] https://stackoverflow.com/questions/48064517/

auto-machine-learning-python-equivalent-code, on Feb 2022.
[99] https://github.com/automl/auto-sklearn/issues/361, on Feb 2022.

[100] https://github.com/automl/auto-sklearn/issues/520, on Feb 2022.
[101] https://github.com/automl/auto-sklearn/issues/674, on Feb 2022.
[102] https://github.com/automl/auto-sklearn/issues/520, on Feb 2022.
[103] https://github.com/EpistasisLab/tpot/issues/346, on Feb 2022.
[104] https://github.com/automl/auto-sklearn/issues/57, on Feb 2022.
[105] https://github.com/EpistasisLab/tpot/issues/1008, on Feb 2022.
[106] https://github.com/awslabs/autogluon/issues/656, on Feb 2022.
[107] https://github.com/microsoft/nni/issues/2820, on Feb 2022.
[108] https://github.com/microsoft/nni/issues/1371, on Feb 2022.
[109] https://github.com/EpistasisLab/tpot/issues/743, on Feb 2022.
[110] https://github.com/automl/auto-sklearn/issues/352, on Feb 2022.

13

