
Research Artifacts in Software Engineering Publications: Status and
Trends
Mugeng Liua, Xiaolong Huanga, Wei Hea, Yibing Xieb, Jie M. Zhangc, Xiang Jingb,d,
Zhenpeng Chene and Yun Maf,∗

aKey Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, School of Computer Science, Peking
University, Beijing, China
bSchool of Software and Microelectronics, Peking University, Beijing, China
cDepartment of Informatics, King’s College London, London, United Kingdom
dNational Key Laboratory of Data Space Technology and System, Beijing, China
eSchool of Computer Science and Engineering, Nanyang Technological University, Singapore
fInstitute for Artificial Intelligence, Peking University, Beijing, China

A R T I C L E I N F O
Keywords:
Research artifact
Empirical study
Software engineering
Code smell

A B S T R A C T
The Software Engineering (SE) community has been embracing the open science policy and encour-
aging researchers to disclose artifacts in their publications. However, the status and trends of artifact
practice and quality remain unclear, lacking insights on further improvement. In this paper, we present
an empirical study to characterize the research artifacts in SE publications. Specifically, we manually
collect 1,487 artifacts from all 2,196 papers published in top-tier SE conferences (ASE, FSE, ICSE,
and ISSTA) from 2017 to 2022. We investigate the common practices (e.g., URL location and format,
storage websites), maintenance activities (e.g., last update time and URL validity), popularity (e.g.,
the number of stars on GitHub and characteristics), and quality (e.g., documentation and code smell)
of these artifacts. Based on our analysis, we reveal a rise in publications providing artifacts. The usage
of Zenodo for sharing artifacts has significantly increased. However, artifacts stored in GitHub tend
to receive few stars, indicating a limited influence on real-world SE applications. We summarize the
results and provide suggestions to different stakeholders in conjunction with current guidelines.

1. Introduction
Artifacts of publications play a vital role in research1.

Artifacts improve the understanding and provide supportive
evidence for the claims in a research paper. They also fa-
cilitate code and data reuse and allow for future extension,
improvement, and comparison (Timperley et al. (2021)). Ar-
tifacts have gotten more and more attention from the research
community since 2016, after a crisis of reproducibility was
made open to the public by a Nature’s survey in which more
than 1,500 researchers revealed having trouble reproducing
previous research results (Baker (2016)).

Software Engineering (SE) community is one of the
research communities that have put substantial effort in en-
couraging open-source artifacts. Artifact evaluation has be-
come a regular process for software engineering conferences
(Hermann, Winter and Siegmund (2020)). Reproducibility
and transparency with artifacts have become one of the
key review criteria for top-tier conferences such as ICSE22
(2021b) and FSE22 (2022). These efforts have yielded a
pleasing increase in the prevalence of open-source artifacts.
As shown in Figure 1, the ratio of top-tier publications
(ICSE, FSE, ASE, and ISSTA) with artifacts has increased

∗Corresponding author.
lmg@pku.edu.cn (M. Liu); huangxiaolong@pku.edu.cn (X. Huang);

weihe@stu.pku.edu.cn (W. He); xybybing@stu.pku.edu.cn (Y. Xie);
jie.zhang@kcl.ac.uk (J.M. Zhang); jingxiang@pku.edu.cn (X. Jing);
zhenpeng.chen@ntu.edu.sg (Z. Chen); mayun@pku.edu.cn (Y. Ma)

1In this paper, following previous work (Timperley, Herckis, Le Goues
and Hilton (2021)), we define an artifact as “any external materials or
information provided in conjunction with a research paper via a link”.

2017 2018 2019 2020 2021 2022
year

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

60.5% 63.9% 60.0% 65.9% 70.3% 78.3%

39.5% 36.1% 40.0% 34.1% 29.7% 21.7%

With Artifact Without Artifact

Figure 1: Number and ratio of top-tier publications with and
without artifacts from 2017 to 2022.

from 60.1% to 81.1% from 2017 to 2022 according to our
analysis.

Given the importance of artifacts in SE community,
some pioneering efforts have been made. Hermann et al.
(2020) pointed out the community expectations for artifacts
by collecting comments from program committee members.
Timperley et al. (2021) explored the general situation of
the artifact community from 2014 to 2018 and raised some
notable recommendations. Krishnamurthi and Vitek (2015)
not only emphasized the importance of repeatability and
artifact evaluation but also regarded repeatability as the real
software crisis.

Despite the efforts from conference organizers and the
existing research on the expectations of artifact evaluation,

Liu et. al: Preprint submitted to Elsevier Page 1 of 16



Research Artifacts in Software Engineering Publications

it is unclear how well the current practice of research arti-
facts performs. Investigation on the research artifacts in SE
publications can be helpful to understand the strengths and
weaknesses of artifact preparation and be open to a range of
measures to improve them.

To this end, this paper presents an empirical study on the
status and trends of research artifacts in software engineering
publications in the past six years (from 2017 to 2022). We
study the data from 2017 onwards due to the reproducibility
crisis that emerged in 2016 (Baker (2016)) and its significant
impact on the field of software engineering. The SE commu-
nity has witnessed a considerable increase in the concern for
the reproducibility of publications since 2017. Therefore, the
data from this time frame can accurately illustrate the current
status and trends of SE artifacts. In particular, we focus on
four aspects of artifacts, including (1) common practices:
the types of uploading repositories, programming languages,
and the locations in a paper where the links are provided;
(2) maintenance: the validity of the provided links and the
maintenance time distribution of artifacts; (3) popularity:
the star number distribution and the characteristics of top-
starred artifacts; (4) quality: the content of documentation
and the existence of code smells.

These four aspects illuminate common procedures, dura-
bility issues, potential impact, and usability concerns, offer-
ing a comprehensive perspective on artifacts within the soft-
ware engineering community. Note that we aim to overview
the status and trends of SE artifacts in this single paper
as much as possible. Despite we choose the four most
representative aspects, there are still many interesting points
worth further study. We hope that our work can arouse more
interest from the community to work in this direction and
provide more systematic and deep studies on real-world
artifacts.

To obtain the dataset for analysis, we carefully select
the venues to reach the frontier status of artifacts in SE
research. According to the top-tier venue list of SE provided
by the CSRankings (2023), we choose the research track
of the four software engineering conferences: International
Conference on Automated Software Engineering (ASE),
ACM SIGSOFT Symposium on the Foundation of Software
Engineering/ European Software Engineering Conference
(FSE), International Conference on Software Engineering
(ICSE), and International Symposium on Software Testing
and Analysis (ISSTA). These conferences are well recog-
nized to be the top-tier four SE conferences (Kim, Choi
and Kim (2018); Kochhar, Xia, Lo and Li (2016)), and are
expected to represent the best practices of research artifacts
in the SE community. We believe that artifacts in these four
conferences represent the cutting-edge status and trends in
software engineering.

We focus on publications with a minimum of 6 pages, as
they are considered to reflect a more mature status compared
to shorter papers. In total, our dataset comprises 2,196
papers. We then employ a labor-intensive approach to ex-
tract artifact URLs from these publications, resulting in the
identification of 1,487 papers offering research artifacts.

Our analysis of these artifacts yields the following pri-
mary observations and findings.

In terms of common practices, (1) An increasing propor-
tion of SE publications disclosed their artifacts in the past
six years (from 60.5% in 2017 to 78.3% in 2022), revealing
growing recognition of the value of open research artifacts.
(2) Though most SE conferences now explicitly recommend
Zenodo over GitHub as an artifact repository platform, the
majority (64.2% in 2022) of researchers choose GitHub for
artifacts, likely due to its ease of maintenance and familiar-
ity. The ratio of Zenodo adoption has increased from 0.0% to
16.0% over the past six years. (3) Python has overtaken Java
to become the most widely used language in artifacts (61.1%
in 2022), calling for more research on quality metrics and
automatic examination approaches towards Python, similar
to the code smell towards Java.

Regarding maintenance, (4) The proportion of link rot2
raises over time, from 4.8% in 2022 to 29.8% in 2017.
The ratios of link rot on GitHub and dedicated archiving
platforms like Zenodo are merely 6.4% and 7.1%, suggesting
special attention on the long-term availability of artifacts
stored outside commonly used artifact service platforms
during the review process. Researchers can leverage tools
like the Wayback Machine (Archieve (2023)), robust links
(Jones, Klein and Van de Sompel (2021)), or similar tech-
nologies to guarantee the enduring availability of their arti-
facts. (5) At least half of artifacts require ongoing updates
after conferences, highlighting an advantage of GitHub over
archiving platforms like Zenodo. Thus, conferences should
not blanket recommend against using GitHub but rather
should guide researchers to choose the suitable platform for
their specific artifacts. Additionally, Zenodo can now track
updates from GitHub, facilitating collaboration between the
two platforms for artifact publication. Researchers may also
consider Software Heritage as a durable and citable code
archive that considers subsequent commits.

As for popularity, (6) Most GitHub artifacts receive lim-
ited attention, with 65.0% attracting no more than 10 stars.
Though artifact star counts inaccurately gauge popularity,
they indicate most software engineering artifacts lack real-
world adoption and impact. We believe that rather than only
supplement papers, more artifacts should aim to shape real-
world applications.

Considering quality, (7) Over 96% of projects trigger
code smell alerts mainly for code convention rather than
functional issues, indicating that code smell detection seems
insufficient to accurately assess code quality for artifacts.
Research on tailored metrics focused specifically on the code
quality of artifacts is necessary.

In summary, this paper makes the following contribu-
tions:

2Due to inactive maintenance, artifacts may become unavailable over
time. This phenomenon is called link rot (Fetterly, Manasse, Najork and
Wiener (2003)), which means that the provided URLs cease to point to their
originally targeted artifacts.

Liu et. al: Preprint submitted to Elsevier Page 2 of 16



Research Artifacts in Software Engineering Publications

2,196
Papers

ICSE
FSE
ASE

ISSTA

2017
2018
2019
2020
2021
2022

With 
Artifact 
URLs?

Y
1,487 Papers with 

Artifact URLs

Valid
URL?

Y1,347 Valid 
Artifacts

Storage 
Website

901 GitHub Artifacts

Programming 
Language

URL 
Location

Last Update 
Time

Documentation
Quality Star Number

Code Smell

268 Python &
144 Java Artifacts

…

…

Top-starred
Artifacts

Characteristics

RQ1: Common 
Practices

RQ2:
Maintenance

RQ3:
Popularity

RQ4:
Quality

Figure 2: The overview of our methodology.

• We conduct an empirical study on the current status
and trends of artifacts in the SE community, which
reflects the overall situation.

• We present a comprehensive analysis of our empirical
results and provide suggestions for different stake-
holders to enhance the artifacts practice.

• We publicly release our data, scripts, and results for
further study.

The rest of this paper is organized as follows. Section 2
describes the methodology of our study. Section 3 illustrates
the experimental results and findings. Section 4 discusses
our suggestion and threats to validity. Section 5 describes
the related work. Section 6 concludes the paper. Section 7
provides our artifact.

2. Methodology
This section introduces our methodology (Figure 2),

including research questions, venue selection, paper and
artifact collection process, and the information extraction
details.
2.1. Research Questions

To elucidate the status and trends of SE artifacts, we aim
to answer the following four research questions (RQs).

RQ1. Common practices: What are the common prac-
tices for software engineering researchers to prepare their
artifacts?

RQ2. Maintenance: How well do researchers maintain
their artifacts?

RQ3. Popularity: How is the popularity of existing arti-
facts and what are the characteristics of top-starred artifacts?

RQ4. Quality: How is the quality of the artifacts in terms
of the documentation quality and code smells?

Our four RQs encompass four crucial aspects of artifacts,
each offering valuable insights into the current state of SE
artifacts.

First, RQ1 aims to understand common practices in
artifact preparation, serving as a foundation for enhancing
the process. By addressing RQ1, we can identify gaps and
potential areas for improvement in terms of discoverability,
accessibility, and ease of setup.

Second, artifact maintenance directly impacts their longevity
and usefulness over time. RQ2 examines the significance of
maintenance and investigates existing strategies and poten-
tial enhancements. We specifically focus on link rot, a widely
acknowledged phenomenon that significantly undermines
the reproducibility of artifacts (D Kumar, Sampath Ku-
mar and Parameshwarappa (2015); Sanderson, Phillips and
Van de Sompel (2011); Klein, Van de Sompel, Sanderson,
Shankar, Balakireva, Zhou and Tobin (2014)).

Third, the popularity of artifacts provides insights into
their adoption and usage within the software engineering
community, which helps identify artifacts that have made a
significant impact and garnered attention from researchers
and practitioners. RQ3 reveals the popularity of current
artifacts and provides recommendations for promoting their
influence and sharing.

Fourth, ensuring artifact quality is fundamental for re-
producibility and reuse. RQ4 focuses on documentation
(Aghajani, Nagy, Vega-Márquez, Linares-Vásquez, Moreno,

Liu et. al: Preprint submitted to Elsevier Page 3 of 16



Research Artifacts in Software Engineering Publications

Table 1
Research questions of our study. Each research question is answered from different perspectives.

Research Questions Content Explanation

RQ1: Common practices
Storage websites What sites or service do researchers use to upload their artifacts?
URL location & format Where in the paper and how do researchers provide their artifacts URL?
Programming language How does usage of the most popular programming languages vary among artifacts?

RQ2: Maintenance invalid URLs How many artifact URLs have become invalid?
Last update time How does the maintenance of artifacts by researchers relate to conference progress?

RQ3: Popularity Star situation How many stars do artifacts have?
Characteristics What are the characteristics of top-starred artifacts?

RQ4: Quality Documentation How is the quality of the documentation provided by researchers?
Code smell What are the common code smells in the artifacts?

Bavota and Lanza (2019)) and code smell (Santos, Rocha-
Junior, Prates, Do Nascimento, Freitas and De Mendonça
(2018)) as metrics for quality, which are widely recognized
and established measures for evaluating artifacts in the soft-
ware engineering community.

On the one hand, the artifact quality heavily depends
on the documentation quality, which impacts the clarity,
completeness, and ease of reproduction of an artifact. Clear
and well-documented artifacts facilitate reproducibility and
allow other researchers to build upon existing work effec-
tively. Specifically, a comprehensive “README” file serves
as the core of documentation that should provide essential
information on code, dependencies, file structure, usage,
execution examples, etc. An incomplete “README” file
can greatly damage the reproducibility of an artifact, even
rendering the artifact completely unusable for readers.

On the other hand, code plays a vital role in the SE
community and makes up a significant part of SE artifacts.
Code smells can affect the readability, maintainability, and
extensibility of code, which ultimately impacts the quality
of the research artifacts. By analyzing code smells, we
can identify potential design issues or violations of good
programming practices within artifacts, and contribute to
enhancing the code quality of the artifacts.

By addressing these four research questions, we aim to
provide a comprehensive understanding of the status and
trends of research artifacts in SE. For ease of presentation,
we use Table 1 to demonstrate the content of each RQ.
2.2. Venue Selection

To examine the latest advancements in SE artifacts for
each year, we focus on venues in the software engineer-
ing category of CSRankings (2023). The CS Rankings is
a widely acknowledged website that provides an entirely
metrics-based ranking system for computer science, which
selects the most prestigious publication venues in each
area of computer science, including software engineering.
Specifically, we consider ICSE, FSE, ASE, and ISSTA,
which are widely recognized as top-tier venues in the field
of SE (Kim et al. (2018); Kochhar et al. (2016)), thereby
being a good start for the community to understand the best
practices in research artifacts.

Overall, we consider these conferences to showcase
state-of-the-art research in software engineering, with their
associated artifacts capturing the latest advancements in the
field each year.

Additionally, we study the data from 2017 onwards due
to the reproducibility crisis that emerged in 2016 (Baker
(2016)) and its significant impact on the field of software
engineering. The SE community has witnessed a consid-
erable increase in the concern for the reproducibility of
publications since 2017. Consequently, the data from this
time frame can accurately illustrate the current status and
trends of SE artifacts.
2.3. Collection of Papers and Artifacts

To obtain the paper list, we utilize the DBLP (2023)
bibliography to search for papers and download them using
their DOIs following Khalil and Zacchiroli (2022). DBLP is
a widely-used computer science bibliography, ensuring the
comprehensiveness of our dataset without omissions.

We further refine our dataset by excluding short papers,
following Abou Khalil and Zacchiroli (2022). Full papers,
which typically present more mature and established results,
ensure a more comprehensive representation of the frontier
state. To achieve this criterion, we filter out papers with less
than 6 pages, based on DBLP metadata.

As a result, we download 2,196 full papers from the
research track (i.e., the main track) of four top-tier confer-
ences in the SE community, including ICSE, FSE, ASE, and
ISSTA, from 2017 to 2022.

We try our best effort to obtain artifact URLs in papers.
Specifically, we first define a set of search keywords to help
us quickly locate the URL, including “available”, “https”,
“replication”, “reproducibility”, “code”, “data” and some
other similar words. Then, we conduct a manual search
in each paper for artifact URLs by looking for the above
keywords. If we do not find any URLs during this search,
we browse the paper to check if any URLs are mentioned
as artifacts again. Once we have identified these URLs, we
manually verify if they correspond to the respective paper.

We improve the accuracy of the annotation results by
double-checking. In detail, two authors of this paper inde-
pendently annotate the URLs for each paper and cross-check

Liu et. al: Preprint submitted to Elsevier Page 4 of 16



Research Artifacts in Software Engineering Publications

Table 2
Results of papers with artifacts and the total number of papers.

Venue 2017 2018 2019 2020 2021 2022 Total

ASE 67/105 (63.8%) 51/80 (63.7%) 46/84 (54.8%) 61/93 (65.6%) 56/85 (65.9%) 91/116 (78.4%) 372/563 (66.1%)
FSE 47/90 (52.2%) 49/75 (65.3%) 56/95 (58.9%) 78/125 (62.4%) 87/120 (72.5%) 91/133 (68.4%) 408/638 (63.9%)
ICSE 45/68 (66.2%) 65/105 (61.9%) 66/109 (60.6%) 87/129 (67.4%) 97/138 (70.3%) 164/197 (83.2%) 524/746 (70.2%)
ISSTA 19/31 (61.3%) 21/31 (67.7%) 24/32 (75.0%) 31/43 (72.1%) 37/51 (72.5%) 51/61 (83.6%) 183/249 (73.5%)
Total 178/294 (60.5%) 186/291 (63.9%) 192/320 (60.0%) 257/390 (65.9%) 277/394 (70.3%) 397/507 (78.3%) 1487/2196 (67.7%)

17 18 19 20 21 2217 18 19 20 21 2217 18 19 20 21 22 17 18 19 20 21 22
ICSE FSE ASE ISSTA

0

50

100

150

200

N
um

be
r o

f P
ap

er
s

With Artifacts
Without Artifacts

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
at

io
 o

f P
ap

er
s 

w
ith

 A
rti

fa
ct

s

Figure 3: Trends of papers with artifacts.

them once all annotations are completed. In case of conflicts,
we hold discussions to reach a consensus.

Based on our parsing methods, we find 1,487 papers
containing artifact URLs. Table 2 shows the results of our
collection of papers and artifacts for the four top-tier SE
venues from 2017–2022. Each cell presents the number of
papers with artifacts followed by the total number of papers,
with the corresponding percentage of papers with artifacts
provided in parentheses. We also present the growing trends
of papers with artifacts in Figure 3.
2.4. Information Extraction

To answer the research questions, we extract the follow-
ing information from collected papers and artifacts.
2.4.1. Paper Examination

When obtaining the paper list, we gain the publication
year, venue, and title of papers from DBLP.

During the process of manually exploring the artifact
URL, we record the location and format of artifact URLs
for papers in which we find artifacts. Typically, we record
the URL location and format where we first find the URL
in a paper, which can be considered the most prominent
placement of the URL. We categorize the URL location into
title, abstract, introduction, conclusion, and other sections
because the first four sections are common to all papers.
We also mark the URL format that researchers choose to
provide the URL, which is classified into footnote, reference,
in-text, and hyperlink.
2.4.2. Artifact Examination

We examine each artifact to collect the information for
the content we list in Table 1.

Storage websites: We classify the storage websites of our
collected artifacts into GitHub3, Zenodo4, self-built home-
pages (with support from GitHub, Google, or other web-
sites), and others (primarily temporary data drives). There
are 4.6% of papers utilizing multiple types of storage web-
sites. We document all the employed storage websites for
each paper.
Programming languages: We observe that the storage web-
site of most artifacts is GitHub, which will display the
proportion of programming languages used in artifacts.5 By
leveraging the GitHub APIs, we identify the programming
languages utilized by GitHub artifacts, yielding 794 artifacts
with the corresponding programming languages.
Last update time: Utilizing GitHub APIs, we record the
latest update time for 901 GitHub artifacts. The latest update
can be regarded as the most recent modification made to an
artifact, specifically the time of the last push on GitHub.

Next, we manually search the web for the important dates
of conferences each year, including the paper submission
deadline, paper notification time, camera-ready deadline,
and conference time. We record the ratio of artifacts that get
updated after each deadline.
Invalid URLs: We record whether the URLs of artifacts
provided in papers are valid or not by manually accessing
each URL.

3https://github.com/
4https://zenodo.org/. Zenodo is a general-purpose open repository for

researchers to deposit any form of research-related digital artifacts.
5Linguist is used on GitHub.com to detect blob languages, ignore

binary or vendored files, suppress generated files in diffs, and generate
language breakdown graphs. For more information of linguist, check https:

//github.com/github/linguist .

Liu et. al: Preprint submitted to Elsevier Page 5 of 16

https://github.com/
https://zenodo.org/.
https://github.com/github/linguist
https://github.com/github/linguist


Research Artifacts in Software Engineering Publications

Star number: “Star” on GitHub can be described as a
form of social endorsement or signaling. When starring a
repository, the repository will be added to the starred repos-
itory list of users, which serves as a personal bookmark and
can also indicate to other users that the repository is worth
checking out. As more users star a repository, it becomes
more visible within the GitHub community. The number
of stars a repository has can serve as social proof of its
usefulness or interest to potential users, demonstrating that
it has been evaluated and endorsed by others.

Therefore, the number of a repository’s stars is strongly
linked with its overall popularity. In total, we record 783
artifacts with their star numbers through the GitHub API.
Characteristics of top-starred artifacts:

According to the distribution of stars, only 3.7% of
GitHub artifacts boast more than 100 stars. Therefore, we
consider these artifacts as top-starred and explore their char-
acteristics. Employing this criterion, we identify a total of
33 top-starred artifacts. In addition to the preceding col-
lected information, we record the documentation quality,
executability, number of forks and issues, as well as the latest
update time associated with these top-starred artifacts.
Documentation:

When examining an artifact on GitHub, we record the
documentation quality by manually checking the README
file in the artifact. Referring to Aghajani et al. (2019), we
selected six simple and feasible criteria to measure artifacts.
Each criterion is marked by yes or no.

The specific criteria are : (1) Completeness: Whether
the README contains the system version, software, and
library environment requirements. 6 (2) Structure: Whether
the README describes the file structure of the artifact,
no matter whether it is accurate to each file or roughly
what is in each folder. (3) Usability: Whether the README
contains how to use the artifact. (4) Example: Whether the
README contains any use examples or display of the effect
when used. (5) Certificate: Whether the README states this
artifact has a certificate or a certificate can be found along
with the README. Furthermore, we record the type of the
certificate. (6) Contact: Whether the README contains the
researchers’ contact information or the researchers’ reply on
the topic. 7

Considering the substantial manual effort required for
this examination, and recognizing that it is just one aspect of
our overall study, we focus specifically on GitHub artifacts
from the ICSE spanning the years 2017 to 2022. Given
that ICSE features a larger number of papers compared
to the other three venues, we consider this subset to be
representative enough for our documentation analysis.
Code smells:

6If the README says “Please check this file for this information,”
we’ll check that file and consider it part of the README. If this file meets
the criteria, we also consider the README file to meet the criteria. Unless
otherwise stated, the following will follow this principle.

7Notice that on GitHub, the owner of every repository can be found.
However, we believe that only the two ways mentioned above reflect the
positive willingness of researchers to contact. So these are the only two
ways that we would consider satisfying this criterion.

Code that follows a consistent style is much easier to
read, which can help others to understand, maintain, and
reuse the artifact more efficiently. So the code style is crucial
to the overall quality of artifacts.

According to the statistics mentioned earlier in “Pro-
gramming languages”, Python and Java are the two most
used programming languages that dominate the artifacts
we collect. In addition, these languages are supported by
well-established code quality metrics (i.e. code smell) and
detection tools. Therefore, we focus on Python and Java
artifacts to explore the prevalence of code smell.

We use Pylint (2022) to collect the code smell informa-
tion for Python, and PMD (2022) to collect the information
for Java. We choose these two tools due to their popularity
and reliability. The GitHub repository of Pylint and PMD has
over 4.1k stars and 3.9k stars, respectively. In particular, the
Pylint is based on the PEP8 (2013), a style guide for Python
code.

The code smell detection tools can only generate com-
prehensive and precise code smell reports for artifacts that
primarily use “Python” or “Java” code. To this end, we
use the GitHub API to retrieve the primary programming
languages for each repository. Therefore, we detect code
smells the artifacts that primarily use "Python" or "Java"
based on the information provided by the GitHub API. To
avoid potential infinite loops within a single artifact, we
set a time limit of 60 seconds for each detection, which is
typically adequate for the majority of artifacts. As a result,
we successfully perform code smell detection on 268 Python
artifacts and 144 Java artifacts.

3. Results
This section introduces the results of our study. For each

research question, we present the analysis results and discuss
our observations and conclusions.
3.1. RQ1: Common Practices

RQ1 aims to understand the common practices of SE
researchers when preparing artifacts. To answer RQ1, we
classify the collected artifacts according to the categories
in each aspect (i.e., storage website, URL location, and
programming languages), and analyze the distribution of the
artifacts.
3.1.1. Storage Website

Figure 4 shows the detailed results of storage websites
of artifacts. We observe that GitHub is the most widely
used website and has gained more and more adoption since
2017. In 2022, 64.2% of the artifacts are stored in GitHub
repositories.

The second most popular website is Zenodo. The ratio
of artifacts on Zenodo has increased dramatically from 0.0%
to 16.0% from 2017 to 2022. Zenodo is a dedicated platform
for sharing artifacts, providing researchers with a seamless
and anonymous process for uploading their artifacts. Be-
sides, researchers’ operations are recorded on Zenodo. When
researchers update their artifact, a URL for an artifact on

Liu et. al: Preprint submitted to Elsevier Page 6 of 16



Research Artifacts in Software Engineering Publications

Zenodo will show the original artifact with a hint that there
is a newer version, while a URL for an artifact on GitHub
will just show the newest version without the availability
of the original version. In addition, every upload in Zenodo
is assigned a Digital Object Identifier (DOI), to make the
artifact citable and trackable. Our observation that Zenodo
is getting more adoption aligns with the “Submission and
Reviewing Guidelines” of the FSE 2021 Artifact Evaluation
track (FSE21 (2021b)) (abbreviated as “FSE21 guideline”
in the remaining part of this paper) which “strongly rec-
ommends relying on services like Zenodo to archive repos-
itories”. The open science policy of ICSE 2021 to 2023
also suggests authors archive artifacts on preserved digital
repositories such as Zenodo. As a result, the ratio of artifacts
on Zenodo in 2022 (16.0%) is almost twice as much as it was
in 2021 (9.0%).

The remaining artifacts are published on individual/
institutional websites or temporary drives (e.g., Dropbox,
Google Drive, GitLab, and OneDrive). The ratio of these
artifacts has decreased from 55.6% to 19.7% in the past
six years. The decrease in the ratio of artifacts on individ-
ual/institutional websites or temporary drives is also a posi-
tive change because these websites are prone to changes and
are regarded as non-persistent (FSE21 (2021b)). Besides,
These artifacts face more Link Rot as shown in RQ2.2.

Archived on preserved digital repositories such as zenodo.
org, figshare.com, www.softwareheritage.org, osf.io, or in-
stitutional repositories such as GitHub, GitLab, and similar
services have version management and update time record
capabilities. Researchers can do vigorous content manage-
ment on their artifacts under the protection of historical
versions without worrying about an error of operation and
the coming problems that cause the devastation are difficult
or impossible to recover from. For the visitors of the arti-
fact, they can find the specific version or the specific files
uploaded at a certain time, instead of just the newest version
of the whole artifact. Such advantages are not possessed by
Personal or institutional websites, consumer cloud storage
such as Dropbox, or services such as Academia.edu and
Researchgate.net.

The majority (64.2% in 2022) of publications still up-
load their artifacts on GitHub, even though services for
version control systems are not recommended in some
conferences (ICSE23 (2022)). The ratio of Zenodo
adoption has increased from 0.0% to 16.0% over the
past six years. Due to its strengths and the conferences’
recommendations, the usage ratio of Zenodo has been
and will continue to grow rapidly.

3.1.2. Programming Language
This part focuses on the programming languages con-

tained in the artifacts. The programming language is a core
characteristic of most SE artifacts, though not all the artifacts
contain code. Figure 5 shows the ratio of artifacts with the
three most widely adopted programming languages: Python,
Java, and C/C++.

2017 2018 2019 2020 2021 2022
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

44.4%
61.3% 59.9% 67.7% 74.7%

64.2%

5.9% 7.8% 8.2%
9.0%

16.0%

5.6%

3.8% 8.3% 4.3%
4.0% 4.4%

2.8%

7.0%
7.8% 4.3%

4.0% 5.2%
47.2%

22.0% 16.1% 15.6% 8.3% 10.1%

GitHub
Zenodo

GitHub.io
Google.com

Others

Figure 4: Distribution and trend of storage website adoption
for SE artifacts from 2017 to 2022.

2017 2018 2019 2020 2021 2022
0

25

50

75

100

125

150

175

N
um

be
r

15.2%
29.3% 34.0%

41.4%

51.4%

61.1%

42.4%

30.4%
34.0%

15.7%

10.9%

15.7%

18.2%

14.1%
12.4%

8.6%

8.2%

7.4%Python
Java
C/C++

Figure 5: The number and ratio of artifacts with different
programming languages.

We observe that Python has become more and more
widely adopted over the past six years. In 2019, Python
replaced Java as the most used language. In 2021 and 2022,
over half of the artifacts have Python code. Java is still the
second most widely used language, although its ratio has
been decreasing year after year. The ratio of C/C++ is also
decreasing.

The rising prominence of Python within the computer
science community has driven this transformation. The ex-
panding capabilities and user-friendly nature of Python li-
braries have simplified tasks that were previously accom-
plished using other programming languages. Consequently,
possessing a fundamental understanding of Python has be-
come increasingly essential for researchers.

Python has overtaken Java and become the most widely
used language in SE artifacts and is getting more and
more adoption, with its ratio increasing from 15.2% in
2017 to 61.1% in 2022. The ratios for Java and C/C++
are both decreasing.

3.1.3. URL Location
During the artifact collection process of our study, we

observe that the location of the URL for an artifact in a paper
makes a great difference in how easy it is for readers to notice

Liu et. al: Preprint submitted to Elsevier Page 7 of 16

zenodo.org
zenodo.org
figshare.com
www.softwareheritage.org
osf.io
Academia.edu
Researchgate.net


Research Artifacts in Software Engineering Publications

3.4%

48.9%

0.1%

40.9%

6.7%

Abstract
Introduction
Title

Others
Conclusion

(a)

38.1%

33.5% 28.2%

0.3%

In-text
Footnote

Reference
Hyperlink

(b)

Figure 6: Distribution of artifact URL locations and formats
provided in papers.

its existence. For instance, artifact URLs mentioned in the
abstract or highlighted in the introduction section are easier
to access than URLs given as textual implementation details.

Figure 6.(a) shows the distribution of artifact URL loca-
tions in different paper sections.8 We observe that 52.3% of
the papers with artifacts highlight the URL of artifacts in the
abstract or introduction section.

The open-science policy such as ICSE23 (2022) rec-
ommends authors provide artifacts in the section of Data
Availability after the Conclusion section. In our collection,
we find that only 5.0% of all the URLs align with this
recommendation in 2017-2021, which are provided with a
separate section “Data Availability” after the conclusion. In
2022, however, this changes greatly. 11.4% of the URLs are
provided as recommended, demonstrating that the policy of
ICSE 2023 and other similar recommendations have made a
difference.

40.9% of the URLs are shown in the section that illus-
trates implementation details or other similar sections, which
are more difficult to notice and search in our practice.

Figure 6.(b) shows the format that researchers choose to
provide the URL. The distribution of URL formats is fairly
even, with footnotes, references, and in-text citations each
comprising around one-third of the total number of URLs:
footnotes (33.5%), references (28.2%), and in-text citations
(31.7%). 4 (0.3%) artifacts are provided with hyperlinks in
the text. Although there is no criterion for researchers to
arrange their URL, we recommend not to provide the URL
with a hyperlink such as “click here”, for we find it is quite
easy to miss the URL.

About half (52.3%) of the publications with artifacts
place the URL of artifacts in the abstract or introduc-
tion. Under the recommendation of ICSE 2023 and
other conferences, 11.4% of URLs in 2022 are provided
in the section of Data Availability after the conclusion
section.

8While some researchers multiply references to the URL, we count
them in the first place we find it.

2017 2018 2019 2020 2021 2022
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

70.2%
77.4%

94.8% 95.7% 98.2% 95.2%

29.8%
22.6%

5.2% 4.3% 1.8% 4.8%

Available artifacts
Unavailable artifacts

Figure 7: The ratio of invalid URLs from 2017 to 2022.

3.2. RQ2: Maintenance
To answer RQ2, we analyze the validity of the URL and

the last update time of an artifact.
3.2.1. Link Rot

Figure 7 illustrates the frequency of link rot in the SE
research artifacts from 2017 to 2022. Overall, the proportion
of artifacts suffering from the link rot issue increases over
time, with an average of 9.4%. Specifically, the proportions
for these years are 29.8%, 22.6%, 5.2%, 4.3%, 1.8%, and
4.8%, respectively. Nearly one-third of artifacts provided in
2017 are unavailable due to link rot, around six times the
ratio for 2022.

This finding is consistent with that observed by previous
work (Timperley et al. (2021)). In 2019, Timperley et al. an-
alyzed the URLs extracted from technical papers published
in ICSE, FSE, ASE, and EMSE between 2014 and 2018.
They found that 26.47% of artifacts provided in 2014 were
unavailable due to link rot, while the corresponding ratio for
2018 is 5.43%.

We further analyze the unavailable artifacts in different
types of storage websites. Figure 8 presents the results. We
find that 32.6% of artifacts originally stored on temporary
drives (such as Dropbox and Google Drive) have become
unavailable. Similarly, 11.8% of artifacts on personal home-
pages are inaccessible. In contrast, the corresponding pro-
portions of artifacts on GitHub and other artifact service
platforms (such as Zenodo) are 6.4% and 7.1%. For the
artifacts on GitHub, only when the researchers delete or
hide the repository, does link rot happen. Updating does not
matter, but for the artifacts on temporary drives, exceeding
the sharing time limit or stopping sharing can contribute
to link rot. The server changes, domain expiration, and
personnel changes can all become the cause of link rot.

Overall, 9.4% of the artifacts we collected are un-
available due to link rot. The proportion of link rot
raises over time, from 4.8% for publications in 2022 to
29.8% in 2017. Link rot is more prevalent in temporary
drives (32.6%) and personal homepages (11.8%) than

Liu et. al: Preprint submitted to Elsevier Page 8 of 16



Research Artifacts in Software Engineering Publications

Github Artifact
service

Personal
homepage

Temporary
Drive&Others

0

20

40

60

80

100
Pe

rc
en

ta
ge

 (%
)

93.6%

6.4%

92.9%

7.1%

88.2%

11.8%

67.4%

32.6%

Available artifacts
Unavailable artifacts

Figure 8: The proportions of unavailable artifacts in different
types of storage websites.

on GitHub (6.4%) and artifact service platforms (7.1%).
We suggest sharing artifacts through artifact service
platforms.

3.2.2. The Latest Update Time
Table 3 shows the percentage of artifacts that were

updated after their respective deadlines. For example, for the
ICSE 2017 conference, 64.3% of the artifacts were updated
after the conference date.

More than 90% of the artifacts were updated after the
submission deadlines each year. However, the update rate
drops after each subsequent milestone date. For instance,
for ICSE 2022, 99.0% of the artifacts were updated after the
submission deadline, 91.1% after the paper notification date,
77.2% after the camera-ready deadline, and only 54.5% after
the conference date.

When comparing the ratios of the same conference
across different years, it is found that the percentage of
artifacts updated after the conference date decreases over
time. For example, in ICSE, 64.3% of artifacts were updated
in 2017, whereas 54.5% were updated in 2022. A similar
pattern is observed for the other three conferences. We
speculate that older artifacts may receive regular attention
and updates to fix bugs over time, while newer artifacts
may not have received sufficient attention and encountered
problems that require updates.

In general, the update rate of artifacts decreases over
time for each conference. This could be due to projects
losing maintenance or certain artifacts not requiring regular
updates. However, for artifacts that implement tools, the lack
of maintenance can make them increasingly difficult to use.
It is challenging to measure researchers’ level of care for
their artifacts. We hope that researchers view artifacts as
valuable assets that can be lost if not taken care of, rather
than as mere appendages to papers that are forgotten over
time.

Table 3
The maintenance situation of ASE, FSE, ICSE and ISSTA
2017-2022. Each number presents the ratio of artifacts that
gets updated after each key time point.

Conference Year Submission Paper Camera-ready Conference
deadline notification deadline time

ASE 2017 92.3% 88.5% 80.8% 76.9%
2018 96.4% 89.3% 85.7% 78.6%
2019 96.4% 85.7% 60.7% 53.6%
2020 100.0% 95.6% 73.3% 62.2%
2021 100.0% 97.8% 69.6% 52.2%
2022 98.3% 93.2% 71.2% 55.9%
Average 97.8% 92.7% 72.8% 61.2%

FSE 2017 100.0% 92.0% 80.0% 68.0%
2018 96.4% 89.3% 57.1% 46.4%
2019 97.0% 90.9% 84.8% 78.8%
2020 95.6% 95.6% 71.1% 60.0%
2021 98.6% 92.9% 75.7% 47.1%
2022 96.0% 92.0% 68.0% 46.0%
Average 97.2% 92.4% 72.9% 55.4%

ICSE 2017 100.0% 85.7% 85.7% 64.3%
2018 97.1% 97.1% 85.3% 76.5%
2019 100.0% 94.9% 84.6% 64.1%
2020 98.1% 92.3% 73.1% 50.0%
2021 96.7% 95.1% 78.7% 60.7%
2022 99.0% 91.1% 77.2% 54.5%
Average 98.3% 93.0% 79.1% 59.1%

ISSTA 2017 100.0% 100.0% 100.0% 100.0%
2018 100.0% 84.6% 84.6% 76.9%
2019 90.9% 90.9% 81.8% 63.6%
2020 95.8% 95.8% 83.3% 70.8%
2021 96.4% 92.9% 82.1% 60.7%
2022 100.0% 91.4% 77.1% 42.9%
Average 97.4% 92.3% 82.1% 61.5%

Most (Over 90%) artifacts need continuous mainte-
nance and updating after submission. The update ratio
of earlier artifacts is higher than the newer ones.

3.3. RQ3: Popularity
The popularity of artifacts is closely tied to their impact,

especially in the SE field. A more popular artifact has more
chances to influence real-world applications and benefit
people. RQ3 focuses on the popularity of artifacts in the
field of software engineering. We use the number of stars
on GitHub as a measure to analyze the popularity of existing
SE artifacts. Additionally, we study the characteristics of the
most popular artifacts.
3.3.1. Star situation

Table 4 shows the distribution of the star numbers of the
SE artifacts from 2017 to 2022.

In general, the number of artifact stars is generally small.
While 3.7% of artifacts have over 100 stars, 65.0% have
equal or less than 10 stars. 13.1% of the artifacts even do
not have any stars at all. Only eight artifacts have more
than 300 stars. We can observe more clearly that the star
numbers concentrate on a low level, indicating the overall
low popularity of the SE artifacts.

Furthermore, one might expect a positive correlation
between the creation date of an artifact and the number of
stars it accumulates. However, our analysis does not reveal

Liu et. al: Preprint submitted to Elsevier Page 9 of 16



Research Artifacts in Software Engineering Publications

Table 4
The distribution of star numbers of SE artifacts from 2017 to
2022. Each number presents the ratio of artifacts whose star
numbers belong to the range in the first column.

Year 0 1-5 6-10 11-20 21-50 51-100 100+

2017 11.3% 42.3% 14.1% 14.1% 7.0% 9.9% 1.4%
2018 13.6% 28.2% 12.6% 13.6% 17.5% 1.9% 12.6%
2019 11.7% 29.7% 18.9% 17.1% 14.4% 1.8% 6.3%
2020 15.1% 39.2% 18.1% 11.4% 10.2% 4.2% 1.8%
2021 12.2% 37.6% 17.1% 14.6% 11.2% 5.9% 1.5%
2022 13.5% 31.8% 19.2% 18.8% 13.9% 0.4% 2.4%

Average 13.1% 34.6% 17.3% 15.3% 12.5% 3.4% 3.7%

a clear relationship between star counts and time. To some
extent, the 2022 data is indeed more concentrated in the
lower number range than the 2017 data, but the data for other
years does not exhibit a consistent pattern.

In general, the popularity of the SE artifacts on GitHub
is low, with only 3.7% of artifacts having over 100
stars and 65.0% having equal or less than 10 stars. Star
numbers and time did not show a clear correlation.

3.3.2. Characteristics
The low popularity of existing SE artifacts motivates us

to characterize the top-starred artifacts to provide implica-
tions for improving future artifacts and their popularity.

To this end, we consider artifacts with more than 100
stars as top-starred ones. By applying this criterion, we
identify 33 top-starred artifacts in total. We compare them
with widely adopted criteria in the research community
(ACM (2020)), and discuss how these top-starred artifacts
meet the criteria.

According to our analysis, all 33 top-starred artifacts
are documented and possess comprehensive documentation,
covering the introduction, usage, and examples. 28 of these
top artifacts are accompanied by licenses. All the top-starred
artifacts are still maintained one year after the publication
year of their papers. It is worth noting that all the top-starred
artifacts include executable code, providing either tools,
frameworks, or toolkits. 12 of them have been integrated into
large-scale industrial projects, with 4 of them coming from
well-known commercial companies like Microsoft and Uber.
These results indicate that these top-starred artifacts are
likely to have a significant impact on real-world applications.
Notably, 15 of these artifacts have surpassed 50 forks, while
17 have accumulated more than 50 issues.

As mentioned above, We only focus on the characteris-
tics of these most popular artifacts, and their research objects
are beyond the scope of our research.

Overall, all 33 top-starred artifacts possess comprehen-
sive documentation and are still maintained one year
after their publication. The top-starred artifacts bring a
significant impact on real-world applications.

Note that the popularity of artifacts cannot be determined
solely based on the number of stars. Other metrics, such as
issues and forks, could also be taken into consideration. To
enhance the comprehensiveness of our popularity analysis,
we leverage the GitHub API to explore these two metrics
for the relevant GitHub artifacts as an additional analytical
approach. We observe that 45% of GitHub artifacts have
no issues, while 80% have less than ten issues. In terms
of fork numbers, nearly 90% of artifacts have fewer than
ten forks. Moreover, the distribution of issues and forks
does not exhibit significant differences among artifacts from
different years. Overall, the distribution of these metrics for
artifacts closely resembles that of stars. Because stars are
more prevalent across a larger number of repositories, our
analysis primarily focuses on the star number.
3.4. RQ4: Quality

The last research question characterizes the quality of
artifacts from two aspects: the content of documentation and
the circumstances of code smell.
3.4.1. Documentation

This section explores the content of the documentation
of the artifacts.

The results are shown in Figure 9. The completeness of
the README went worse, from 50.0% in 2017 to 43.6% in
2019. Then it is slowly recovering, finally at 56.4% in 2022
and with a total average of 49.8%. The ratios of Structure,
Usability, and Example are 27.9%, 60.8%, and 26.2% on
average. The case of Certificate is getting better, from only
28.6% in 2017 to 47.5% in 2022. The ratio of Contact shows
a noticeable decline in 2022, accounting for only 27.7% in
that year. This may be because it is the newest and not too
many issues have appeared.

In addition, we have some interesting findings. The arti-
facts often meet Completeness and Usability together. 97.5%
of the artifacts that meet Example at the same time meet
Usability altogether. The artifacts meeting Structure is often
an artifact of a survey, an empirical study, or a data set.

In general, artifact documentation quality is fair and has
not changed much in recent years. Overall, researchers
do better in Completeness, Usability, Certificate, and
Contact than in the other two criteria, Structure, and
Example. There is still room for improvement on all
criteria.

3.4.2. Code Smell
This section explores the smells of the code researchers

write in their artifacts. We focus on Python and Java code
because they are covered by the majority of the artifacts.

Python. We detect the code written in Python by Pylint
(2022). Pylint produces code smell results for 268 Python
artifacts within a limited time (1 minute), and provides three
types of code smells9: (1) Convention: the code violates

9While Pylint also provides information in three other categories,
including “Fatal”, “Error”, and “Information”, these three are not consid-
ered as indicators of a code smell. This is because code smells indicate

Liu et. al: Preprint submitted to Elsevier Page 10 of 16



Research Artifacts in Software Engineering Publications

171819202122 171819202122 171819202122 171819202122 171819202122 171819202122
Complete. Struct. Usability Example Cert. Contact

0

20

40

60

80

100
Pe

rc
en

ta
ge

 (%
)

5050
444448

56

43

1815

293132

6465625856
63

3632

15

31
2625 29

41

59

46

59

48
43

50
41

33
41

28

Meet Criterion

Figure 9: The documentation situation of ICSE artifacts.

recommended coding conventions; (2) Refactor: the code
needs effort in refactoring; (3) Warning: the code contains
issues that developers may need to fix, but the issues are
not fatal enough to terminate the running of the code. The
detailed content for each type of alert message, explanation,
and specific examples can be found in the documentation of
Pylint (2023).

Java. We use PMD (2022) to detect the smells in Java
code. PMD successfully runs on all 195 Java artifacts, and
we use them as our analysis subjects. Different from Pylint,
PMD provides more diverse alert messages, including (1)
Code style: the code violates a specific coding style; (2)
Documentation: the code needs effort in code documen-
tation; (3) Design: the code contains design issues; (4)
Best Practices: the code violates generally accepted best
practices; (5) Error Prone: the code contains constructs that
are either broken, extremely confusing, or prone to runtime
errors; (6) Performance: the code contains suboptimal code;
(7) Multithreading: the code contains issues when dealing
with multiple threads of execution; (8) Security: the code
contains potential security flaws10.

Figure 10.(a) and (b) show the distribution for each type
of alert message in Python and Java artifacts. For Python,
the ratio of Convention messages about coding convention
violations is the most common, which accounts for 52.3%.
There are also 38.7% warning messages and 9.0% refactor-
ing alerts. The most common smell for Java is code style,
similar to convention violations. These issues may affect
the artifacts’ readability, maintainability, and usability. It is
unsurprising that these issues exist because researchers are
often not well-trained developers. However, poor code styles
can make the code hard to understand, maintain, reuse, and
even contain potential bugs. While poor code style does
not cause major problems in most cases, so many small
flaws combined in a single artifact can overwhelm valuable
insights in the code, making the paper difficult to understand
potentially flawed or suboptimal coding practices instead of bugs or other
information.

10Please refer to https://pmd.github.io/latest/pmd_rules_java.html for
more details of each message.

7.8%
0.5%

54.9%

7.3%
23.2%

3.6%
2.7%

Best Practices
Multithreading
Code Style
Design

Documentation
Error Prone
Performance

(a)

52.3%

38.7%
9.0%

Convention
Warning

Refactor

(b)

Figure 10: Ratio of different types of Python (a) and Java (b)
messages from 2017 to 2022.

and reuse. Therefore, code style is also an important part of
a paper and should be considered when evaluating papers.

We further dive deep into these alert messages and check
their prevalence and specific contents. Column “Prevalence”
in Table 5 shows the number of artifacts with the corre-
sponding type of alert messages against the total number of
artifacts. We observe that all the alert messages are surpris-
ingly prevalent in the artifacts. For example, 254 out of the
268 (98.5%) artifacts in Python are recommended to refactor
their code. The average prevalence ratio (the first number
divided by the second number in Column “Prevalence”) of
the alert messages is 96.0% for Python and 98.3% for Java.

Column “Name” and Column “Explanation” in Table 5
represent the top three most common alert messages under
each message category and their explanation. We hope that
these results could shed light on issues to avoid when re-
searchers wish to improve the quality of their code when
preparing artifacts (more details in Section 4).

Code smells are prevalent in the artifacts. On average,
code smell alert messages appear in 96.0% of the
Python projects and 98.3% of the Java projects. The
majority of the code smell alert messages are related
to code convention violations.

Liu et. al: Preprint submitted to Elsevier Page 11 of 16

https://pmd.github.io/latest/pmd_rules_java.html


Research Artifacts in Software Engineering Publications

Table 5
The top three most common alert messages under each smell category for Python (top three rows) and Java (bottom seven
rows).

Type Prevalence Name Explanation Pct.(%)

Convention 260/268
invalid-name Code violates naming rules for variables. 23.4
line-too-long Code has a line longer than 100 characters. 19.9
missing-function-docstring Code contains a function or method without a docstring. 19.3

Warning 258/268
bad-indentation Code has incorrect indentation. 58.4
unused-import Code imports unused modules or variables. 6.5
redefined-outer-name Variable in inner scope shares the same name as one in outer scope. 5.0

Refactor 254/268
consider-using-with A resource-allocating assignment may be replaced by a “with” block. 13.1
too-many-locals Function or method has over 15 local variables. 10.9
no-else-return Unnecessary "else" block with a "return" statement. 9.9

Best Practices 144/144
SystemPrintln Code can use a logger instead of System.out.print references. 15.8
LooseCoupling Code has excessive coupling implementation types. 8.7
UnusedAssignment Code has unused variable assignments. 8.7

Code Style 144/144
LocalVariableCouldBeFinal Local variable assigned only once can be declared final. 26.5
MethodArgumentCouldBeFinal Method argument never reassigned can be declared final. 22.2
ShortVariable Fields, variables, or parameters have very short names. 11.5

Design 144/144
LawOfDemeter Code violates the Law of Demeter. 29.3
CyclomaticComplexity Methods/classes should be broken down into smaller components. 8.6
CognitiveComplexity Methods are too complex. 6.7

Documentation 144/144
CommentSize Comments exceed specified size limits. 49.8
CommentRequired Code needs more comments. 48.7
UncommentedEmptyMethodBody Empty method body without comments. 1.2

Error Prone 140/144
AvoidLiteralsInIfCondition Hard-coded literals used in conditional statements. 22.1
AvoidDuplicateLiterals Duplicate String literals should be declared as constant fields. 10.7
DetachedTestCase Test case method should be detached. 9.0

Multithreading 134/144
DoNotUseThreads Code violates the J2EE specification by using threads. 34.9
UseConcurrentHashMap Code can use the Map designed for multi-threaded access in Java5. 32.4
AvoidSynchronizedAtMethodLevel Method-level synchronization can cause problems with new code. 21.4

Performance 141/144
AvoidInstantiatingObjectsInLoops New objects created within loops should be checked and reused. 37.8
RedundantFieldInitializer Explicit initialization of default values that will be initialized by Java. 16.7
ConsecutiveAppendsShouldReuse Consecutive calls to StringBuffer/StringBuilder appends should be chained. 8.9

4. Discussion
The growing number of publications with artifacts in the

Software Engineering community is a positive indication
of progress. Artifacts play a crucial role in facilitating the
replication and verification of research results, enhancing
comprehension of the research, enabling further advance-
ments, and serving as valuable educational resources. How-
ever, the rise in artifacts presents challenges. Firstly, con-
ducting an artifact requires significant additional effort and
time from researchers. Secondly, preparing functional and
well-documented artifacts is technically challenging. Lastly,
reviewing and evaluating artifacts alongside research papers
adds complexity to the peer-review process. To address these
challenges, the SE community should deepen the research
on artifacts and provide comprehensive guidance for artifact
preparation, thereby improving the efficiency of managing
the entire lifecycle of SE artifacts.

In this section, we present our suggestions on artifact
preparation and discuss the threats to validity.
4.1. Suggestion

Based on our findings, we discuss insights on the status
and trends of SE artifacts and provide further suggestions.

4.1.1. Common Practices
Regarding storage websites of artifacts, though SE con-

ferences (ICSE21 (2020); ICSE22 (2021a)) have exploited
recommend archiving platforms like Zenodo over version
control systems like GitHub, the majority (64.2% in 2022)
of publications choose GitHub for their artifacts. Because
GitHub is easier to maintain and allows for updating the
artifacts, we believe GitHub will still be one of the most
trending artifact storage websites in the near future. Addi-
tionally, GitHub has a similar link rot rate to Zenodo, which
shows that artifacts stored on GitHub can be maintained for a
long time. Besides, most (over 90%) artifacts have the update
requirement after the submission, indicating that version
control systems like GitHub can satisfy the requirement
better than archiving platforms like Zenodo. Therefore, we
suggest that conferences should not blanket exclude version
control systems like GitHub, but instead provide guidance
on choosing the appropriate platform for specific artifacts.

Moreover, we observe a rapid increase in the use of
Zenodo (0.0% in 2017 to 16.0% in 2022), which is more
suitable for artifacts that do not need to be updated over time,
such as datasets. The adoption ratio of Zenodo will likely
increase further given its recommendation by conferences

Liu et. al: Preprint submitted to Elsevier Page 12 of 16



Research Artifacts in Software Engineering Publications

as well as its advantages for long-term preservation. We
suggest SE researcher choose Zenodo for suitable artifacts.

In terms of programming language, the use of Python
has increased from 15.2% in 2017 to 61.1% in 2022, surpass-
ing Java. The adoption of Java and C/C++ has decreased
over the past six years. We expect this trend to continue
going forward. While quality metrics (e.g. code smells) and
detection tools are mature for Java, those for Python are still
lacking. Given the majority of artifacts now use Python,
the SE research community can define coding conventions
and specific rules for Python code in artifacts to improve
readability and standardization. Providing guidance and ex-
amination tools for Python artifact code would also enhance
quality and reusability.

As for the URL location, we find that 40.9% artifact
URLs are hidden in the middle of the paper and are easily
overlooked. The community has recommended unifying the
artifact URL location in the “Data Availability” section after
the conclusion. Although the compliance rate with this rule
is still low, there has been a rapid increase in recent years.
Unifying artifact URL locations makes it easier to find and
access artifacts, increasing their impact. We suggest that
more publications follow this rule and prominently display
artifact URLs in papers, as the increasing importance of
artifacts.
4.1.2. Maintenance

Regarding artifact availability, the link rot rate increased
over the years, with up to around one-third of artifacts
inaccessible in 2017. To ensure the long-term accessibility
of SE artifacts, the SE community should give additional
consideration to artifacts’ longevity when reviewing papers,
especially for artifacts stored on temporary drives and per-
sonal websites that exhibit significantly higher link rot rates
than those on GitHub and Zenodo.

For the last update time, most artifacts need continuous
updating after submission, highlighting the high updating
needs and propensity to become outdated of SE research
artifacts. Earlier artifacts have a higher update rate. We
believe that if the community and researchers want to ensure
artifacts remain useful and reproducible over time, only
one artifact examination before conferences is insufficient.
Given their tendency to become obsolete quickly, regular
re-examination is worthwhile for valuable artifacts to keep
them up-to-date, effective, and reproducible in the long term.
4.1.3. Popularity

Regarding star numbers, most GitHub artifacts receive
limited attention, with 65.0% attracting no more than 10
stars. Though artifact star counts are not an accurate measure
of popularity, they indicate that most software engineering
artifacts lack real-world adoption and impact. Artifacts may
struggle to gain traction because most target niche audiences.
Even for intended audiences, less than half of respondents
report experience reusing artifacts (Timperley et al. (2021)).
However, we believe that some prototyped artifacts could
have great potential to influence real-world applications

and facilitate people’s lives if properly disseminated. Such
artifacts should be viewed not just as paper attachments, but
as vital contributions of SE research, advancing the practical
implications of software engineering.

We believe that conferences can increase the usefulness
and impact of SE artifacts by incorporating characteristics
of top-starred artifacts into their evaluation criteria and rec-
ommendations, including providing detailed documentation
and easy install packages, as well as keeping maintenance.
4.1.4. Quality

In terms of documentation, artifact documentation of-
ten lacks descriptions of file structure and usage examples,
which are vital for most artifacts. Describing an artifact’s file
structure helps users quickly comprehend its composition
and working mechanism. Usage examples assist users in
verifying artifacts that provide tools work properly. There-
fore, We suggest conferences remind researchers to include
file structure descriptions and usage examples for suitable
artifacts, achieving better documentation quality.

For code quality, we perform code smell tests on Python
and Java artifacts and find that over 96% of artifacts in-
cur alerts. Most alerts relate to code convention, not func-
tionality. As function correctness instead of code conven-
tion matters most for code in artifacts, we conclude that
the commonly-used metrics for general SE projects, code
smells, are unsuitable for artifacts. Therefore, we suggest
more research on better code quality metrics for artifacts in
the SE field, especially for Python.
4.1.5. Summary

Based on previous analysis, we summarize suggestions
for different stakeholders.

For organizers of SE publications.
(1) Enhance artifact preparation guidance. Provide com-

prehensive guidance and detailed assessing criteria for ar-
tifact preparation, encompassing aspects such as storage
platform selection, document quality enhancement, and sub-
sequent maintenance strategies.

(2) Promote inclusive artifact guidance. Conferences
should avoid blanket exclusions and guide authors in select-
ing the right platform for their artifacts. For static datasets,
Zenodo is recommended for archiving, while GitHub is
preferred for artifacts involving iterative code updates, with
a release version as an archive. Conference organizers can
provide detailed instructions on different platform features
to cater to diverse needs.

(3) Unify the artifact URL in a prominent location. As
the importance of artifacts becomes increasingly recognized,
artifact URLs in papers should be highlighted to facilitate
reader access. Conference organizers can provide a unified
recommended position of artifact URLs in the guidance or
integrate the URLs into the publication metadata.

(4) Consider artifact longevity during the review process.
Conference organizers should discourage the use of tempo-
rary drives or personal websites to host artifacts and consider

Liu et. al: Preprint submitted to Elsevier Page 13 of 16



Research Artifacts in Software Engineering Publications

the long-term validity of artifacts during the review process
to minimize the risk of link rot.

(5) Provide high-quality artifact examples. Offering
exemplary artifacts of various types can help authors in
producing higher-quality artifacts. For instance, the guid-
ance may present highly acclaimed artifacts from previ-
ous years’ publications and utilize their characteristics as
recommended and evaluative criteria, such as providing
easy installation packages, test cases, and comprehensive
documents.

(6) Promote real-world adoption and impact. Conference
organizers can encourage researchers to integrate their ar-
tifacts into practical application development and promote
their potential impact. We recommend extending the evalua-
tion and recognition of artifacts beyond publications through
regular evaluations and giving recognition to those artifacts
that demonstrate significant impact.

For researchers.
(1) Emphasize the contribution of artifacts. To enhance

the replication of papers, researchers should strive to provide
artifacts for their papers whenever possible and prominently
highlight them as a significant contribution to papers.

(2) Choose a suitable storage platform for artifacts. Re-
searchers should consider factors such as maintenance fre-
quency, long-term storage link availability, sharing options,
and data size when selecting a storage platform for artifacts.
For large static datasets, Zenodo is a recommended choice,
while GitHub is suitable for small codebases that require
regular updates and maintenance. We recommend minimiz-
ing the use of personal websites and temporary data drives,
which are more prone to link rot. Moreover, we suggest
researchers provide an archived version of the artifacts as
a snapshot, regardless of the selected platform.

(3) Enhance artifact quality. Researchers should improve
the quality of artifacts to facilitate the reproducibility of their
paper’s results by other users. Enhancing artifact quality
involves attention to various details, such as comprehensive
documentation, clear file structure explanations, simple in-
stallation scripts and examples, author contact information,
and improved code readability.

(4) Maintain artifacts regularly. To ensure the long-term
usefulness and impact of artifacts, researchers should reg-
ularly maintain them. Maintenance tasks include promptly
responding to user inquiries, updating dependencies, ad-
dressing software versioning issues, and incorporating new
features or improvements.

For software engineering community.
(1) Embrace open science practices. The community

should continue supporting and promoting the sharing of
open-source artifacts. This will foster transparency, repro-
ducibility, and collaboration among researchers.

(2) Promote tools and technologies for artifact manage-
ment. Addressing issues such as link rot and ensuring the
enduring availability of artifacts stored outside commonly
used platforms can be facilitated by developing tools or
leveraging existing technologies like the Wayback Machine
and robust links.

(3) Conduct further research on artifact quality metrics.
The SE community can prioritize research and develop-
ment of metrics and automated examination approaches
specifically tailored to different programming languages and
artifact types. Specifically, the community can offer further
guidance and examination tools for Python artifacts, given
that Python is the most widely used programming language
in current software engineering artifacts.
4.2. Threats to validity
Manually check. We carry out the empirical study with
many manual checks. Therefore, there are some potential
threats to validity. Multiple checkers are involved in the man-
ual checking process and there is a risk that their judgments
may not be consistent. Besides, the manual checking process
could be influenced by biases on the part of the checkers,
such as confirmation bias or selection bias. These biases
could affect the results of the study and reduce its validity.
Our checkers communicate with each other as much as pos-
sible, eliminating subjective differences between different
checkers. However, this may still affect.
Selection of storage website. We choose artifacts in GitHub
to examine their popularity. However, the star number is a
GitHub-specific metric and may not apply to other platforms
like Zenodo.
Selection of venues. We have focused on top-tier software
engineering conferences based on the CS Ranking. Expand-
ing the scope of venue selection and analysis may lead to
more valuable findings. However, the four conferences we
selected are well-recognized as top-tier SE venues, which
can serve as a good starting point to analyze the state and
trends of SE artifacts.

5. Related Work
In this section, we introduce existing work on commu-

nity expectations of artifacts. Then, we summarize the work
related to the replicability of software engineering.
5.1. Community Expectations of Artifacts

Artifact evaluation attracts great attention in software
engineering. Many previous work propose the recommen-
dations and expectations of artifacts (Hermann et al. (2020);
Timperley et al. (2021); Fan, Xia, Lo, Hassan and Li (2021);
Liu, Gao, Xia, Lo, Grundy and Yang (2022); Di Cosmo
and Zacchiroli (2017)). Also, some guidelines have been
proposed to describe the expected practice of the publica-
tions (FSE21 (2021a); ACM (2020); ICSE23 (2022); Vidoni
(2021)).

In 2013, Krishnamurthi (2013) proposed that software
and other digital artifacts were amongst the most valuable
contributions of computer science but conferences treated
these mostly as second-class artifacts. As a result, they high-
lighted the importance of artifacts and argued for elevating
these other artifacts by making them part of the evaluation
process for papers.

Liu et. al: Preprint submitted to Elsevier Page 14 of 16



Research Artifacts in Software Engineering Publications

Hermann et al. (2020) provided an overview of the
current perception of artifact evaluation and the commu-
nity expectations toward artifacts. They conducted a survey
among the artifact evaluation committees (AEC) members
and analysed the purpose and community expectation of
the artifact evaluation. In details, they extracted the key
information from the response of AEC members and gained
the expectations from reviewers and users perspectives.

Timperley et al. (2021) conducted an empirical study
to understand how artifacts are created, shared, used, and
reviewed by mixed methods. They analyzed all research-
track papers published at four software engineering venues
(ASE, EMSE, FSE, and ICSE) between 2014 and 2018 to
determine the prevalence and availability of artifacts, and
conducted a survey of 153 authors to identify the challenges
of creating, sharing, using, and reviewing artifacts. Based
on their finding, they derived several recommendations for
different stakeholders in research. Their study is similar to
ours to some extend. Our results can better reflect the current
status and trends of artifacts because the data we used is from
2017 to 2022. We make many comparison with their findings
in our work.

We also compare our findings with the guidelines of
FSE21 (2021a) and ICSE23 (2022), and the ACM (2020)
guidelines, which describe the expected characteristics of
artifacts of publications in the above sections.
5.2. Replicability in Software Engineering

Replicability has become an important concern in soft-
ware engineering research (Flittner, Mahfoudi, Saucez, Wäh-
lisch, Iannone, Bajpai and Afanasyev (2018); Saucez, Ian-
none and Bonaventure (2019)), and ongoing work focuses
on the quality, reliability, and trustworthiness of software
engineering research results through the development and
application of effective replicability techniques.

Liu et al. conducted a literature review on 147 DL studies
published in 20 SE venues and 20 AI venues to investigate
these issues and re-ran four representative DL models in SE
to investigate important factors that may strongly affect the
reproducibility and replicability of a study. They concluded
that it is urgent for the SE community to provide a long-
lasting link to a high-quality reproduction package, enhance
DL-based solution stability and convergence, and avoid per-
formance sensitivity on different sampled data, which is
proved by our work another time.

Anchundia and Fonseca C. aim to identify tools that
maximize reproducibility in software engineering experi-
ments and how they are applied and performed a systematic
mapping study and complementary strategies to analyze
replication from communication concern, knowledge man-
agement concern, and motivation concern. They concluded
that reproducibility is mostly relegated to internal replica-
tion, at which time and costs can be assumed within research
groups and a focus on new alternatives should be considered
to broaden replication.

Our work confirms these results and puts forward rec-
ommendations on how to better prepare artifacts, which will
help improve replicability.

6. Conclusion and Future Work
We conduct an empirical study to understand the current

status and trends of research artifacts in SE publications. We
conduct a dataset with 2,196 papers and corresponding 1,487
artifacts for analysis. Based on the dataset, We investigate
the common practices, maintenance, popularity, and quality.
We observe an increase in the number of papers providing
artifacts in SE venues. The most commonly used storage
platform is still GitHub, while the employment of Zenodo
rapidly grows. Over 90% of artifacts would be updated after
the submission. At the same time, 65.0% of artifacts have
less than 10 stars and the code smell alert messages appear in
96.0% of the Python projects and 98.3% of the Java projects.
Moreover, we provide the discussion on the overall status of
SE artifacts and offer suggestions to different stakeholders.
We hope our data and empirical results can support further
study on the research artifacts of the SE community.
Future Work. To capture the latest status and trends in
the SE community, we study publications of four top-tier
SE venues according to the CS Ranking. However, we
could uncover more interesting findings if we expand our
methodology and include a broader range of SE venues,
including journals and more popular SE conferences with
various requirements for artifacts.

Note that the annotation work is labor-intensive, as it
entails manually searching for the artifact URLs for each
paper and manually accessing, downloading, and analyzing
them. As a starting point, we have developed a website,
CS-Artifacts11, to showcase our annotated papers and their
corresponding artifact data. We aim to gradually expand the
coverage of venues on this website in the future.

7. Data Availability
We make our data, scripts, and results publicly available

at https://github.com/morgen52/SE-artifact.

Acknowledgment
This work was supported by the National Key Research

and Development Program of China under the grant number
2021YFF0901100, and Center for Data Space Technology
and System, Peking University.

References
Abou Khalil, Z., Zacchiroli, S., 2022. Software artifact mining in software

engineering conferences: A meta-analysis, in: Proceedings of the 16th
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, pp. 227–237.

ACM, 2020. Artifact review and badging - version 1.1. https://www.acm.

org/publications/policies/artifact-review-and-badging-current.
11http://ra.bdware.cn

Liu et. al: Preprint submitted to Elsevier Page 15 of 16

https://github.com/morgen52/SE-artifact
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Research Artifacts in Software Engineering Publications

Aghajani, E., Nagy, C., Vega-Márquez, O.L., Linares-Vásquez, M., Moreno,
L., Bavota, G., Lanza, M., 2019. Software documentation issues
unveiled, in: Proceedings of 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE19), pp. 1199–1210.

Anchundia, C.E., Fonseca C., E.R., 2020. Resources for reproducibility of
experiments in empirical software engineering: Topics derived from a
secondary study. IEEE Access 8, 8992–9004.

Archieve, I., 2023. Wayback machine. https://archive.org/web/.
Baker, M., 2016. 1,500 scientists lift the lid on reproducibility. Nature 533.
CSRankings, 2023. Computer science rankings. https://csrankings.org.
D Kumar, V., Sampath Kumar, B., Parameshwarappa, D., 2015. Urls link

rot: implications for electronic publishing. World Digital Libraries-An
International Journal 8, 59–66.

DBLP, 2023. computer science bibliography. https://dblp.org/.
Di Cosmo, R., Zacchiroli, S., 2017. Software heritage: Why and how

to preserve software source code, in: iPRES 2017-14th International
Conference on Digital Preservation, pp. 1–10.

Fan, Y., Xia, X., Lo, D., Hassan, A.E., Li, S., 2021. What Makes a Popular
Academic AI Repository? Empirical Software Engineering 26.

Fetterly, D., Manasse, M.S., Najork, M., Wiener, J.L., 2003. A large-scale
study of the evolution of web pages, in: Proceedings of the Twelfth
International World Wide Web Conference (WWW03), pp. 669–678.

Flittner, M., Mahfoudi, M.N., Saucez, D., Wählisch, M., Iannone, L.,
Bajpai, V., Afanasyev, A., 2018. A survey on artifacts from conext, icn,
imc, and sigcomm conferences in 2017. ACM SIGCOMM Computer
Communication Review 48, 75–80.

FSE21, 2021a. Esec/fse 2021 open science guidelines. https://2021.

esec-fse.org/attending/Open_Science_Guidelines.
FSE21, 2021b. Fse 2021 artifact evaluation track:submission and reviewing

guidelines. https://2021.esec-fse.org/getImage/orig/fse_artifacts_

submission_reviewing_guidelines.pdf.
FSE22, 2022. Fse 2022 open science policy. https://2022.esec-fse.org/

track/fse-2022-research-papers#FAQ.
Hermann, B., Winter, S., Siegmund, J., 2020. Community expectations for

research artifacts and evaluation processes, in: Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (FSE20), pp.
469–480.

ICSE21, 2020. Icse 2021 open science policies. https://conf.researchr.

org/track/icse-2021/icse-2021-open-science-policies.
ICSE22, 2021a. Icse 2022 open science policies. https://conf.researchr.

org/track/icse-2022/icse-2022-open-science-policies.
ICSE22, 2021b. Icse 2022 review process and guidelines.

https://conf.researchr.org/getImage/icse-2022/orig/ICSE+2022+

Review+Process+and+Guidelines-2.pdf.
ICSE23, 2022. Icse 2023 open science policy. https://conf.

researchr.org/track/icse-2023/icse-2023-technical-track#

ICSE-2023-open-science-policy.
Jones, S.M., Klein, M., Van de Sompel, H., 2021. Robustifying links to

combat reference rot. Code4Lib Journal 50.
Khalil, Z.A., Zacchiroli, S., 2022. The general index of software engi-

neering papers, in: Proceedings of the 19th International Conference on
Mining Software Repositories, pp. 98–102.

Kim, Y., Choi, Y., Kim, M., 2018. Precise concolic unit testing of c pro-
grams using extended units and symbolic alarm filtering, in: Proceedings
of the 40th International Conference on Software Engineering (ICSE18),
pp. 315–326.

Klein, M., Van de Sompel, H., Sanderson, R., Shankar, H., Balakireva, L.,
Zhou, K., Tobin, R., 2014. Scholarly context not found: one in five
articles suffers from reference rot. PloS one 9.

Kochhar, P.S., Xia, X., Lo, D., Li, S., 2016. Practitioners’ expectations on
automated fault localization, in: Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA16), pp. 165–176.

Krishnamurthi, S., 2013. Artifact evaluation for software conferences.
ACM SIGSOFT Software Engineering Notes 38, 7–10.

Krishnamurthi, S., Vitek, J., 2015. The real software crisis: Repeatability
as a core value. Communications of the ACM 58, 34–36.

Liu, C., Gao, C., Xia, X., Lo, D., Grundy, J., Yang, X., 2022. On the Repro-
ducibility and Replicability of Deep Learning in Software Engineering.
ACM Transactions on Software Engineering and Methodology 31, 1–46.

PEP8, 2013. Pep8 – style guide for python code. https://peps.python.org/
pep-0008/.

PMD, 2022. Pmd. https://pmd.github.io/.
Pylint, 2022. Pylint. https://github.com/PyCQA/pylint.
Pylint, 2023. Pylint messages overview. https://pylint.pycqa.org/en/

latest/user_guide/messages/messages_overview.html.
Sanderson, R., Phillips, M., Van de Sompel, H., 2011. Analyzing the

persistence of referenced web resources with memento. arXiv preprint
arXiv:1105.3459 .

Santos, J.A.M., Rocha-Junior, J.B., Prates, L.C.L., Do Nascimento, R.S.,
Freitas, M.F., De Mendonça, M.G., 2018. A systematic review on the
code smell effect. Journal of Systems and Software 144, 450–477.

Saucez, D., Iannone, L., Bonaventure, O., 2019. Evaluating the artifacts of
sigcomm papers. ACM SIGCOMM Computer Communication Review
49, 44–47.

Timperley, C.S., Herckis, L., Le Goues, C., Hilton, M., 2021. Understand-
ing and improving artifact sharing in software engineering research.
Empirical Softw. Eng. 26.

Vidoni, M.C., 2021. Software engineering and r programming: A call for
research. R J. 13, 600.

Liu et. al: Preprint submitted to Elsevier Page 16 of 16

https://archive.org/web/
https://csrankings.org
https://dblp.org/
https://2021.esec-fse.org/attending/Open_Science_Guidelines 
https://2021.esec-fse.org/attending/Open_Science_Guidelines 
https://2021.esec-fse.org/getImage/orig/fse_artifacts_submission_reviewing_guidelines.pdf
https://2021.esec-fse.org/getImage/orig/fse_artifacts_submission_reviewing_guidelines.pdf
https://2022.esec-fse.org/track/fse-2022-research-papers#FAQ
https://2022.esec-fse.org/track/fse-2022-research-papers#FAQ
https://conf.researchr.org/track/icse-2021/icse-2021-open-science-policies
https://conf.researchr.org/track/icse-2021/icse-2021-open-science-policies
https://conf.researchr.org/track/icse-2022/icse-2022-open-science-policies
https://conf.researchr.org/track/icse-2022/icse-2022-open-science-policies
https://conf.researchr.org/getImage/icse-2022/orig/ICSE+2022+Review+Process+and+Guidelines-2.pdf
https://conf.researchr.org/getImage/icse-2022/orig/ICSE+2022+Review+Process+and+Guidelines-2.pdf
https://conf.researchr.org/track/icse-2023/icse-2023-technical-track#ICSE-2023-open-science-policy
https://conf.researchr.org/track/icse-2023/icse-2023-technical-track#ICSE-2023-open-science-policy
https://conf.researchr.org/track/icse-2023/icse-2023-technical-track#ICSE-2023-open-science-policy
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/
https://pmd.github.io/
https://github.com/PyCQA/pylint
https://pylint.pycqa.org/en/latest/user_guide/messages/messages_overview.html
https://pylint.pycqa.org/en/latest/user_guide/messages/messages_overview.html

