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Abstract

Serverless computing has become a new trending paradigm in cloud computing,

allowing developers to focus on the development of core application logic and rapidly

construct the prototype via the composition of independent functions. With the

development and prosperity of serverless computing, major cloud vendors have

successively rolled out their commodity serverless computing platforms. However,

the characteristics of these platforms have not been systematically studied. Measur-

ing these characteristics can help developers to select the most adequate serverless

computing platform and develop their serverless-based applications in the right way.

To fill this knowledge gap, we present a comprehensive study on characterizing main-

stream commodity serverless computing platforms, including AWS Lambda, Google

Cloud Functions, Azure Functions, and Alibaba Cloud Function Compute. Specifically,

we conduct both qualitative analysis and quantitative analysis. In qualitative analysis,

we compare these platforms from three aspects (i.e., development, deployment, and

runtime) based on their official documentation to construct a taxonomy of character-

istics. In quantitative analysis, we analyze the runtime performance of these

platforms from multiple dimensions with well-designed benchmarks. First, we analyze

three key factors that can influence the startup latency of serverless-based applica-

tions. Second, we compare the resource efficiency of different platforms with

16 representative benchmarks. Finally, we measure their performance difference

when dealing with different concurrent requests and explore the potential causes in

a black-box fashion. Based on the results of both qualitative and quantitative

analysis, we derive a series of findings and provide insightful implications for both

developers and cloud vendors.
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1 | INTRODUCTION

Serverless computing is a new paradigm of cloud computing that is gaining traction in a wide range of domains including video processing,1

machine learning (ML),2 and scientific computing.3 It is predicted that 50% of global enterprises will employ serverless computing by 2025.4 With

serverless computing, developers can focus on only the application logic composed by dependent functions, which are small pieces of the program

dedicated to a simple task, that is, Function-as-a-Service (FaaS).5 Therefore, developers can be freed from tedious and error-prone infrastructure

management such as load-balancing and autoscaling. Meanwhile, developers can also directly integrate existing proprietary services, that is,

Backend-as-a-Service (BaaS),5 provided by cloud vendors like object storage service (Amazon S3).6 This new paradigm can reduce the cost as

developers pay for only the actual function executions and bring great benefits for cloud vendors as it allows them to better utilize resources.
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Currently, major cloud vendors have rolled out their serverless computing platforms such as AWS Lambda,7 Google Cloud Functions,8 Azure

Functions,9 and Alibaba Cloud Function Compute.10

These commodity serverless computing platforms often act in a black-box fashion, and developers do not need to pay attention to the under-

lying implementation details. As a result, it may be difficult for developers to select the most appropriate serverless computing platform to host

their applications or construct their applications in the right way on serverless computing platforms. For example, how can developers evaluate

whether or how their existing applications can be transformed into serverless-based functions?11 How can developers package their newly devel-

oped functions on a specific platform? How many configuration options does a serverless computing platform provide for developers to quickly

meet their requirements?12 How about the actual runtime performance of these serverless computing platforms for specific tasks? These issues

are nontrivial in practice as they can definitely impact the developer's decision making and thus potentially impact the quality of service, user

experience, and even the revenue of the application.

Unfortunately, to the best of our knowledge, there still lacks the comprehensive knowledge to assist developers to select the most appropri-

ate serverless computing platform and develop their serverless-based applications in the right way. In this paper, we conduct a comprehensive

study with both qualitative analysis and quantitative analysis to characterize four mainstream commodity serverless computing platforms, includ-

ing AWS Lambda, Google Cloud Functions, Azure Functions, and Alibaba Cloud Function Compute.

In qualitative analysis, we explore and summarize the various characteristics described in the official documentation of these serverless com-

puting platforms. These characteristics specify the inherent restrictions of different aspects involving developing, deploying, and executing func-

tions, which may result in fatal failures if developers do not comply with these restrictions. To this end, we construct a taxonomy with respect to

the need-to-consider information from three aspects, that is, development, deployment, and runtime. Such a taxonomy can help developers better

understand the supported characteristics of serverless computing platforms to facilitate further development practice.

In quantitative analysis, we explore the actual runtime performance of these serverless computing platforms from multiple dimensions, in

order to help developers select an appropriate platform based on their application features and improve applications' performance with tuned

configurations. Indeed, the overall perceived performance of a serverless application may mainly be influenced by three kinds of latency, that is,

the startup latency of initiating the function instance, the execution latency of running the function, and the scheduling latency of waiting for

serving by available instances when the number of requests dramatically increases. Thus, our approaches are designed as follows.

1. First, we quantitatively analyze how can programming languages, memory sizes, and package sizes influence the startup latency on different

serverless computing platforms. Startup latency severely affects the responsiveness of serverless applications and may limit the adoption of

serverless computing under various applications.

2. Second, we quantitatively measure the applications' actual runtime performance to compare the underlying resource efficiency of different

serverless computing platforms with a set of well-designed benchmarks. We categorize these benchmarks into two types, that is, micro-

benchmarks and macrobenchmarks. Microbenchmarks consist of a set of simple workloads focusing on specific resource consumption, such as

CPU, memory, network, and disk IO. Macrobenchmarks consist of a set of real-world representative applications, for example, multimedia data

process, MapReduce, and ML-based serving, which need to utilize various system resources.

3. Finally, we quantitatively compare the concurrency performance of different serverless computing platforms, that is, how they perform when

dealing with multiple requests due to different autoscaling features and inherent concurrency limits. A coming request may be throttled if no

available function instances can handle it, which results in non-negligible latency. Meanwhile, we try to analyze the potential causes influencing

concurrency performance by analyzing and inferring their scalability strategy and load balancing from a black-box perspective.

On the basis of the results of both qualitative and quantitative analyses, we report a series of findings and implications for developers and

cloud vendors. Our findings can not only help developers choose the right platforms and configurations to obtain the optimal performance based

on their actual workloads but also guide cloud vendors to improve their serverless computing platforms.

We divide the process of using serverless computing into three phases, that is, development, deployment, and runtime. Our main findings

include the following:

1. Development. Programming languages are yet limitedly supported on most serverless computing platforms. Only nine popular programming

languages along with a small portion of versions are supported on at least one serverless computing platform, and three (PowerShell, PHP, and

TypeScript) out of nine languages are supported on only one platform. Especially, developers need to consider the supported programming lan-

guage before transforming a legacy application (a.k.a., serverful application) to a serverless application. Additionally, different languages can

result in obviously different cold start latency. Languages with “cumbersome” runtime (e.g., Java) can account for a much longer cold start time

(7x) than other script languages (e.g., Python and Node.js). Due to the package size limit of serverless computing platforms, developers need to

control their package size when constructing their applications. For example, Google Cloud Functions does not support applications with more

than 500-MB uncompressed package size, which means that developers even cannot directly use some most popular but heavy libraries like

“TensorFlow 2.4.”
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2. Deployment. When deploying serverless-based functions, we find that loading redundant libraries can introduce non-negligible startup latency

as well as increase package size. The startup latency can even increase by 4.6x if the function loads some unused libraries. Therefore, devel-

opers should optimize their code (e.g., removing the useless code) and apply the lazy loading of libraries to alleviate the overhead of initializing

functions. It is better for cloud vendors to provide related tools to help developers optimize their function packages before development

instead of directly deploying the compressed function packages. In addition, each serverless computing platform has different limitations of

configuration options, such as function memory and timeout. For example, AWS Lambda has currently supported up to 10,240-MB memory

and 900-s function timeout. We also need to address that existing serverless computing platforms do not support GPU-enabled applications.

Developers can carefully consider whether their applications can successfully run with limited system resources and permitted configurations

on the target serverless computing platform.

3. Runtime. Allocating more memory within a certain range can obviously reduce the cold start time. For example, increasing the memory from

128 to 2048 MB can save more than 98.5% of the cold start time for a task running on Google Cloud Functions. For tasks with high memory

requirements (e.g., sls-fib), allocating more memory can also reduce the execution time dramatically. However, the rate of reduction will drop

when allocated memory exceeds 1024 MB. These findings help developers make a trade-off between cost and performance by allocating

memory adequately. We also find that different serverless computing platforms can have discrepant performance for a specific type of task.

For example, Alibaba Cloud Function Compute performs the best for CPU-bound and memory-bound benchmarks, but other platforms can

beat it in other benchmarks with certain conditions, such as Google Cloud Functions has higher random-IO throughput at 1024 MB of

memory. In addition, for concurrency tasks, AWS Lambda has stronger ability of concurrency requests than other platforms. However, the

concurrency performance of Alibaba Cloud Function Compute is the best and most stable. For example, compared with the concurrency

performance of AWS Lambda, Google Cloud Functions, and Azure Functions, Alibaba Cloud Function Compute can improve by from 4.29% to

102.50%, from 37.27% to 151.16%, and from 271.31% to 445.82%, respectively. Through analyzing the difference in concurrency

performance, we find that the potential causes may be the different scalability strategies of these platforms. We also find that the memory

affects the concurrency performance of Alibaba Cloud Function Compute. The larger the memory, the better the concurrency performance.

For example, the performance of concurrency tasks that each request allocates 128 MB is inferior to that of allocating 3072 MB by about from

60% to 80%.

Overall, our findings reveal the mystery of mainstream commodity serverless computing platforms, motivating future research and application

practice of serverless computing. We also provide insightful implications for developers and cloud vendors. In addition, we offer the experimental

code used in this study* as an additional contribution to the research community for other researchers to replicate and build upon.

The remainder of this paper is organized as follows. Section 2 presents our methodology. Section 3 summarizes and compares the key charac-

teristics of development, deployment, and runtime phases. Section 4 describes the details of our evaluation tool. Section 5 shows the evaluation

results of the actual runtime performance for four serverless computing platforms. Section 6 discusses the potential issues of our study. Section 7

surveys related work, and Section 8 concludes this work.

2 | METHODOLOGY

This section illustrates the methodology that we adopt to evaluate mainstream commodity serverless computing platforms, including Amazon

Web Service Lambda (released in November 2014), Google Cloud Functions (released in July 2018), Microsoft Azure Functions† (released in

November 2016), and Alibaba Cloud Function Compute (released in April 2017). To help developers comprehensively understand these serverless

computing platforms, we compare them via both qualitative analysis and quantitative analysis.

In qualitative analysis, we aim to help developers to gain an intuitive understanding of serverless computing and judge whether their applica-

tions can be implemented and deployed on a specific serverless computing platform. In quantitative analysis, we seek to explore the actual

runtime performance of these serverless computing platforms from multiple dimensions. Indeed, the overall perceived performance of serverless

applications is mainly influenced by the startup latency (initiating the function instance), the execution latency (running the function), and

scheduling latency (waiting for serving by available instances when the number of requests dramatically increases). Specifically, first, functions are

typically small and executed in seconds or even milliseconds; thereby, the startup latency can be a considerable overhead for overall performance.

Moreover, executing serverless applications with low startup latency is critical for user experience.13-16 Second, different kinds of tasks have

various resource demands, and it is vital for developers to understand the execution performance of these tasks to choose the most appropriate

platform. Finally, the scheduling strategy of different serverless computing platforms can affect the response time from the time of receiving a

new request to the time of allocating a dedicated instance. Moreover, the main advertised benefit of serverless computing is the automatic

scaling, and we wonder if they can perform as stated. Therefore, on the basis of the above analysis, we mainly explore the actual runtime

performance of these platforms from three dimensions, including startup latency, execution latency, and scheduling latency.

Figure 1 shows the overall of our methodology. Step ➀ is the qualitative analysis, which is to extract and summarize characteristics of four

serverless computing platforms from their official documentation. Such characteristics specify the inherent restrictions of different aspects, for
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example, development, deployment, and runtime, and a taxonomy of characteristics about these platforms is constructed. Detailed results are

shown in Section 3. In our methodology, Steps ➁–➃ are the quantitative analysis, which explores the actual runtime performance on these

serverless computing platforms from multiple dimensions. Before experimental evaluation, we first design and implement an evaluation tool

named TBS, which uses a design principle of modularity and extensibility to allow developers to integrate other platforms without restraint. TBS

can provide the function packaging, deployment, execution, log collection, cleanup, and result generation for each measurement on four serverless

computing platforms. On the basis of TBS, we conduct our evaluation and first explore the key factors (e.g., programming languages, memory

sizes, and package sizes) influencing startup latency through varied experimental configurations (Step ➁). Detailed results are shown in Section 5.1.

Second, we construct a benchmark suite including different types of benchmarks to investigate the performance of various tasks with different

resource demands on these platforms (Step ➂). Detailed results are shown in Section 5.2. Finally, we measure the concurrency performance of dif-

ferent numbers of concurrent requests on serverless computing platforms (Step ➃). Moreover, we construct a runtime information collection

function to obtain some underlying information of platforms to further analyze potential causes influencing concurrency performance. The collec-

tion function is a serverless function to collect information like execution timestamp, function instances, and virtual machines (VMs). The collected

information can reflect the scalability strategy and load balancing ability of platforms to a certain extent. Detailed results are shown in

Section 5.3.

3 | TAXONOMY OF CHARACTERISTICS

To intuitively understand the characteristics of serverless computing, we construct a taxonomy of characteristics related to the development,

deployment, and runtime for four serverless computing platforms. This taxonomy is shown in Figure 2, and specific details are illustrated as

follows.

3.1 | Development-related characteristics

When developing applications, developers need to consider whether a specific serverless computing platform can implement application function-

alities in terms of programming language, trigger type, the size limit of deployment package, payload size, and so on. The development-related

characteristics are illustrated as follows.

Generally, a serverless-based application consists of one or more serverless functions. Each serverless function is a small, stateless, event-

driven, and pay-as-you-go unit dedicated to handling a specific task. Such a function is often constructed with a small piece of code written in

different languages. As shown in Figure 4, different serverless computing platforms support various languages and versions. We find that the

three most popular languages (i.e., Python, Node.js, and Java17) are natively supported by these serverless computing platforms. However, Python

is not supported by Azure on Windows .Net Core. We also find that three languages (PowerShell, TypeScript, and PHP) are only natively supported

by only one platform. Specifically, PowerShell and TypeScript are only supported by Azure Functions, and PHP is only supported by Alibaba Cloud

F IGURE 1 An overview of the methodology
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Function Compute. Because each platform supports various languages with different versions, we will choose the consistent language and version

in our experimental evaluation, in order to compare their performance features fairly. In addition, four serverless computing platforms have the

custom manner to allow developers to build their runtime with any preferred language, whereas may bring extra non-negligible efforts and

concerns of runtime stability. Thus, it is important to choose the appropriate platform to develop applications based on developers' preferred

languages.

In the specific implementation of application functionalities, these applications are usually triggered to execute by events,5 such as HTTP

requests, timers, and storage conditions. Besides, functions with different event triggers may have different main methods with given parame-

ters, and they are invoked to deal with specific incoming events. To reduce the cold start time of serverless functions, serverless computing

platforms often have the package size limit of applications. At the time of writing of our study, the package size limit of AWS Lambda is

50 MB with a compressed format and 250 MB with an uncompressed format. Google Cloud Functions and Alibaba Cloud Function Comput-

ing both allow from 100 MB with a compressed format to 500 MB with an uncompressed format. Differently, Azure Functions supports the

higher package size as much as several GB in size. Unfortunately, the package size of applications, especially, deep-learning-based tasks with

huge libraries, is big enough to exceed the package size limit of serverless computing platforms. For example, the compressed size of the

newest “TensorFlow” library (version 2.4.1-918) is 106.4 MB, and the uncompressed installed size is as high as 688.1 MB. It is impossible to

deploy such an application with the “big” library to serverless computing platforms directly; thus, the development enthusiasm of developers

may be dampened.

3.1.1 | Discussion and implications

Developers should carefully select the appropriate serverless computing platform based on their preferred languages, the application package size,

and other features that may be restricted on some platforms. For the application package limit, developers can apply existing technologies and

tools19 to remove the useless code and compress them. Cloud vendors can also provide some tools to automatically reduce the package size to

ease the burden of developers, instead of directly deploying zipped packages submitted by developers.

F IGURE 2 Taxonomy of characteristics of serverless computing platforms
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3.2 | Deployment-related characteristics

After implementing serverless-based applications, developers need to deploy them to serverless computing platforms. During the deployment

phase, some essential characteristics including deployment method and tool, allocated memory, and function timeout need to be considered by

the developers to avoid unnecessary deployment failure and poor performance. Next, we introduce this part of the information in detail.

As shown in Figure 2, we summarize the three most popular deployment methods of serverless applications, that is, source code, docker con-

tainer, and external services. On one hand, four serverless computing platforms all support the deployment method with the source code, for exam-

ple, deployment with a zipped package that contains function code and dependent third-party libraries. On the other hand, we find that only Azure

Functions (with consumption plan) does not allow developers to deploy functions by building their custom runtime (e.g., building custom Docker

images), but other platforms can. Additionally, Azure Functions and Google Cloud Functions both support the deployment with other external ser-

vices, such as source control services (e.g., Git) and FTP services, whereas AWS Lambda and Alibaba Cloud Function Compute do not. When

deploying functions to serverless computing platforms, developers can use deployment tools like the command-line tool, console editor, and API &

SDK. Moreover, developers of Azure Functions can even deploy functions from specific development tools, for example, Visual Studio Code.

In the deployment process, some serverless computing platforms (e.g., AWS Lambda, Google Cloud Functions, and Alibaba Cloud Function

Compute) need to specify the memory size of functions in advance. Specifically, AWS Lambda allocates memory to a function instance from

128 to 10,240 MB in steps of 1 MB, Google Cloud Functions is from 128 to 4096 MB with assigned values, and Alibaba Cloud Function Compute

is from 128 to 3072 MB in steps of 64 MB. However, for Azure Functions, developers cannot specify the memory in the development or deploy-

ment, but they can use 1536 MB at most. Generally, memory and CPU are closely related. The CPU capability of a function instance increases

proportionally with the allocated memory. AWS Lambda and Alibaba Cloud Function Compute get one vCPU at 1769 and 1024 MB, respectively.

Regrettably, we find that GPU support for the function execution is not available in four serverless computing platforms. An alternative way is to

provide GPU power as serverless services.20,21

Each serverless computing platform allows a function to run within the timeout limit as shown in Figure 2. Thus, it is not recommended to run

long-time tasks with serverless functions. Specifically, the timeout limit of Google Cloud Functions is only 540 s, whereas both AWS Lambda and

Alibaba Cloud Function Compute specify the maximum timeout time as long as 900 s. For Azure Functions, it allows functions to run within

600 s. In addition, serverless computing platforms also have the local disk to restrict the local storage (roughly 0.5 GB by default). However,

Alibaba Cloud Function Compute enables developers to extend the local storage capacity with network-attached storage (NAS).

We collect the detailed information of the supported regions through deploying applications on each serverless computing platform factually.

At the time of writing, AWS Lambda spans 25 geographical regions, whereas Google Cloud Functions supports the function deployment in

32 regions. Azure Functions and Alibaba Cloud Function Compute are available in 19 regions. However, we find an inconsistency compared to the

official documentation of Azure Functions,‡ which mentions that 43 regions overall are available. For the runtime OS of serverless computing plat-

forms, most of them run applications on Linux hosts, and only Azure Functions supports both Windows hosts and Linux hosts. As shown in

Figure 4, Windows hosts and Linux hosts do not support the same language set. In addition, we find that certain inconsistencies between the official

documentation and the actual execution process of our experiments. For example, AWS Lambda claims the usage of Amazon Linux as the operating

system for Python 3.7 runtime.§ However, it actually employs the Amazon Linux 2 as the operating system when we deploy applications with

Python 3.7 runtime. Thus, we infer that the reason may be the belated update of AWS Lambda documentation, and this kind of inconsistency

makes developers confused.

3.2.1 | Discussion and implications

Because different serverless computing platforms have different memory capabilities, developers can choose an appropriate memory size to bal-

ance performance and cost. Meanwhile, with the increase of GPU requirements (e.g., deep learning tasks), cloud vendors are advised to timely

solve the GPU technical difficulty and provide users with GPU as a service. Due to the timeout limit of functions, long-time applications are not

suitable to run on serverless computing platforms. Developers can decompose their applications into multiple functions through runtime inspec-

tion. For the limit of local disk, data-intensive applications may also be limited. Cloud vendors are advised to improve the local storage size and

provide a rapid cache mechanism to serve the data transformation. According to supported regions for serverless computing platforms, devel-

opers can choose the appropriate region near them to reduce the network latency.

3.3 | Runtime-related characteristics

Functions that have been successfully deployed on serverless computing platforms will be triggered and invoked when receiving defined events.

Some runtime-related characteristics (e.g., invocation type, request payload, and concurrency) have to be taken into consideration by developers.
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Specifically, four serverless computing platforms all support synchronous and asynchronous invocations. Moreover, developers often con-

sider the request payload when calling functions, but the payload limit of each serverless computing platform is different and shown in Figure 2.

When receiving bursty concurrent requests, serverless computing platforms can scale out by creating multiple function instances. A function

instance often runs on a separate host environment, such as a lightweight VM (e.g., Firecracker22 used by AWS Lambda), a dedicated container

(e.g., Docker10 used by Alibaba Cloud Function Compute and Azure Functions), or a gVisor23 used by Google Cloud Functions. Furthermore, all

the resources (e.g., CPU, memory, and storage) of this host are dedicated solely to its function instance. For instance concurrency, serverless com-

puting platforms will launch multiple function instances to handle concurrent request tasks. Generally, each new request will launch one exclusive

instance on AWS Lambda and Google Cloud Functions. However, a single instance on Azure Functions and Alibaba Cloud Function Compute

(with the custom setting of concurrency number) can run handle multiple concurrent requests (i.e., starting multiple processes) at the same time.

We will further explore these features in our later evaluation. Depending on the deployment region, the instance limit supported by AWS Lambda

is from 500 up to 3000 per single function. Google Cloud Functions only allows up to 3000 invocations to be executed concurrently for back-

ground functions. For Azure Functions and Alibaba Cloud Function Computing, their instance limits are 200 and 100, respectively.

Serverless computing platforms allow developers to normally use language and operating system features, such as creating additional threads

and processes. Resources allocated to serverless applications, including memory, disk, and network, must be shared among all the processes/

threads. In addition, the Linux kernel uses file descriptors to efficiently manage the opened files and creates indexes for them. For the billing

model of serverless computing platforms, the cost generally rises with the increase of execution time and the allocated memory. In serverless

computing, developers can pay for their applications in a finer granularity, that is, milliseconds. Indeed, the overall cost of running an application

varies depending on the specified memory (in AWS Lambda, Google Cloud Functions, and Alibaba Cloud Function Compute) or the actually con-

sumed memory during executions (in Azure Functions).

3.3.1 | Discussion and implications

Developers should notice the payload limit when passing input data to applications. If the payload data are large, developers can leverage the

external storage service (e.g., AWS S3) to storage it and then trigger functions contained in applications. Due to the black-box feature of commod-

ity serverless computing platforms, some runtime information and performance are not shown in their official documentation. It will drive us to

further explore these runtime features including the actual performance and the key factors influencing performance in our later evaluation, in

order to help developers better construct and deploy their functions.

4 | THE EVALUATION TOOL

To explore the actual runtime performance on four serverless computing platforms, we first design and implement an open-source and modular

evaluation tool named TBS, which contains some necessary components and a benchmark suite with 16 representative benchmarks.

TBS abstracts necessary components for each serverless computing platform, including the packaging component, the deploying component,

the testing component, the logging component, and the result generating component. The packaging component automatically packages a bench-

mark as a zipped file for further deployment. The deploying component can specify configurations (shown in Figure 2) and deploy functions to

the target platform. The testing component is to execute deployed functions based on configured trigger types, for example, sending an HTTP

request. The logging component is used to retrieve and store the execution logs of each measurement. Although different serverless computing

platforms have different formats of logs, they often contain basic information (e.g., timestamps, the execution time of functions, and the output

result of functions) about the life cycle of a function. For each benchmark in our study, we save the important contents, as well as the output

result in logs. Result generating component can extract valuable information from structured logs and generate a comparable result about differ-

ent serverless computing platforms. If developers want to integrate a new serverless computing platform into TBS, they just need to provide the

platform-specific implementation with the official command-line tool, APIs, or SDK. Leveraging these basic components, developers can easily

evaluate different platforms with specific configurations and experiment settings.

TBS also provides a benchmark suite containing different benchmarks. Each benchmark is implemented in multiple programming languages

(Python by default) to support the variety of the available runtime systems. Although there are subtle differences between code variants to adapt

to the peculiarities of each serverless computing platform, the code of each programming language is basically the same for all. By default, our

functions are implemented using the HTTP trigger, which is the most common event trigger supported by all serverless computing platforms. The

benchmark suite is considered to measure the runtime performance of these serverless computing platforms with workloads that have various

system resource requirements, such as CPU, memory, disk IO, and network. In addition, real-world workloads that developers develop often con-

sume extensive system resources to complete complex tasks. Therefore, we mainly design two types of benchmarks, including both micro-

benchmarks and macrobenchmarks as shown in Figure 3.
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1. Microbenchmarks consist of a set of simple workloads targeting specific system resource usage, that is, CPU-bound workloads, memory-bound

workloads, diskIO-bound workloads, and network-bound workloads. CPU-bound benchmarks consist of two workloads. Specifically,

sls-matrixMul in Figure 3 calculates the result of the multiplication of two N-dimensional square matrices, and sls-linpack solves the linear

equation. These benchmarks will consume more computation power. Memory-bound benchmarks have a workload to calculate Fibonacci24

values recursively, which will consume a lot of memory. DiskIO-bound benchmarks consist of three workloads, that is, sls-dd, sls-randomIO,

and sls-sequentialIO. Specifically, sls-dd is a workload that creates files in “/tmp/” directory of the local disk through using dd command of the

Linux system. sls-randomIO and sls-sequentialIO are workloads that measure the throughput and latency of random IO and sequential IO,

respectively. Network-bound benchmarks also consist of three workloads. sls-http is a network-bound test, which will be returned

immediately after the invocations with a small JSON-format payload. sls-http can be used to verify the round-trip time of different geographi-

cally distributed deployments. sls-iPerf is designed to actively measure the maximum bandwidth achievable on the IP network. sls-cloudstorage

is a benchmark to measure the throughput and latency between function instances and cloud storage.

2. Macrobenchmarks focus on real-world workloads that will consume multiple system resources (i.e., multimedia data process, MapReduce, and

ML-based serving), and they go far beyond microbenchmarks. Multimedia data process: sls-image and sls-video workloads are designed in this

kind of application. sls-image is an image processing workload, which performs image transformation tasks using the Python Pillow library.25

sls-image fetches an input image from the cloud storage and applies 10 different effects (e.g., copy, rotation, and cropping) to this image. The

corresponding output is uploaded back to the cloud storage. sls-video applies the gray-scale effect from the OpenCV library26 to the video

input and uploads the converted video to the cloud storage. MapReduce: MapReduce is a popular programming model that allows developers

to process or generate large-scale data in parallel. We add a sls-mapreduce workload, which consists of two types of functions. One is the Map

function to implement functionality filtering and sorting, and the other is the Reduce function to merge and organize the outputs of the Map

function. ML Training & Serving: ML workloads mainly involve ML model training and ML model serving. Generally, the raw input data of an

ML task needs preprocessing to prepare the input of training, for example, sls-lr-training workload in our benchmarks. We use the text dataset

about Amazon Fine Food Review¶ saved in the cloud storage and input them into the regression model. Because the sls-lr-training workload

needs to access large-size datasets from the cloud storage, it often takes up a lot of CPU, memory, and network. After training a model, this

model needs to be served for arbitrary inputs to make predictions, for example, sls-lr-serving workload that inputs users' review texts into this

model to predict the corresponding sentiment score. To further explore the inference related to deep learning models, we add the image

classification workload named sls-cnn and words generation workload named sls-rnn. sls-cnn uses a SqueezeNet model27 to achieve an impres-

sive accuracy on an ImageNet28 with 50x fewer parameters than the state-of-the-art model. sls-cnn is implemented with Python TensorFlow

Keras.29 Due to the limited memory size, attempts to import other convolutional neural network (CNN30) models are proved to be a failure.

sls-rnn uses a recurrent neural network (RNN31) model to implement words generation through PyTorch.32

F IGURE 3 Benchmarks
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In addition, TBS also constructs a collection function to obtain the underlying runtime information for serverless functions to further

analyze potential causes influencing concurrency performance. The runtime information mainly leverages the proc filesystem on Linux

(procfs) that can expose global statistics of the underlying function instances and VMs, as well as other information like CPU, memory, and

so on.

5 | EVALUATION OF THE ACTUAL RUNTIME PERFORMANCE

In our experiments, by default, we repeat each round test for 20 executions and use the median value to represent related evaluation results. The

regions for functions were us-east-1, us-east1, eastus, us-east-1 in AWS Lambda, Google Cloud Functions, Azure Functions, and Alibaba Cloud

Function Computing, respectively. Meanwhile, in our experiments, we also report the start time and end time of invocations and function configu-

rations for each round to facilitate further analysis. Most of our measurements have been done from June 2020 to March 2021. Note that we do

not show all results in this paper due to the space limit. Some key results are shown as follows.

5.1 | Startup latency

The cold start of serverless applications may involve launching a new VM and function instance, downloading dependent packages, setting

up the runtime environment, and initializing function, and these processes take more time to handle a request than reusing an existing

function instance (i.e., warm start). In the condition of cold start, it can significantly affect application responsiveness and, in turn, affect the

user experience. Thus, reducing cold start time is a key challenge in serverless computing.5,14,33 In our study, we focus on the overall cold

start time instead of the cold start time of a certain subprocess. Following the previous work,34 we create functions with the same work-

load and configuration for each serverless computing platform and sequentially invoke them twice to derive the overall cold start time. Spe-

cifically, the difference of overall response time, that is, end-to-end duration from the client perspective, is considered as an estimation of

its cold start latency. We will investigate how programming languages, memory size, and package size affect the cold start time of

applications.

5.1.1 | Programming languages

As shown in Figure 4, we find that programming languages are not well supported across all platforms. Thus, we mainly compare the cold

start time of the three most well-supported languages,17 that is, Python, Node.js, and Java. Figure 5A–C shows the distribution of the cold

start time for three different languages, respectively. The most obvious trend is that statically typed languages (e.g., Java) have over 3 times

higher cold start latency than dynamically typed language (e.g., Python and Node.js), especially for the cases with small memory. AWS

Lambda is overall the fastest with allocated memory less than 1024 MB. In 512-MB memory, AWS Lambda has a median cold start latency

of only 228.37 ms for Python, 139.96 ms for Node.js, and 374.79 ms for Java. Executing a Java function needs to launch and initiate a

“cumbersome” JVM, resulting in much more overhead and cold start time. By contrast, launching a Java function on AWS Lambda has the

least cold start time than other platforms. When allocating 128-MB memory, AWS Lambda even speeds up by a factor of about 7 compared

with Google Cloud Functions. Interestingly, we also find that the Google Cloud Functions can perform better than other platforms to run

F IGURE 4 Supported languages of serverless computing platforms (✓: supported; �: unsupported; 1, 2, 3: generation of Azure Functions; �:
deprecated)
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Java functions with allocated memory of more than 1024 MB, and its cold start time can even be less than functions developed by other

languages.

Discussion and implications

Regardless of preference, developers can choose “light-weight” languages (e.g., Python, Node.js) to develop their functions with lower cold

start time, especially for time-sensitive tasks. When developing functions with “big” memory (e.g., more than 1024 MB), developers are

free to choose any language with low cold start latency. For cloud vendors, they can further optimize the initialization of

the cumbersome runtime like Java. For example, cloud vendors can apply new technologies like Unikernel to reduce the overhead of initiali-

zation.5

5.1.2 | Memory sizes

As shown in Figure 2, developers specify the function memory when deploying their functions, and serverless computing platforms will allocate

CPU capability proportional to the allocated memory. Therefore, allocating more memory to functions will also increase the computing power of

function instances. Because we cannot specify the memory of Azure functions (1536 MB at most), we can assume that its performance is

between 1024 and 2048 MB. In addition, according to Figure 2, we find that Google Cloud Functions supports fixed memory sizes, that is,

128, 512, 1024, 2048, and 4096 MB. Thus, we design the comparison of the other three platforms under these memory sizes. As shown in

Figure 5A–C, we find that more memory allocated to function results in the lower cold start time for most cases for Google Cloud Functions.

Meanwhile, its memory size reduces the cold start time in a roughly linear fashion; 98.5% of the cold start time of Java is reduced on Google

Cloud Functions when increasing the memory from 128 to 2048 MB. However, for AWS Lambda and Alibaba Cloud Function Compute, they do

not seem to have significant differences with different allocated memories for Python and Node.js applications. It probably means that not so

much memory and CPU are required to launch these applications.

Discussion and implications

For functions written with Python or Node.js on AWS Lambda and Alibaba Cloud Function Compute, allocating more memory will not

speed up the cold start time and only lead to more cost. Developers do not need to increase memory allocation if the task is not memory-

intensive. In other cases, developers can properly increase the memory size to reduce the cold start time. For cloud vendors, they can

give some practical guides of memory configuration to make a balance between the cost and performance under different program

languages.

5.1.3 | Package sizes

Figure 6 compares four Python functions with 128 MB of memory under the various number of third-party packages. The first group bar pre-

sents the cold start time of a basal function (with 504.6 KB). The following three group bars show the cold start time of functions, adding a

third-parity library of different sizes into the basal function without loading (2.8 MB with a library named Pillow, 21.9 MB with a library named

Numpy, and 48.6 MB with a library named OpenCV-python, respectively). The last three group bars show the distribution of cold start time of

functions with loading the useless library; that is, the dependency libraries are redundantly imported in the deployment package. We find that

only increasing the size of the deployment package without loading does not obviously affect the cold start time on AWS Lambda and

Azure Functions. Instead, loading more libraries in the function will dramatically increase the cold start time except on the Google Cloud

Functions, because it will increase the time of initializing functions (e.g., loading code into memory). In particular, the cold start time can even

F IGURE 5 The distribution of the cold start time with different programming languages
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increase 4.6x if the function loads some unused libraries (21.9-MB-with-import vs. 21.9-MB-no-import). In the package size experiment, we

select Python functions as an example to explore the impact of package size on the cold start time and provide a relevant snapshot about

these serverless computing platforms. Certainly, leveraging our evaluation tool TBS, researchers can also reproduce experiments with other

languages (e.g., JavaScript, Java).

Discussion and implications

Loading redundant libraries may introduce non-negligible cold start time; thus, developers need to trim their code (e.g., removing the useless code

and import) and apply lazy loading of libraries to alleviate the overhead of initializing functions. It is better for cloud vendors to provide related

tools to help developers optimize their function packages before development instead of directly deploying the zipped function packages submit-

ted by developers.

5.2 | Resource efficiency

We leverage our benchmarks to explore the resource efficiency of serverless computing platforms. First, we compare the performance of micro-

benchmarks (i.e., CPU-bound, memory-bound, diskIO-bound, and network-bound workloads) on different serverless computing platforms. Sec-

ond, we use macrobenchmarks to explore complex resource utilization. In our study, we focus on metrics like the execution time of function and

the throughput of storage and CPU.

5.2.1 | Microbenchmarks performance

We use the sls-linpack benchmark to evaluate the CPU capacity of different serverless computing platforms, and the results are shown in

Figure 7. sls-linpack operates on 1000 � 1000 matrix and outputs a performance rating metric in terms of millions of floating-point operations per

second (mflops). We find that Alibaba Cloud Function Compute performs much better than other platforms while AWS Lambda performs worst.

In addition, for AWS Lambda and Google Cloud Functions, the mflops can increase linearly by allocating more memory, conforming to the finding

as we summarized in Figure 2 that serverless computing platform will allocate CPU capability proportional with allocated memory.

To measure the performance of memory-bound workloads, we use the sls-fib to calculate the 25th Fibonacci value recursively. This process

will result in high memory consumption, and the results are shown in Figure 8. Alibaba Cloud Function Computing has the shortest execution time

among all cases, and it is insensitive to more memory. For other platforms, allocating more memory can linearly reduce the execution time. How-

ever, the rate of reduction will decrease when allocated memory increases from 1024 to 2048 MB.

We leverage sls-randomIO and sls-sequentialIO to measure the throughput of local storage in terms of different IO patterns, that is, read and

write. From the results of Figures 9–12, we observe that the IO throughput of AWS Lambda and Google Cloud Functions increases as larger

memory is allocated. In random IO operations, Google Cloud Functions is better than AWS Lambda, whereas they are opposite in sequential IO

operations. In addition, Alibaba Cloud Function Compute has not only a stable and relatively efficient performance under different memories but

also an outstanding sequential IO read throughput bandwidth than other platforms shown in Figure 11. Meanwhile, in 128 MB of memory,

Alibaba Cloud Function Compute has 32.96 times the read throughput of Google Cloud Functions. Next, we analyze some specific cases. The IO

F IGURE 6 The distribution of cold start time of different package sizes

WEN ET AL. 11 of 23



throughput of Alibaba Cloud Function Compute performs poorly in the sequential write tasks. The reason is that sequential writing operators

cause more IO competition. The sequential IO throughput of Google Cloud Functions increases by allocating memory, but the rate of increase will

drop when exceeding a threshold. For example, sequential IO throughput of Google Cloud Functions trends to be stable when allocating memory

more than 512 MB shown in Figures 11 and 12. In addition, Google Cloud Functions performs better than Alibaba Cloud Function Compute in

random read and write when allocated memory is more than 1024 MB shown in Figures 9 and 10. Surprisingly, we find that the random IO

throughput of Azure Functions is lower than 1024-MB instances of other platforms.

F IGURE 7 The CPU throughput for the CPU-bound workload

F IGURE 8 The execution latency for the memory-bound workload

F IGURE 9 The random read throughput

12 of 23 WEN ET AL.



Because the network latency heavily depends on network condition and geographical location, we mainly focus on the throughput measure-

ment with sls-iPerf in this paper. sls-iPerf uses iPerf335 with default configurations to run the throughput test for 30 s with the same-region iPerf

servers, so that iPerf server-side bandwidth is not a bottleneck.34 Due to the changeable network conditions, we cannot get stable results and just

show some key findings in this part. Network throughput has a trend to increase as function memory increases. Actually, we have also measured

the latency with the sls-http benchmark deployed in different regions, and the latency indeed varies across different regions.

F IGURE 10 The random write throughput

F IGURE 11 The sequential read throughput

F IGURE 12 The sequential write throughput
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Discussion and implications

Developers should choose the appropriate serverless computing platform to obtain better performance based on their resource needs of applica-

tions. For computation-intensive and memory-intensive workloads, the processing ability of each serverless computing is different. Developers

can avoid the effect of memory on performance, and Alibaba Cloud Function Compute is recommended. However, for other platforms, devel-

opers can obtain more computing power to execute their computation-intensive and memory-intensive workloads by allocating more memory,

but they need to make a trade-off between performance and cost. If developers are deploying applications with frequent random IO operations,

it is better to deploy them on Alibaba Cloud Function Compute, especially for cases with small allocated memory. When developers have decided

to adopt AWS Lambda or Google Cloud Functions, they are advised to use AWS Lambda in sequential IO tasks and Google Cloud Functions in

random IO tasks.

5.2.2 | Macrobenchmarks performance

Different from microbenchmarks that exclusively evaluate different resources, macrobenchmarks utilize CPU, memory, disk IO, network

resources, and so on together at different degrees. Figures 13 and 14 show the execution latency to complete the video processing task (sls-video)

and model serving task (sls-lr-serving) on each serverless computing platform, respectively. In this experiment, we also vary the allocated memory

size of the function to explore the impacts on the execution latency of such macrobenchmarks. Missing bars in the figures indicate that the

corresponding platform could not complete the given workload with the allocated memory size. From Figures 13 and 14, we find that allocating

more memory can linearly reduce the execution time of functions and narrow the performance gap among different serverless computing plat-

forms. In addition, Alibaba Cloud Function Compute shows better performance than other platforms overall with the same allocated memory,

confirming our previous findings of evaluations with microbenchmarks. In other words, Alibaba Cloud Function Compute performs well in most

F IGURE 13 The execution latency of sls-video

F IGURE 14 The execution latency of sls-lr-serving
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cases with microbenchmarks, thereby also has better performance for complicated workloads (i.e., macrobenchmarks). Although Azure Functions

allocates 1536 MB of memory, we find that the execution latency on Azure Functions is close to 1024-MB instances of other platforms.

Discussion and implications

For those complicated workloads like macrobenchmarks, developers can allocate more memory for them to improve their performance. When

memory is set as more than 1024 MB, these serverless computing platforms can arrive at relatively stable performance. Based on our results,

Alibaba Cloud Function Compute has a better ability to handle such macrobenchmarks.

5.3 | Concurrency performance

In this section, we explore the concurrency performance of four serverless computing platforms. Meanwhile, we try to find the potential causes

influencing concurrency performance for these platforms in a black-box fashion.

In concurrency experiments, we follow a similar approach in previous work34,36 to create 20 python-based serverless functions with the same

configuration and code but different function names [f1, f2, …, f20] and invoke each fi with 10i concurrent requests. We pause for 20 s after each

round of invocations to cope with rate limits in the platforms. All serverless functions execute our information collection function of TBS for fur-

ther runtime analysis. Meanwhile, we also explore concurrency performance under various memory sizes. Particularly, Azure Functions cannot

configure different memory sizes. The reason is that functions of Azure Functions are executed in the form of function applications, and there is

no need to specify the memory size of the application in advance. In order to explore the concurrency performance of Azure Functions, we create

and deploy functions with the same functionality as other platforms, without specifying the memory size.

5.3.1 | Concurrency performance results

Concurrency performance is represented as request execution time, that is, the time interval from the sending time of a request to the end time of

processing this request. The results of concurrency performance are described as follows. Figure 15 shows the distribution of request execution

time under different numbers of concurrent requests with 1204-MB memory for four serverless computing platforms. Figure 16 shows the

median request execution time under different numbers of concurrent requests and various memory sizes for four serverless computing plat-

forms. From Figures 15 and 16, we conclude five experimental results. (1) AWS Lambda has the stronger ability to deal with a large number of

bursty concurrent requests than other platforms. (2) The concurrency performance of Alibaba Cloud Function Compute does not change with dif-

ferent numbers of concurrent requests, and it also is the best and most stable among these platforms. Specifically, in Figure 16, compared with

AWS Lambda, Google Cloud Functions, and Azure Functions, the concurrency performance of Alibaba Cloud Function Compute improves from

4.29% to 102.50%, from 37.27% to 151.16%, and from 271.31% to 445.82%, respectively. In addition, the variances of request execution time

under different concurrency conditions on Alibaba Cloud Function Compute, AWS Lambda, Google Cloud Functions, and Azure Functions are

0.0007, 21.76, 52.48, and 211.38, respectively. The smaller the variance value means more stable the concurrency performance under different

concurrency conditions. (3) AWS Lambda and Google Cloud Functions have similar concurrency performance in Figure 16A,B, and their request

execution times increase linearly as the concurrency numbers increase. Moreover, AWS Lambda fluctuates in concurrency performance. We also

find that the distribution of request execution time of AWS Lambda is more scattered by comparing the value of the ordinate in Figure 15A. Note

that in order to observe the trend of each platform at different concurrency conditions, we do not unify the ordinate values of Figure 15. (4) Azure

Functions has the worst and most unstable concurrency performance among these platforms. For example, when there are 20 concurrent

requests, the median request execution time of Azure Functions in Figure 16D is inferior to Alibaba Cloud Function Compute in Figure 16C by

445.82%. (5) Different memory sizes affect the concurrency performance of Alibaba Cloud Function Compute, whereas other platforms are not

affected. When allocated memory is smaller on Alibaba Cloud Function Compute, the concurrency performance is worse as shown in Figure 16C.

For example, the performance of concurrent requests with 128-MB allocated memory is inferior to that with 3072-MB allocated memory by

about from 60% to 80%.

Discussion and implications

By comparing the concurrency performance under different concurrency conditions, we present some implications for developers. First, devel-

opers are advised to use AWS Lambda if they have a higher demand for the concurrency number. Second, developers who have requirements for

high concurrency performance are advised to use Alibaba Cloud Function Compute. At the same time, they also need to consider the impact of

memory on its concurrency performance. Using high memory can improve concurrency performance, but developers can have a trade-off

between performance and cost. Additionally, if developers are using serverless computing platforms other than Alibaba Cloud Function Compute,

they may not need to consider the impact of memory on concurrency performance.
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F IGURE 15 The distribution of request execution time under different numbers of concurrent requests with 1024-MB memory for four
serverless computing platforms

F IGURE 16 The median request execution time under different numbers of concurrent requests and various memory sizes for four
serverless computing platforms
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5.3.2 | Potential cause analysis

We wonder about the potential causes that influence the concurrency performance of serverless computing platforms so that we can better

explain the above results and findings. We explore the following three research questions, that is, reasons that affect the number of concurrent

tasks, the impact of scalability strategy on concurrency performance, and the impact of memory on concurrency performance of Alibaba Cloud

Function Compute.

1. Reasons that affect the number of concurrent tasks. In our experiments, we cannot conduct experiments under certain concurrency conditions

for some platforms. In this section, we try to illustrate and explain them. Specifically, for Google Cloud Functions, when the number of concur-

rent requests is greater than 120, the invocation rate will exceed the predefined threshold, and the platform will refuse to deal with incoming

requests. Thus, we can only conduct experiments with concurrent requests increasing from 10 to 120 on Google Cloud Functions. However,

its official documentation claims that HTTP-triggered functions can scale to the desired invocation rate quickly.37 There is an inconsistency

between the official documentation and the actual runtime process. For Alibaba Cloud Function Compute, because the default number of con-

current requests supported by this platform is 100, we can only conduct experiments with concurrent requests increasing from 10 to 100. For

Azure Functions, we find that it fails to execute concurrent requests greater than 25 under the consumption plan. The possible reason we

think is that Azure Functions does not have the ability to provide the required resources for bursty workloads quickly. We have validated our

conjecture (i.e., Azure Functions may not be able to handle bursty concurrency tasks well.) through conducting the concurrency experiment with

the “large” concurrency number (e.g., 200) in a “warm” state of Azure infrastructure. In this situation, we conduct only fine-grained bursty

experiments for concurrent requests (e.g., increasing from 5 to 25) on Azure Functions to further explore its concurrency performance.

2. The impact of scalability strategy on concurrency performance. Generally, a function runs on dedicated instances like containers that provide

the required runtime environment for this function. These instances are hosted on VMs. We try to analyze the runtime information, for exam-

ple, the usage of instances/VMs and the request distribution on VMs, to investigate the scalability strategy and load balancing ability of differ-

ent platforms to further find potential causes influencing concurrency performance. The runtime information is collected by our collection

function in TBS. The identification of VMs and instances, as well as the metric of requests distribution, is illustrated as follows.

� VMs identification. For VMs identification, we leverage “btime” in /proc/stat to identify VMs as adopted in the previous work,36 which

statistically demonstrates its high reliability.

� Instances identification. Following the previous work,34,36 we check the existence of a temporary file on the local disk of the function

instance when receiving a request. If the temporary file does not exist, we generate a universally unique 16-byte ASCII string to write to this

file, which is served as the function instance ID. Because the local storage is nonpersistent and has the same lifetime as the associated

function instance, the temporary file will be removed once recycling the instance but will not be modified or deleted when reusing existing

instances.

� Requests distribution. We calculate the standard deviation of the numbers of requests distributed on different VMs to reflect the distribution

of the requests. When the standard deviation of this distribution is zero, it implies that this platform will equably distribute incoming

requests to multiple VMs. The increasing standard deviation implies the uneven distribution of requests on VMs. A single VM handling too

many requests will endure resource competition and inefficiency, leading to performance degradation.

We show the numbers of function instances and VMs under different concurrency conditions with 1024-MB memory allocation (as shown in

Figure 17), the numbers of VMs under different concurrency conditions with various memory sizes (shown in Figure 18), and the standard

deviation under different concurrency conditions with various memory sizes (Figure 19).

The reason why Alibaba Cloud Function Compute gains a better concurrency performance may be attributed to its scalability strategy. Specif-

ically, Figure 17A shows that Alibaba Cloud Function Compute will launch the same number of function instances as the number of concurrent

requests. It indicates that each request is processed in a new dedicated function instance, and there are no reusages of instances, resulting in rela-

tively ideal parallel processing. The number of VMs used in Alibaba Cloud Function Compute increases as the number of concurrent requests

increases as shown in Figure 17B. In the case of 100 concurrent requests, 20 VMs are used, which indicates that multiple function instances will

be launched on a single VM. Through sorting and analyzing the start time of the function execution, we infer the scalability strategy of Alibaba

Cloud Function Compute may be as follows. On Alibaba Cloud Function Compute, it will launch a small part of VMs and equably launch new

function instances on these VMs alternately for all concurrent requests.

Although AWS Lambda and Google Cloud Functions have similar concurrency performance, we find that they have different scalability strate-

gies. For Google Cloud Functions, Figure 17A shows that its usage of function instances is the same as that of Alibaba Cloud Function Compute.

However, the number of VMs used in Google Cloud Function is smaller and more stable than Alibaba Cloud Function Compute as shown in

Figure 17B. It implies that more function instances are launched on a single VM on Google Cloud Functions. Through further analyzing the

runtime information, we infer the scalability strategy of Google Cloud Functions may be as follows. On Google Cloud Functions, it will generate a

small number of VMs, and most new function instances will be launched on few VMs. We explore the impact of this kind of strategy on the
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startup time of these new function instances, that is, the time interval from the sending time of a request to the start processing time of its func-

tion instance. Figure 20 shows the startup time distribution of new function instances under different concurrency conditions with 1024-MB

memory. Overall, as the number of concurrent requests increases, the startup time of function instances will increases. It illustrates that the scal-

ability strategy of Google Cloud Functions may affect the startup time of the function instance and thus affect concurrency performance as

shown in Figure 15B. Meanwhile, requests distribute more unevenly against the increase of concurrent requests as shown in Figure 19B. Thus,

we conclude that launching too many function instances in a single VM will lead to poor performance.

For AWS Lambda, Figure 17A shows that the numbers of function instances and VMs are close under different concurrency conditions,

which implies that only one function instance will be launched on a single VM. In addition, the number of function instances used by AWS Lambda

F IGURE 17 The numbers of function instances and virtual machines (VMs) used in different numbers of concurrent requests that each
request allocates 1024-MB memory

F IGURE 18 The numbers of virtual machines (VMs) used in different numbers of concurrent requests under various memory sizes

F IGURE 19 The standard deviation of different numbers of concurrent requests under various memory sizes
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is always less than the number of concurrent requests. For example, when the number of concurrent requests is 200, the number of function

instances does not exceed 60. It indicates that AWS Lambda reuses existing function instances to deal with concurrent requests. Through further

analyzing the runtime information, we infer the scalability strategy of AWS Lambda may be as follows. On AWS Lambda, some requests will be

executed on some function instances first, and other requests will wait for available instances. If there are available function instances, they

will be reused to handle the remaining requests. This kind of strategy can gain better load balancing as shown in Figure 19A. In addition, the con-

currency performance of AWS Lambda fluctuates with the increase of concurrent requests as in Figure 16A. The possible reason is the unstable

of VMs startup as shown in Figure 18A because their trends are similar.

For Azure Functions, through analyzing the results of concurrent requests less than or equal to 25, we find that the numbers of function

instances and VMs used are the same, and at most two function instances or VMs are used. On one hand, the same numbers of function instances

and VMs show that Azure Functions is similar to AWS Lambda; that is, none of the concurrently running function instances are on the same

VM. On the other hand, Azure Functions uses up to two function instances or VMs indicates that it cannot quickly launch enough function

instances to handle all requests. In this situation, we infer that the scalability strategy may be as follows. On Azure Functions, concurrent

requests can be processed by only a small number of function instances at the same time, and the rest will wait. Through observing the time

interval at which the same function instance is used, the waiting time is about 10 s. We show the response time of requests (i.e., the time interval

from the sending time of a request to the start time of the function contained in this request) under different concurrent numbers in Figure 21.

The response times of some requests increase as the increase of concurrency numbers. Thus, the reason that Azure Functions has a bad concur-

rency performance may also be attributed to its scalability strategy.

3. The impact of memory on concurrency performance of Alibaba Cloud Function Compute. In Figure 16C, when the allocated memory of con-

currency tasks is smaller on Alibaba Cloud Function Compute, its concurrency performance is worse. Through observing the number of the

F IGURE 20 The startup time of new function instances in different numbers of concurrent requests on Google Cloud Functions

F IGURE 21 The request response time in different numbers of concurrent requests on Azure Functions
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used VMs in Figure 18C, we find that this platform uses fewer VMs under the low memory condition than the high memory condition.

Because the number of used function instances equals the number of concurrent requests under a certain concurrency task, this platform

needs to launch more function instances on one VM in the low memory condition. However, this situation may increase the resource conten-

tion among function instances, resulting in performance degradation.

Discussion and implications

Through analyzing potential causes influencing concurrency performance, we present some practical implications for cloud vendors. First,

cloud vendors are advised to improve their concurrency limits (e.g., the default concurrency number of Alibaba Cloud Function Compute), as

well as solve the current shortcomings (e.g., the invocation ratio of Google Cloud Functions and the ability to process bursty workloads on

Azure Function). Second, these serverless computing platforms do not use function instances in the previous rounds except for Alibaba Cloud

Function Compute. This kind of resource scheduling method may make the runtime environment of the function safer and prevent malicious

attacks. However, if cloud vendors can solve security problems between function instances, they are advised to reuse function instances like

Alibaba Cloud Function Compute to reduce the cold start and improve performance. Additionally, Google Cloud Functions and Alibaba Cloud

Function Compute use a similar scalability strategy, but Google Cloud Functions launches most of the instances on few VMs. Due to resource

competition among function instances, the performance will decrease. Thus, cloud vendors are advised to improve resource isolation among

different instances.

6 | DISCUSSION

In this section, we discuss issues that may potentially affect the generalization of our results.

1. Other features of serverless computing platform. In this paper, we do not investigate every aspect of serverless computing, such as permis-

sions, security,38 and monitoring. We mainly focus on features of configuration principle and actual runtime performance, in order to give prac-

tical implications for both developers and cloud vendors.

2. Fairness of evaluation. In order to make a fair comparison, we deploy all functions in the same region (i.e., us-east in this paper) on all

tested platforms. However, serverless computing platforms may have different performances in different regions. With TBS, researchers

can conveniently repeat any experiment in other regions. We also plan to study how the deploying regions can affect the performance of

applications.

3. Breakdown of the cold start time. The cold start may involve many processes, including downloading a package, launching a new container,

setting up the runtime environment, and initializing the function. Although we have investigated many factors that may affect the overall cold

start time, we fail to further locate the specific affected process due to the coarse-grained logs provided by these commodity serverless com-

puting platforms. We plan to conduct a deeper analysis based on some open-source serverless computing platforms.39,40

4. Identification of VMs and function instances. We explore the potential causes influencing concurrency performance via analyzing our collected

runtime information. However, because the runtime systems of serverless computing platforms are not the same, we cannot directly obtain

the accurate VM ID and function instance ID. In order to be able to compare their scalability strategies, we leverage the “btime” value of

/proc/stat or string of a temporary file to verify whether the used VMs or function instances are the same, respectively. These methods have

also been adopted in the related work.34,36

5. The rapid evolution of serverless computing platforms. The results and findings might change over time. These commodity serverless comput-

ing platforms are keeping adding new features and improving their performance, and later, benchmarks on these serverless computing plat-

forms may conflict with our current result. Fortunately, anyone can leverage TBS to benchmark target platforms continuously to keep tracing

the up-to-date characteristics.

7 | RELATED WORK

Serverless computing is a new trending paradigm of cloud computing, and lots of related studies have been proposed.

Shahrad et al41 characterized the entire production FaaS workload of Azure Functions, including trigger types, invocation frequencies and

patterns, and resource needs. Spillner et al42 conducted a quantitative study about how developers use FaaS offerings and gained insights into

how functions are implemented and developed. However, these studies have not offered insights into the actual runtime performance that devel-

opers focus on. Meanwhile, these studies have not discussed the underlying features of scalability and load balancing in a black-box fashion, espe-

cially for commodity serverless computing platforms. In addition, some previous works34,43-45 have evaluated and compared how serverless
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applications behave on different platforms. Such work focused more on the workloads and the performance differences between platforms

instead of qualitatively and quantitatively analyzing the underlying implications for developers and cloud vendors. Also, some works46-48 have

focused on the performance of serverless computing with several popular open-source serverless computing platforms. Differently, we mainly

focus on current mainstream commodity serverless computing platforms, and analyzing these platforms is more challenging because the underly-

ing details are opaque to users.

In our paper, we also use some benchmarks to evaluate the actual runtime performance of serverless computing platforms. This point is moti-

vated by the previous work. Yu et al49 proposed an open-source benchmark suite named ServerlessBench to characterize serverless computing

platforms leveraging customized test cases. Maissen et al50 and Kim and Lee51 also designed two benchmark suites, named FaaSDOM and Func-

tionBench, respectively, to facilitate the performance testing of serverless computing platforms. They both provided microbenchmarks, and Func-

tionBench provided some more complicated benchmarks that represent real-world applications. Differently, in TBS, we provide a more

comprehensive benchmark suite than the previous work and enable developers or end users to gain insights into the runtime actual performance

of each platform. Currently, some works52,53 have also analyzed the characteristics of serverless-based applications to guide the design of

approaches related to serverless computing. In addition, Wen et al15 explored the specific challenges that developers encounter in developing

serverless-based applications. Our work comprehensively explores the characteristics of serverless computing platforms from various aspects,

that is, basic static characteristics (in development, deployment, and runtime phases) and actual runtime performance (startup latency, resource

efficiency, and concurrency performance). It can not only provide insightful guidance for serverless application development but also help cloud

vendors to improve the related architecture design.

8 | CONCLUSION

In this paper, we have characterized four mainstream commodity serverless computing platforms (i.e., AWS Lambda, Google Cloud Functions,

Azure Functions, and Alibaba Cloud Function Compute) via qualitative analysis and quantitative analysis. Specifically, in qualitative analysis, we

have compared serverless computing platforms from three aspects, that is, development, deployment, and runtime, to construct a taxonomy of

20 characteristics. In quantitative analysis, we have developed an open-source evaluation tool TBS to explore the actual runtime performance of

four serverless computing platforms from startup latency, execution latency, and scheduling latency. First, we have measured their startup latency

from the key factors, for example, programming languages, memory sizes, and package sizes. Second, we have characterized their resource effi-

ciency using microbenchmarks and macrobenchmarks. Finally, we have explored their concurrency performance under different concurrent

requests on these serverless computing platforms and further found the potential causes influencing their concurrency performance via analyzing

their scalability and load balancing in a black-box fashion. Based on the results of both qualitative and quantitative analysis, we have provided a

series of practical findings and actionable implications for developers and cloud vendors, intending to highlight good practices and interesting

research avenues in adopting the serverless computing paradigm.
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ENDNOTES

* https://github.com/WenJinfeng/TBS
† Azure Functions offers three different hosting plans,9 and we focus on only the consumption plan that is the most similar to other serverless computing

platforms.
‡ Products available by region. https://azure.microsoft.com/en-us/global-infrastructure/services/?products=functions&regions=all.
§ https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html.
¶ https://snap.stanford.edu/data/web-FineFoods.html.
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