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This paper provides a comprehensive survey of bias mitigation methods for achieving fairness in Machine

Learning (ML) models. We collect a total of 341 publications concerning bias mitigation for ML classifiers.

These methods can be distinguished based on their intervention procedure (i.e., pre-processing, in-processing,

post-processing) and the technique they apply. We investigate how existing bias mitigation methods are

evaluated in the literature. In particular, we consider datasets, metrics and benchmarking. Based on the

gathered insights (e.g., What is the most popular fairness metric? How many datasets are used for evaluating

bias mitigation methods?), we hope to support practitioners in making informed choices when developing

and evaluating new bias mitigation methods.
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1 INTRODUCTION
Machine Learning (ML) has been increasingly popular in recent years, both in the diversity and

importance of applications [76]. ML is used in a variety of critical applications such as justice risk

assessments [24, 38], job recommendations [413], and autonomous driving [227].

While ML systems have the advantage to relieve humans from tedious tasks and are able to

perform complex calculations at a higher speed [287], they are only as good as the data on which

they are trained [34]. ML algorithms, which are never designed to intentionally incorporate bias,

run the risk of replicating or even amplifying bias present in real-world data [34, 283, 348]. This may

cause unfair treatment in which some individuals or groups of people are privileged (i.e., receive a

favourable treatment) and others are unprivileged (i.e., receive an unfavourable treatment). In this

context, a fair treatment of individuals constitutes that decisions are made independent of sensitive

attributes such as gender or race, such that individuals are treated based on merit [187, 188, 256]. For
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example, one can aim for an equal probability of population groups to receive a positive treatment,

or an equal treatment of individuals that only differ in sensitive attributes.

Human bias has been transferred to various real-word systems relying on ML and there are

many examples of this in the literature. For instance, bias has been found in advertisement and

recruitment processes [93, 413], affecting university admissions [41] and human rights [256]. Not

only is such a biased behaviour undesired, but it can fall under regulatory control and risk the

violation of anti-discrimination laws [67, 283, 311], as sensitive attributes such as age, disability,

gender identity, race are protected by US law in the Fair Housing Act and Equal Credit Opportunity

Act [212].

Another example for a biased treatment of population groups can be found in the COMPAS
(Correctional Offender Management Profiling for Alternative Sanctions) software, used by courts in

US to determine the risks of an individual to reoffend. These scores are used to motivate decisions

on whether and when defendants are to be set free, in different stages of the justice system.

Problematically, this software falsely labelled non-white defendants with higher risk scores than

white defendants [24].

To reduce the degree of bias that such systems exhibit, practitioners use three types of bias

mitigation methods [123]:

• Pre-processing: bias mitigation in the training data, to prevent it from reaching ML models;

• In-processing: bias mitigation while training ML models;

• Post-processing: bias mitigation on trained ML models.

In this survey, we use the terms “bias mitigation” and “fairness improvement” interchangeably and

treat fairness as the absence of bias.

There has been a growing interest in fairness research, including definitions, measurements, and

improvements of ML models [70, 71, 76, 108, 287]. In particular, a variety of recent work addresses

the mitigation of bias in binary classification models: given a collection of observations (training

data) are labelled with a binary label (testing data) [350].

Despite the large amount of existing bias mitigation methods and surveys on fairness research,

as Pessach and Shmueli [287] pointed out, there remain open challenges that practitioners face

when designing new bias mitigation methods: “It is not clear how newly proposed mechanisms

should be evaluated, and in particular which measures should be considered? which datasets should

be used? and which mechanisms should be used for comparison?” [287]

To combat this challenge, we set out to perform a comprehensive survey of existing research

on bias mitigation for ML models. We analyse 341 publications to identify practices applied in

fairness research when creating bias mitigation methods. In particular, we consider the datasets

to which bias mitigation methods are applied, the metrics used to determine the degree of bias,

and the approaches used for benchmarking the effectiveness of bias mitigation methods. By doing

so, we allow practitioners to focus their effort on creating bias mitigation methods rather than

requiring a lot of time to determine their experimental setup (e.g., which datasets to test on, which

benchmark to consider).

To the best of our knowledge, this is the most comprehensive survey to systematically search

and cover bias mitigation methods and their empirical evaluation. To summarize, the contributions

of this survey are:

(1) we provide a comprehensive overview of the research on bias mitigation methods for ML

classifiers;

(2) we introduce the experimental design details for evaluating existing bias mitigation methods;

(3) we identify challenges and opportunities for future research on bias mitigation methods.

2



Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey xx, xx, xxx

(4) we make the collected paper repository public, to allow for future replication and manual

investigation of our results: https://solar.cs.ucl.ac.uk/os/softwarefairness.html.

The rest of this paper is structured as follows. Section 2 presents an overview of related surveys.

The search methodology is described in Section 3. Sections 4-7 describe research on bias mitigation

methods. Opportunities and challenges that the field of fairness research and bias mitigation

methods face are discussed in Section 8. Section 9 provides recommendations to practitioners,

distilled from the collected publications. Section 10 concludes this survey.

2 RELATED SURVEYS
In this section, we provide an overview of existing surveys in the fairness literature and their

contents. This allows us to identify the knowledge gap filled by our survey.

Mehrabi et al. [256] and Pessach and Shmueli [287] provided an overview of bias and discrimi-

nation types, fairness definitions and metrics, bias mitigation methods, and existing datasets. For

example, Pessach and Shmueli [288] listed the datasets and metrics used by 27 bias mitigation

methods. A similar focus has been pursued by Dunkelau and Leuschel [108], who provided an

extensive overview on fairness notions, available frameworks, and bias mitigation methods for

classification problems. They moreover provided a classification of approaches for each type (i.e.,

pre-, in-, and post-processing). The most exhaustive categorization of bias mitigation methods, to

date, has been conducted by Caton and Haas [52], who also presented fairness metrics and fairness

platforms.

A detailed collection of prominent fairness definitions for classification problems is provided by

Verma and Rubin [350]. Similarly, Žliobaite [417] surveyed measures for indirect discrimination

for ML. While these collections describe current metrics used to determine the fairness of ML

models, Hutchinson and Mitchell [156] drew parallels from fairness research in the 1960s and 1970s

concerning test fairness, for education and hiring, to current advances. Similar to modern metrics

and evaluation approaches, past work considered fairness with regards to individuals and groups,

or the use of confusion matrix measures (Section 6).

In addition to the surveys on fairness metrics, Le Quy et al. [219] provided a survey with 15

frequently used datasets in fairness research. For each dataset, they described the available features

and their relationships with sensitive attributes.

Other surveys are concerned with fairness and consider the following perspectives: learning-

based sequential decision algorithms [407], criminal justice [38], graph representations [406], ML

testing [398], Software Engineering [68, 336], or Natural Language Processing [44, 338].

While previous surveys focused on ML classification, and some mentioned bias mitigation

methods, none has yet systematically covered the evaluation bias mitigation methods (e.g., how

are methods benchmarked, what dataset are used). The surveys related closest to ours are provided

by Dunkelau and Leuschel [108], and Pessach and Shmueli [288].

Dunkelau and Leuschel [108] provided an overview of bias mitigation methods with a focus

on their implementation and underlying algorithms. However, further evaluation details of these

methods, such as dataset and metric usage, were not addressed. While Pessach and Shmueli [288]

listed the datasets and metrics used by 27 bias mitigation methods, they did not provide actionable

insights to support developers. In addition to combining aspects of both surveys (i.e., extensive

collection of bias mitigation methods like Dunkelau and Leuschel [108], and providing information

on datasets and metrics similar to Pessach and Shmueli [287]), we aim to analyze the findings of a

comprehensive literature search to devise recommendations.
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3 SURVEY METHODOLOGY
The purpose of this survey is to gather and categorize research work that mitigates bias in ML

models. Given that the existing literature focuses on classification for tabular data, this survey also

focuses on bias mitigation methods for such classification tasks.

3.1 Search Methodology
This section outlines our search procedure. We start with a preliminary search, followed by a

repository search and snowballing.

Preliminary Search. Prior to systematically searching online repositories, we conduct a prelimi-

nary search. The goal of the preliminary search is to gain a deeper understanding of the field and

assess whether there is a sufficient number of publications to allow for subsequent analysis. In

particular, we collect bias mitigation publications from four existing surveys (see Section 2):

• Mehrabi et al. [256] : 24 bias mitigation methods;

• Pessach and Shmueli [288]: 30 bias mitigation methods;

• Dunkelau and Leuschel [108]: 40 bias mitigation methods;

• Caton and Haas [52]: 70 bias mitigation methods.

In total, we collect 100 unique publications with bias mitigation methods from these four surveys.

Repository Search. After the preliminary search, we conduct a search of six established online

repositories (IEEE, ACM, ScienceDirect, Scopus, arXiv, and Google Scholar).

The search procedure is guided by two groups of keywords:

• Domain: machine learning, deep learning, artificial intelligence;

• Bias Mitigation: fairness-aware, discrimination-aware, bias mitigation, debias*, unbias*;

In this context, Domain keywords ensure that the bias discussed in the publication affects machine

learning systems. Bias Mitigation keywords ensure that the publication addresses bias reduction via

the use of bias mitigation methods. For the six repositories, we collected publications that contain

at least one Domain and one Bias mitigation keyword (i.e., we check each possible combination of

keywords for the two categories).

Selection. To ensure that the publications included in this survey are relevant to the context of

bias mitigation for ML models, we consider the following inclusion criteria: 1) describe human

biases; 2) address classification problems; 3) use tabular data (e.g., do not make decisions based on

images or text alone).

To ensure that irrelevant publications are excluded from the search results, we manually check

publications in three stages [251]:

(1) Title: Publications with irrelevant titles to the survey are excluded;

(2) Abstract: The abstract of every publication is checked. Publications that show to be irrelevant

to the survey at this step are excluded (e.g. not about ML, do not apply debiasing);

(3) Body: For publications that passed the previous two steps, we check the entire publication

to determine whether they satisfy the inclusion criteria. If not, they are excluded.

Snowballing. After conducting the repository search, we apply backward snowballing (i.e., finding
new publications that are cited by publications we already selected) for each publication retained

after the “Body” stage [365]. This snowballing step is repeated for every new publication found.

The goal of snowballing is to find missing related work with regards to the collected publications.

This is in particular useful if undiscovered bias mitigation methods are used for benchmarking.
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Table 1. Publications found at each stage of the search procedure.

Stage Publications

Preliminary search 100

Repository search Oct’21 75

Repository search Jul’22 56

Snowballing 78

Author feedback 32

Total 341

(a) Pre-processing. (b) In-processing. (c) Post-processing.

Fig. 1. Categorization of bias mitigation methods. Categories are grouped based on their type (i.e., pre-
processing, in-processing, post-processing) and the number of publications of each category is shown.

3.2 Selected Publications
In total, we gathered 341 publications over the different stages of our search procedure. Table 2

summarises the results of the two repository searches. The first search was conducted from the 7th

of October to 10th of October 2021, and the second search was conducted on the 21st of July 2022.

The purpose of the second search is to collect publications from the year 2022 (i.e., we filtered search

results for the publication year 2022). In October 2021, Google Scholar provided 8, 738 publications

that were in line with the search keywords. We restricted our search to the first 1, 000 entries as

prioritised by Google Scholar based on relevance. Similarly, the second search yielded 1, 995 results

and we focused on the first 1, 000 entries.

To ensure that our survey is comprehensive and accurate, we contacted the corresponding

authors of the 309 publications collected via the preliminary search, the two repository searches

and snowballing. We asked them to check whether our description about their work is correct.

Based on their feedback, we included additional 32 publications. In Table 1 we summarise the

number of publications we found at each step of the search.

In Figure 2 we show the distribution of the publications per year and venue type. We categorized

the 341 publications in five venue types, in line with the categories by Soremekun et al. [336]:

Artificial Intelligence (AI), Data, Fairness, Software Engineering (SE), other. Note that the category

“other” consists of 100 publications, 68 of which are published on arXiv. The category SE combines

publications form Software Engineering, Programming Language and Security venues. From this

figure, we can see that there is an increasing interest in bias mitigation methods and a steady

increase of publications over the years. In particular, we observe a huge jump in the number of

publications in 2018, more than doubling the number of publications from 2017 (i.e., from 20 to 46
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Table 2. Results of the repository search. For each of the six repositories, we show the number of publications
retained after each filtering stage. The “Body” column shows the number of publications included in this
survey.

Repository Initial Title Abstract Body

ACM 118 26 16 13

ScienceDirect 166 9 5 3

IEEE 401 18 9 9

arXiv 650 69 48 38

Scopus 1063 44 28 21

Google Scholar 8738 119 90 77

Search results October’21.

Repository Initial Title Abstract Body

ACM 468 17 14 8

ScienceDirect 88 6 3 2

IEEE 90 8 1 1

arXiv 465 42 23 17

Scopus 356 13 9 5

Google Scholar 1995 62 51 35

Search results July’22.

2010 2012 2014 2016 2018 2020 2022
Year
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20

40

60

80

# 
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Data
Fair
SE

Fig. 2. Number of publications per year and venue type.

publications). Prior years, from 2009-2016, have seen less than 10 publications each. The venues

with the highest number of publications are: NeurIPS (38 publications), ICML (27 publications),

AAAI (18 publications), FAccT (13 publications), AIES (12 publications).
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2009 2010 2011 2012 2013 2015 2016 2017 2018 2019 2020 2021 2022

AI

other

Data

Fair

SE

10
1

10
2

10
3

Fig. 3. Average number of citations per year and venue type.

3.3 Visibility
In this section, we address the visibility of bias mitigation methods by using the amount of publi-

cations and number of citations as a proxy for bias mitigation method visibility across different

venues.
1

As shown in Figure 2, there is an increasing trend in the number of publications on bias mitigation

methods per year, which supports the claim that the visibility and relevance of bias mitigation

is growing. Among the five venue types (AI, Data, Fairness, SE, other), bias mitigation methods

exhibit the highest visibility in terms of number of publications for AI (139 publications), data

(59 publications) and other venues (most notably arXiv, with 68 publications). The past five years,

from 2018 onwards, saw an uptake of bias mitigation methods in a wider range of venues, with

the inclusion of bias mitigation methods in Software Engineering venues and the creation of

the ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT),
2
as well as

specialised venues co-located with well-renowned international conference such as the IEEE/ACM

InternationalWorkshop on Equitable Data & Technology (FairWare) at the International Conference

of Software Engineering.
3

Figure 3 provides a closer look at the average number of citations of publications per venue type.

We can observe that publications from early years of bias mitigation methods have a high average

visibility (i.e., number of citations). A reason for this can be found in the low number of publications,

with only 3-7 publications yearly from 2009-2016, and the relevance of such publications to be

the foundation of proceeding work. Data venues published bias mitigation methods consistently,

every year, from 2009 to 2022. While Fairness and SE venues have fewer publications per year, the

respective papers achieve a high visibility, frequently with a higher average number of citations

than Data and AI venues for the same years. The highest average number of citations was achieved

by publications in fairness venues in 2018, 2019 and 2021.

Among the most cited publications (19 of which publications have been cited more than 500

times) only two have not been published in AI or data venues. This includes the work by Dwork

et al. [109] (published in the proceedings of the 3rd innovations in theoretical computer science

conference) and Zhang et al. [393] (published at the AAAI/ACM Conference on AI, Ethics, and

Society). We note that 10 out of the 15 most cited works have publicly available implementations

in fairness frameworks [31, 36, 42].

1
We obtained the number of citations for each publication from Google Scholar on February 24th, 2023, and included them

in our online repository [25].

2
https://facctconference.org/index.html

3
https://dblp.org/db/conf/fairware-ws/index.html

7

https://facctconference.org/index.html
https://dblp.org/db/conf/fairware-ws/index.html


xx, xx, xxx Max Hort et al.

3.4 Limitations
This survey focuses on investigating the fairness of ML models from an algorithmic point of

view. While fairness is a multi-disciplinary field of research, and has been addressed by various

communities, including law [45], health studies [272], and criminal justice [32], we focus on the

algorithmic fairness and bias as exhibited by ML models.

Moreover, our search procedure is designed to find publications that mitigate bias for tabular data.

This does not mean that we exclude a priori relevant publications if they have been published at

Computer Vision or Natural Language Processing venues. In fact, such publications are considered

in our survey if bias mitigation for tabular data is addressed, whereas bias mitigation methods that

are solely applied for visual or textual tasks are not included.

Furthermore, we note that the overview presented herein is based on bias mitigation methods as

proposed by the research community, often applied to publicly available data. While these dataa

can be based on real-world scenarios, results might not transfer to real-world applications [32, 99].

4 ALGORITHMS
In this section, we discuss the bias mitigation methods found in our literature search. We distin-

guished bias mitigation methods based on their type (i.e., in which stage of the ML process are they

applied): pre-processing (Section 4.1), in-processing (Section 4.2) and post-processing (Section 4.3)

methods [123]. Moreover, we organize methods in categories (i.e., the bias mitigation approach).

For this, we follow taxonomies devised by Dunkelau and Leuschel [108], as well as Caton and Haas

[52]. Figure 1 illustrates the 13 categories we use.

Among the 341 publications, 123 used pre-processing (Section 4.1), 212 used in-processing (Section

4.2) and 56 used post-processing methods (Section 4.3). We observe that a single publication may

investigate up to three different types of bias mitigation methods, and as such it can be counted

multiple times (for example, an approach can apply pre-processing before adapting the training

procedure during an in-processing stage). This is the case for 70 publications analysed in this

survey, for which we provide more information in Section 4.4.

4.1 Pre-processing Bias Mitigation Methods
In this section, we present bias mitigation methods that combat bias by applying changes to the

training data. Table 3 lists the 123 publications we found, according to the type of pre-processing

method used.

4.1.1 Relabelling and Perturbation. This section presents bias mitigation methods that apply

changes to the values of the training data. Changes have been applied to the ground truth labels

(relabelling) or the remaining features (perturbation).

A popular approach for relabelling datasets is “massaging”, proposed by Kamiran and Calders

[183]. In the first stage, “massaging” uses a ranker to determine the best candidates for relabelling.

In particular, instances close to the decision boundary are selected, to minimize the negative impact

of relabelling on accuracy. Typically, an equal amount of instances with positive and negative labels

are selected, according to their rank and their labels are switched.

Massaging has later been extended by Kamiran and Calders [185], and Calders et al. [47]. More-

over, Žliobaite et al. [418] created a related method called “local massaging”. “Massaging” has also

been applied by other work [164, 400].

Another relabelling approach was proposed by Luong et al. [242], who relabelled instances based

on their 𝑘-nearest neighbours, such that similar individuals receive similar labels.

Feldman et al. [118] used perturbation to modify non-protected attributes, such that their values

for privileged and unprivileged groups are comparable. In particular, the values are adjusted to bring
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Table 3. Publications on Pre-processing bias mitigation methods.

Type Authors [Ref] Year Venue

R
e
l
a
b
e
l

Calders et al. [47] 2009 ICDMW

Kamiran and Calders [183] 2009 ICCCC

Žliobaite et al. [418] 2011 ICDM

Luong et al. [242] 2011 KDD

Hajian and Domingo-Ferrer [143] 2012 TKDE

Kamiran and Calders [185] 2012 KAIS

Zhang et al. [400] 2018 IJCAI

Iosifidis et al. [164] 2019 DEXA

Seker et al. [326] 2022 HTI

Sun et al. [337] 2022 EuroS&P

Alabdulmohsin et al. [16] 2022 arXiv

P
e
r
t
u
r
b
a
t
i
o
n

Hajian and Domingo-Ferrer [143] 2012 TKDE

Feldman et al. [118] 2015 KDD

Lum and Johndrow [240] 2016 arXiv

Wang et al. [355] 2018 NeurIPS

Johndrow and Lum [173] 2019 Ann Appl Stat

Wang et al. [354] 2019 ICML

Li et al. [226] 2022 SSRN

Li et al. [229] 2022 ICSE

S
a
m
p
l
i
n
g

Calders et al. Calders et al. [47] 2009 ICDMW

Kamiran and Calders [184] 2010 BNAIC

Žliobaite et al. [418] 2011 ICDM

Kamiran and Calders [185] 2012 KAIS

Zhang et al. [399] 2017 IJCAI

Chen et al. [66] 2018 NeurIPS

Iosifidis and Ntoutsi [160] 2018 report

Xu et al. [374] 2018 Big Data

Krasanakis et al. [211] 2018 TheWebConf

Abusitta et al. [8] 2019 arXiv

Xu et al. [372] 2019 IJCAI

Zelaya et al. [389] 2019 KDD

Salimi et al. [319] 2019 MOD

Iosifidis et al. [164] 2019 DEXA

Iosifidis et al. [159] 2019 Big Data

Xu et al. [375] 2019 Big Data

Abay et al. [7] 2020 arXiv

Hu et al. [153] 2020 DS

Chakraborty et al. [62] 2020 FSE

Jiang and Nachum [169] 2020 AISTATS

Sharma et al. [328] 2020 AIES

Celis et al. [56] 2020 ICML

Morano [263] 2020 Thesis

Yan et al. [376] 2020 CIKM

Chuang and Mroueh [77] 2021 ICLR

Salazar et al. [318] 2021 IEEE Access

Zhang et al. [401] 2021 PAKDD

Yu [381] 2021 arXiv

Iofinova et al. [158] 2021 arXiv

Roh et al. [309] 2021 NeurIPS

Du and Wu [105] 2021 CIKM

Singh et al. [332] 2021 MAKE

Amend and Spurlock [21] 2021 JCSC

Jang et al. [168] 2021 AAAI

Verma et al. [349] 2021 arXiv

Chakraborty et al. [60] 2021 FSE

Cruz et al. [89] 2021 ICDM

Wang et al. [358] 2022 ICML

Pentyala et al. [284] 2022 arXiv

Rajabi and Garibay [299] 2022 MAKE

Sun et al. [337] 2022 EuroS&P

Dablain et al. [91] 2022 arXiv

Chen et al. [69] 2022 FSE

Li and Liu [225] 2022 PMLR

Chakraborty et al. [61] 2022 FairWARE

Almuzaini et al. [20] 2022 FAccT

Chai and Wang [59] 2022 ICML

Type Authors [Ref] Year Venue

L
a
t
e
n
t

Calders and Verwer [49] 2010 DMKD

Kilbertus et al. [202] 2017 NeurIPS

Gupta et al. [140] 2018 arXiv

Madras et al. [245] 2019 FAccT

Oneto et al. [276] 2019 AIES

Wei et al. [362] 2020 PMLR

Kehrenberg et al. [198] 2020 Front. Artif. Intell.

Grari et al. [137] 2021 arXiv

Chen et al. [65] 2022 arXiv

Liang et al. [230] 2022 arXiv

Jung et al. [179] 2022 CVPR

Diana et al. [97] 2022 FAccT

Chakraborty et al. [61] 2022 FairWARE

Wu et al. [368] 2022 CLeaR

Suriyakumar et al. [340] 2022 arXiv

R
e
p
r
e
s
e
n
t
a
t
i
o
n

Zemel et al. [390] 2013 ICML

Edwards and Storkey [111] 2015 arXiv

Louizos et al. [238] 2016 ICLR

Pérez-Suay et al. [285] 2017 ECML PKDD

Calmon et al. [50] 2017 NeurIPS

Hacker and Wiedemann [142] 2017 arXiv

Komiyama and Shimao [209] 2017 arXiv

Xie et al. [371] 2017 NeurIPS

McNamara et al. [254] 2017 arXiv

du Pin Calmon et al. [106] 2018 IEEE J Sel

Grgić-Hlača et al. [139] 2018 AAAI

Madras et al. [244] 2018 ICML

Samadi et al. [320] 2018 NeurIPS

Quadrianto et al. [295] 2018 arXiv

Moyer et al. [266] 2018 NeurIPS

Song et al. [335] 2019 AISTATS

Gordaliza et al. [133] 2019 ICML

Quadrianto et al. [296] 2019 CVPR

Creager et al. [88] 2019 ICML

Wang and Huang [360] 2019 arXiv

Lahoti et al. [215] 2019 ICDE

Feng et al. [119] 2019 arXiv

Lahoti et al. [216] 2019 VLDB

Zhao et al. [411] 2020 ICLR

Tan et al. [342] 2020 AISTATS

Jaiswal et al. [166] 2020 AAAI

Zehlike et al. [388] 2020 DMKD

Sarhan et al. [321] 2020 ECCV

Madhavan and Wadhwa [243] 2020 CIKM

Kim and Cho [204] 2020 AAAI

Ruoss et al. [314] 2020 NeurIPS

Fong et al. [122] 2021 arXiv

Gupta et al. [141] 2021 AAAI

Zhu et al. [416] 2021 ICCV

Grari et al. [135] 2021 ECML PKDD

Salazar et al. [317] 2021 VLDB

Oh et al. [273] 2022 arXiv

Agarwal and Deshpande [13] 2022 FAccT

Wu et al. [367] 2022 arXiv

Shui et al. [330] 2022 arXiv

Qi et al. [292] 2022 arXiv

Balunović et al. [30] 2022 ICLR

Kairouz et al. [180] 2022 T-IFS

Liu et al. [232] 2022 Neural Process. Lett.

Cerrato et al. [58] 2022 arXiv

Kamani et al. [182] 2022 Mach. Learn.

Rateike et al. [301] 2022 FAccT

Galhotra et al. [126] 2022 SIGMOD

Kim and Cho [205] 2022 Neurocomputing
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their distributions closer together while preserving the respective ranks within a group (e.g., the

highest values of attribute 𝑎 for the privileged group remains highest after perturbation). Johndrow

and Lum [173], Lum and Johndrow [240] used conditional models for perturbation, which allowed

for modification of multiple variables (continuous or discrete). Li et al. [226] proposed an iterative

approach for perturbation. At each step, the most bias-prone attribute is selected and transformed,

until the degree of bias exhibited by a classification model is below a specified threshold.

Other than perturbing the underlying data for all groups to move them closer [118, 173, 240],

Wang et al. [354, 355] considered only the unprivileged group for perturbation, seeking to resolve

disparity by improving the performance of the unprivileged group. Hajian and Domingo-Ferrer

[143] applied both relabeling and perturbation (i.e., changes to the sensitive attribute).

4.1.2 Sampling. Sampling methods change the training data by changing the distribution of

samples (e.g., adding, removing samples) or adapting their impact on training. Similarly, the impact

of training data instances can be adjusted by reweighing their importance [7, 20, 47, 56, 59, 105,

164, 185, 225, 284, 381].

Reweighing was first introduced by Calders et al. [47]. Each instance receives a weight according

to its label and protected attribute (e.g., instances in the unprivileged group and positive label

receive a higher weight as this is less likely). In the training process of classification models, a

higher instance weight causes higher losses when misclassified. Weighted instances are sampled

with replacement according to their weights. If the classification model is able to process weighted

instances, the dataset can be used for training without resampling [185].

Jiang and Nachum [169] and Krasanakis et al. [211] used reweighing to combat biased labels in

the original training data.

Instead of assigning equal weights to data instances of the same population subgroup, Li and Liu

[225] assigned individual weights to instances of the training data.

Other sampling strategies include the removal of data points (downsampling) [62, 69, 89, 158, 309,

319, 349, 358, 401] or the addition of new data points (upsampling). Popular methods for upsamplig

are oversampling for duplicating instances of the minority group [21, 160, 263, 389] and the use of

SMOTE [64]. SMOTE does not duplicate instances but generates synthetic ones in the neighborhood

of the minority group [60, 61, 91, 160, 263, 318, 332, 376, 389].

To sample datapoints, uniform [185] and preferential [153, 184, 185, 389, 418] strategies have been

followed, where preferential sampling changes the distribution of instances close to the decision

boundary.

Xu et al. [372, 374, 375] used a generative approach to generate discrimination-free data for

training [8, 168, 299]. Zhang et al. [399] used causal networks to create a new dataset. The initial

dataset is used to create a causal network, which is then modified to reduce discrimination. The

debiased causal network is used to generate a new dataset. Sharma et al. [328] created additional

data for augmentation by duplicating existing datasets and swapping the protected attribute of

each instance. The newly-created data is successively added to the existing dataset.

4.1.3 Latent variables. Latent variables describe the augmentation of training data with additional

features that are preferably unbiased. In previous work, latent variables have been used to represent

labels [198, 362] and group memberships (i.e., protected or unprotected group) [61, 65, 97, 137, 140,

179, 230, 276, 340], and are frequently considered when dealing with causal graphs [137, 202, 245].

For instance, Calders and Verwer [49] clustered the instances to detect those that should receive

a positive latent label and those that should receive a negative one. For this purpose, they used an

expectation maximization algorithm.

Gupta et al. [140] tackled the problem of bias mitigation for situations where group labels are

missing in the datasets. To combat this issue, they created a latent “proxy” variable for the group

10
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membership and incorporated constraints for achieving fairness for such proxy groups in the

training procedure.

4.1.4 Representation. Representation learning aims at learning a transformation of the training

data such that bias is reduced while maintaining as much information as possible.

The first representation learning approach for bias mitigation was Learning Fair Representations

(LFR), proposed by Zemel et al. [390]. LFR translates representation learning into an optimization

problem with two objectives: 1) removing information about the protected attribute; 2) minimizing

the information loss of non-sensitive attributes.

A popular used approach for generating fair representations is optimization [50, 106, 133, 142,

215, 216, 254, 266, 330, 335, 388]. Other used techniques are:

• adversarial learning [111, 119, 135, 166, 180, 204, 244, 292, 314, 371, 411, 416];

• variational autoencoders [88, 232, 238, 273, 301];

• adversarial variational autoencoder [367];

• normalizing flows [30, 58];

• dimensionality reduction [182, 285, 320, 342];

• residuals [209];

• contrastive learning [141];

• neural style transfer [295, 296].

Another method for improving the fairness of data representations is the removal [139, 243, 360]

or addition of features [122, 126, 317]. Grgić-Hlača et al. [139] investigated fairness while using

different sets of features, thereby making training feature choices. Madhavan and Wadhwa [243]

removed discriminating features from the training data. Salazar et al. [317] applied feature creation

techniques which apply nonlinear transformation and drop biased features.

4.2 In-processing Bias Mitigation Methods
This section presents in-processing methods; methods that mitigate bias during the training proce-

dure of the algorithm. Overall, we found a total of 212 publications (see Table 4, Table 5 for more

details) that apply in-processing methods. For more details on in-processing methods, we refer

to the survey by Wan et al. [352], which provides information on 38 in-processing approaches

developed for various ML tasks.

4.2.1 Regularization and Constraints. Regularization and constraints are both approaches that apply
changes to the learning algorithm’s loss function. Regularization adds a term to the loss function.

While the original loss function is based on accuracy metrics, the purpose of a regularization

term is to penalize discrimination (i.e., discrimination leads to a higher loss of the ML algorithm).

Constraints on the other hand determine specific bias levels (according to loss functions) that

cannot be breached during training.

To widen the range of fairness definitions that can be considered when applying constraints,

Celis et al. [53] proposed a Meta-algorithm. This Meta-algorithm takes a fairness constraint as

input.

When applied to Decision Trees, regularization can be used to modify the splitting criteria [186,

300, 356, 402–405]. Traditionally, leaves are iteratively split to achieve an improvement in accuracy.

To improve fairness while training, Kamiran et al. [186] considered fairness in addition to accuracy

when leaf splitting. They applied three splitting strategies:

(1) only allow non-discriminatory splits;

(2) choose best split according to 𝛿𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦/𝛿𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ;

(3) choose best split according to 𝛿𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝛿𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 .
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Table 4. Publications on In-processing bias mitigation methods.

Type Authors [Ref] Year Venue

R
e
g
u
l
a
r
i
z
a
t
i
o
n

Kamiran et al. [186] 2010 ICDM

Kamishima et al. [192] 2011 ICDMW

Kamishima et al. [189] 2012 ECML PKDD

Ristanoski et al. [306] 2013 CIKM

Fish et al. [120] 2015 FATML

Pérez-Suay et al. [285] 2017 ECML PKDD

Bechavod and Ligett [35] 2017 arXiv

Berk et al. [37] 2017 arXiv

Quadrianto and Sharmanska [294] 2017 NeurIPS

Raff et al. [298] 2018 AIES

Enni and Assent [113] 2018 ICDM

Goel et al. [131] 2018 AAAI

Zhang et al. [403] 2019 ICDMW

Mary et al. [253] 2019 ICML

Beutel et al. [39] 2019 AIES

Huang and Vishnoi [154] 2019 ICML

Aghaei et al. [14] 2019 AAAI

Zhang and Ntoutsi [402] 2019 IJCAI

Keya et al. [199] 2020 arXiv

Kim et al. [203] 2020 ICML

Jiang et al. [170] 2020 UAI

Di Stefano et al. [96] 2020 arXiv

Abay et al. [7] 2020 arXiv

Baharlouei et al. [28] 2020 ICLR

Liu et al. [234] 2020 Preprint

Kamani [181] 2020 Thesis

Ravichandran et al. [302] 2020 arXiv

Tavakol [344] 2020 SIGIR

Romano et al. [310] 2020 NeurIPS

Hickey et al. [148] 2020 ECML PKDD

Wang et al. [361] 2021 SIGKDD

Chuang and Mroueh [77] 2021 ICLR

Lowy et al. [239] 2021 arXiv

Zhang and Weiss [404] 2021 ICDM

Grari et al. [136] 2021 IJCAI

Yurochkin and Sun [383] 2021 ICLR

Zhao et al. [414] 2021 arXiv

Ranzato et al. [300] 2021 CIKM

Mishler and Kennedy [258] 2021 arXiv

Kang et al. [195] 2021 arXiv

Sun et al. [337] 2022 EuroS&P

Zhao et al. [415] 2022 WSDM

Wang et al. [356] 2022 CAV

Deng et al. [95] 2022 arXiv

Lee et al. [221] 2022 Entropy

Zhang and Weiss [405] 2022 AAAI

Jiang et al. [171] 2022 ICLR

Lee et al. [220] 2022 ICASSP

Do et al. [102] 2022 ICML

Patil and Purcell [281] 2022 Future Internet

Kim and Cho [205] 2022 Neurocomputing

Type Authors [Ref] Year Venue

C
o
n
s
t
r
a
i
n
t
s

Dwork et al. [109] 2012 ITCS

Calders et al. [48] 2013 ICDM

Fukuchi and Sakuma [125] 2015 arXiv

Fukuchi et al. [124] 2015 IEICE Trans. Inf.& Syst.

Goh et al. [132] 2016 NeurIPS

Woodworth et al. [366] 2017 COLT

Zafar et al. [384] 2017 TheWebConf

Corbett-Davies et al. [82] 2017 KDD

Zafar et al. [387] 2017 AISTATS

Komiyama and Shimao [209] 2017 arXiv

Zafar et al. [386] 2017 NeurIPS

Quadrianto and Sharmanska [294] 2017 NeurIPS

Russell et al. [315] 2017 NeurIPS

Kilbertus et al. [202] 2017 NeurIPS

Agarwal et al. [11] 2018 ICML

Kim et al. [206] 2018 NeurIPS

Narasimhan [269] 2018 AISTATS

Gillen et al. [130] 2018 NeurIPS

Grgić-Hlača et al. [139] 2018 AAAI

Heidari et al. [147] 2018 NeurIPS

Kearns et al. [196] 2018 ICML

Zhang and Bareinboim [396] 2018 AAAI

Gupta et al. [140] 2018 arXiv

Olfat and Aswani [274] 2018 AISTATS

Zhang and Bareinboim [395] 2018 NeurIPS

Komiyama et al. [210] 2018 ICML

Wu et al. [369] 2018 arXiv

Donini et al. [103] 2018 NeurIPS

Farnadi et al. [116] 2018 AIES

Nabi and Shpitser [268] 2018 AAAI

Goel et al. [131] 2018 AAAI

Wick et al. [363] 2019 NeurIPS

Celis et al. [53] 2019 FAccT

Cotter et al. [85] 2019 ICML

Balashankar et al. [29] 2019 arXiv

Agarwal et al. [12] 2019 ICML

Nabi et al. [267] 2019 ICML

Cotter et al. [87] 2019 ALT

Oneto et al. [276] 2019 AIES

Cotter et al. [86] 2019 JMLR

Jung et al. [178] 2019 arXiv

Lamy et al. [217] 2019 NeurIPS

Xu et al. [373] 2019 TheWebConf

Zafar et al. [385] 2019 JMLR

Wang et al. [359] 2020 NeurIPS

Chzhen and Schreuder [81] 2020 arxiv

Lohaus et al. [235] 2020 ICML

Kilbertus et al. [201] 2020 AISTATS

Ding et al. [100] 2020 AAAI

Maity et al. [248] 2020 arXiv

Cho et al. [74] 2020 NeurIPS

Padala and Gujar [278] 2020 IJCAI

Oneto et al. [275] 2020 IJCNN

Chzhen et al. [80] 2020 NeurIPS

Celis et al. [54] 2021 PMLR

Celis et al. [57] 2021 NeurIPS

Słowik and Bottou [333] 2021 arXiv

Li et al. [224] 2021 LAK

Scutari et al. [325] 2021 arXiv

Padh et al. [279] 2021 UAI

Zhang et al. [394] 2021 MOD

Zhao et al. [409] 2021 KDD

Petrović et al. [290] 2021 Eng. Appl. Artif. Intell.

Perrone et al. [286] 2021 AIES

Choi et al. [75] 2021 AAAI

Du and Wu [105] 2021 CIKM

Lawless et al. [218] 2021 arXiv

Mishler and Kennedy [258] 2021 arXiv

Park et al. [280] 2022 WWW

Wang et al. [356] 2022 CAV

Zhao et al. [410] 2022 KDD

Boulitsakis-Logothetis [46] 2022 arXiv

Hu et al. [152] 2022 arXiv

Wu et al. [368] 2022 CLeaR
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Table 5. Publications on In-processing bias mitigation methods - Part 2.

Type Authors [Ref] Year Venue

A
d
v
e
r
s
a
r
i
a
l

Beutel et al. [40] 2017 arXiv

Agarwal et al. [11] 2018 ICML

Gillen et al. [130] 2018 NeurIPS

Raff and Sylvester [297] 2018 DSAA

Wadsworth et al. [351] 2018 arXiv

Kearns et al. [196] 2018 ICML

Zhang et al. [393] 2018 AIES

Adel et al. [9] 2019 AAAI

Beutel et al. [39] 2019 AIES

Sadeghi et al. [316] 2019 ICCV

Zhao and Gordon [412] 2019 NeurIPS

Xu et al. [375] 2019 Big Data

Grari et al. [138] 2019 ICDM

Celis and Keswani [55] 2019 arXiv

Garcia de Alford et al. [128] 2020 SMU DSR

Yurochkin et al. [382] 2020 ICLR

Roh et al. [307] 2020 ICML

Delobelle et al. [94] 2020 ASE

Rezaei et al. [304] 2020 AAAI

Lahoti et al. [214] 2020 NeurIPS

Grari et al. [137] 2021 arXiv

Grari et al. [136] 2021 IJCAI

Amend and Spurlock [21] 2021 JCSC

Rezaei et al. [305] 2021 AAAI

Chen et al. [65] 2022 arXiv

Liang et al. [230] 2022 arXiv

Tao et al. [343] 2022 FSE

Petrović et al. [289] 2022 Neurocomputing

Yang et al. [377] 2022 medRxiv

Yazdani-Jahromi et al. [378] 2022 arXiv

C
o
m
p
o
s
i
t
i
o
n
a
l

Calders and Verwer [49] 2010 DMKD

Pleiss et al. [291] 2017 NeurIPS

Dwork et al. [110] 2018 FAccT

Ustun et al. [346] 2019 ICML

Oneto et al. [276] 2019 AIES

Iosifidis et al. [159] 2019 Big Data

Monteiro and Reynoso-Meza [262] 2021 PLM

Ranzato et al. [300] 2021 CIKM

Mishler and Kennedy [258] 2021 arXiv

Kobayashi and Nakao [208] 2021 DiTTEt

Jin et al. [172] 2022 ICML

Chen et al. [69] 2022 FSE

Roy et al. [312] 2022 DS

Liu and Vicente [233] 2022 CMS

Blanzeisky and Cunningham [43] 2022 Knowl Eng Rev

Boulitsakis-Logothetis [46] 2022 arXiv

Suriyakumar et al. [340] 2022 arXiv

Type Authors [Ref] Year Venue

A
d
j
u
s
t
e
d

Luo et al. [241] 2015 DaWaK

Joseph et al. [177] 2016 NeurIPS

Johnson et al. [175] 2016 Stat Sci

Kusner et al. [213] 2017 NeurIPS

Joseph et al. [176] 2018 AIES

Hashimoto et al. [145] 2018 ICML

Madras et al. [246] 2018 NeurIPS

Alabi et al. [18] 2018 COLT

Hébert-Johnson et al. [146] 2018 ICML

Chiappa and Isaac [73] 2018 IFIP

Kilbertus et al. [200] 2018 ICML

Kamishima et al. [191] 2018 DMKD

Dimitrakakis et al. [98] 2019 AAAI

Chiappa [72] 2019 AAAI

Noriega-Campero et al. [271] 2019 AIES

Chakraborty et al. [63] 2019 arXiv

Madras et al. [245] 2019 FAccT

Iosifidis and Ntoutsi [161] 2019 CIKM

Mandal et al. [249] 2020 NeurIPS

Kilbertus et al. [201] 2020 AISTATS

Martinez et al. [252] 2020 ICML

Iosifidis and Ntoutsi [162] 2020 DS

Liu et al. [234] 2020 Preprint

Hu et al. [153] 2020 DS

da Cruz [90] 2020 Thesis

Chakraborty et al. [62] 2020 FSE

Kamani [181] 2020 Thesis

Zhang and Ramesh [408] 2020 arXiv

Ignatiev et al. [157] 2020 CP

Sharma et al. [327] 2021 AIES

Ezzeldin et al. [114] 2021 arXiv

Wang et al. [357] 2021 FAccT

Ozdayi et al. [277] 2021 arXiv

Zhang et al. [401] 2021 PAKDD

Perrone et al. [286] 2021 AIES

Islam et al. [165] 2021 AIES

Roh et al. [308] 2021 ICLR

Hort and Sarro [150] 2021 ASE

Valdivia et al. [347] 2021 Int. J. Intell. Syst.

Lee et al. [222] 2021 ICML

Cruz et al. [89] 2021 ICDM

Roy and Ntoutsi [313] 2022 ECML PKDD

Wang et al. [353] 2022 arXiv

Sikdar et al. [331] 2022 FAccT

Agarwal and Deshpande [13] 2022 FAccT

Park et al. [280] 2022 WWW

Djebrouni [101] 2022 Eurosys

Iosifidis et al. [163] 2022 KAIS

Short and Mohler [329] 2022 Int. J. Forecast.

Maheshwari and Perrot [247] 2022 arXiv

Zhao et al. [410] 2022 KDD

Tizpaz-Niari et al. [345] 2022 ICSE

Roy et al. [312] 2022 DS

Mohammadi et al. [260] 2022 arXiv

Gao et al. [127] 2022 ICSE

Huang et al. [155] 2022 Expert Syst. Appl.

Candelieri et al. [51] 2022 arXiv

Anahideh et al. [22] 2022 Expert Syst. Appl.

Rateike et al. [301] 2022 FAccT

Li et al. [228] 2022 arXiv
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While constraints and regularization usually utilize group fairness definitions, they have also

been applied for achieving individual fairness [109, 130, 178, 206]. Moreover, they can be applied to

achieve fairness for multiple sensitive attributes and fairness definitions [195, 195, 196, 210, 279, 344],

or extend existing adjustments, such as adding fairness regularization in addition to the L2 norm,

which is used to avoid overfitting [189, 192].

4.2.2 Adversarial Learning. Adversarial learning simultaneously trains classification models and

their adversaries [92]. While the classification model is trained to predict ground truth values, the

adversary is trained to exploit fairness issues. Both models then compete against each other, to

improve their performance.

Zhang et al. [393] trained a Logistic Regression model to predict the label 𝑌 while preventing an

adversary from predicting the protected attribute under consideration of three fairness metrics:

Demographic Parity, Equality of Odds, and Equality of Opportunity. Both, predictor and adversary,

are implemented as Logistic regression models.

Similarly, Beutel et al. [40] trained a neural network to predict two outputs: labels and sensitive

attributes. While a high overall accuracy is desired, the adversarial setting reduces the ability to

predict sensitive information. The network is designed to share layers between the two output,

such that only one model is trained [9, 39, 94, 297, 316].

Lahoti et al. [214] proposed Adversarially Reweighted Learning (ARL) in which a learner is

trained to optimize performance on a classification task while the adversary adjusts the weights of

computationally-identifiable regions in the input space with high training loss. By so-doing, the

learner can then improve performance in these regions.

Other than using adversaries to prevent the ability to predict sensitive attributes (e.g., for

reducing bias according to population groups), it has also been used to improve robustness to

data poisoning [307], to improve individual fairness [382], and to reweigh training data [289]. In

particular, Petrović et al. [289] used adversarial training to learn a reweighing function for training

data instances as an in-processing procedure (contrary to applying reweighing as pre-processing,

see Section 4.1.2).

4.2.3 Compositional. Compositional approaches combat bias by training multiple classification

models. Predictions can then be made by a specific classification model for each population group

(e.g., privileged and unprivileged) [46, 49, 172, 276, 291, 340, 346] or in an ensemble fashion (i.e., a

voting of multiple classification models at the same time) [69, 159, 208, 233, 258, 261, 300, 312].

While decoupled classification models for privileged and unprivileged groups can achieve im-

proved accuracy for each group, the amount training data for each classifier is reduced. To reduce

the impact of small training data sizes Dwork et al. [110] utilised transfer training. With their

transfer learning approach, they trained classifiers on data for the respective group and data from

the other groups with reduced weight. Ustun et al. [346] built upon the work of Dwork et al. [110]

and incorporated “preference guarantees”, which states that each group prefers their decoupled

classifier over a classifier trained on all training data and any classifier of the other groups. Similarly,

Suriyakumar et al. [340] followed the concept of “fair use”, which states that if a classification uses

sensitive group information, it should improve performance for every group.

Training multiple classification models with different fairness goals allows for the creation of

a pareto-front of solutions [43, 233, 258, 312, 347]. Practitioners can then choose which fairness-

accuracy trade-off best suits their need. For example, Liu and Vicente [233] treated bias mitigation as

multi-objective optimization problem that explores fairness-accuracy trade-offs under consideration

of multiple fairness metrics. Mishler and Kennedy [258] proposed an ensemble method that builds

classification models based on a weighted combination of metrics chosen by users.
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4.2.4 Adjusted Learning. Adjusted learning methods mitigate bias via changing the learning

procedure of algorithms or the creation of novel algorithms [108]. Changes have been suggested for

a variety of classification models, including Bayesian models [98, 190], Markov Random Fields [408],

Neural Networks [153, 252, 297], Decision Trees, bandits [26, 176, 177], boosting [146, 161, 162, 312],

Logistic Regression [308]. We outline a selection of publications in the following, to provide insight

on techniques applied to different classification models.

Noriega-Campero et al. [271] proposed an active learning framework for training Decision Trees.

During training, a decision maker is able to collect more information about individuals to achieve

fairness in predictions. In this context, not all information about individuals is available. There is

an information budget that determines how many enquiries can be performed. Similarly, Anahideh

et al. [22] used an active learning framework to balance accuracy and fairness by selecting instances

to be labelled.

Madras et al. [246] proposed a rejection learning approach for joint decision-making with

classification models and external decision makers. In particular, the classification model learns

when to defer from making prediction (i.e., when it is more useful to have predictions from external

decision makers). If the coverage of classification can be reduced (i.e., the classification model

abstains from making some of the predictions), selective classification approaches can be used [222].

Martinez et al. [252] proposed the algorithm Approximate Projection onto Star Sets (APStar)

to train Deep Neural Networks to minimize the maximum risk among all population groups.

This procedure ensures that the final classifier is part of the Pareto Front [112]. Hu et al. [153]

incorporated representation learning into the training procedure of Neural Networks to learn them

jointly the classifier.

Hébert-Johnson et al. [146] proposed Multicalibration, a learning procedure similar to boosting.

A classifier is trained iteratively. At each iteration, the predictions of the most biased subgroup are

corrected until the classifier is adequately calibrated.

Hashimoto et al. [145] found fairness issues with the use of empirical risk minimization and

proposed the use of distributionally robust optimization (DRO) when training classifiers such as

Logistic Regression. During training, DRO optimizes the worst-case risk over all groups present.

Kilbertus et al. [200] adjusted the training procedure for Logistic Regression to take privacy

into account. Sensitive user information is encrypted such that it cannot be used for classification

tasks while retaining the ability to verify fairness issues. By doing so, users can provide sensitive

information without the fear that someone can read them.

The learning procedure of existing classification models has also been adjusted by tuning their

hyper-parameters [62, 63, 89, 90, 150, 165, 286, 345, 347].

4.3 Post-processing Bias Mitigation Methods
Post-processing bias mitigation methods are applied once a classification model has been success-

fully trained. With 56 publications that apply post-processing methods (Table 6), post-processing

methods are the least frequently applied of those covered in this survey.

4.3.1 Input Correction. Input correction approaches apply a modification step to the testing data.

This is comparable to pre-processing approaches (Section 4.1) [108], which conduct modifications

to training data (e.g., relabelling, perturbation and representation learning).

We found only two publications that applied input corrections to testing data, both of which used

perturbations. While Adler et al. [10] used perturbation in a post-processing stage, Li et al. [229]

first performed perturbation in a pre-processing stage and then applied an identical procedure for

post-processing.
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Table 6. Publications on Post-processing bias mitigation methods.

Type Authors [Ref] Year Venue

Input

Adler et al. [10] 2018 KAIS

Li et al. [229] 2022 ICSE

O
u
t
p
u
t

Pedreschi et al. [282] 2009 SDM

Kamiran et al. [187] 2012 ICDM

Fish et al. [120] 2015 FATML

Fish et al. [121] 2016 SDM

Liu et al. [231] 2018 arXiv

Kim et al. [206] 2018 NeurIPS

Zhang et al. [400] 2018 IJCAI

Kamiran et al. [188] 2018 J. Inf. Sci.

Menon and Williamson [257] 2018 FAccT

Chzhen et al. [78] 2019 NeurIPS

Chiappa [72] 2019 AAAI

Iosifidis et al. [159] 2019 Big Data

Lohia et al. [237] 2019 ICASSP

Wei et al. [362] 2020 PMLR

Alabdulmohsin [15] 2020 arXiv

Alabdulmohsin and Lucic [17] 2021 NeurIPS

Lohia [236] 2021 arXiv

Nguyen et al. [270] 2021 J. Inf. Sci.

Kobayashi and Nakao [208] 2021 DiTTEt

Jang et al. [167] 2022 AAAI

Pentyala et al. [284] 2022 arXiv

Snel and van Otterloo [334] 2022 Com. Soc. Res. J.

Alghamdi et al. [19] 2022 arXiv

Mohammadi et al. [260] 2022 arXiv

Zeng et al. [392] 2022 arXiv

Zeng et al. [391] 2022 arXiv

Type Authors [Ref] Year Venue

C
l
a
s
s
i
fi
e
r

Calders and Verwer [49] 2010 DMKD

Kamiran et al. [186] 2010 ICDM

Hardt et al. [144] 2016 NeurIPS

Woodworth et al. [366] 2017 COLT

Pleiss et al. [291] 2017 NeurIPS

Gupta et al. [140] 2018 arXiv

Morina et al. [264] 2019 arXiv

Noriega-Campero et al. [271] 2019 AIES

Kanamori and Arimura [193] 2019 JSAI

Kim et al. [207] 2019 AIES

Chzhen et al. [79] 2020 NeurIPS

Chzhen and Schreuder [81] 2020 arxiv

Savani et al. [323] 2020 NeurIPS

Awasthi et al. [27] 2020 PMLR

Kim et al. [203] 2020 ICML

Jiang et al. [170] 2020 UAI

Chzhen et al. [80] 2020 NeurIPS

Du et al. [104] 2021 NeurIPS

Schreuder and Chzhen [324] 2021 UAI

Mishler et al. [259] 2021 FAccT

Mishler and Kennedy [258] 2021 arXiv

Kanamori and Arimura [194] 2021 JSAI

Grabowicz et al. [134] 2022 FAccT

Iosifidis et al. [163] 2022 KAIS

Mehrabi et al. [255] 2022 TrustNLP

Zhang et al. [397] 2022 FairWARE

Wu and He [370] 2022 FAccT

Marcinkevics et al. [250] 2022 MLHC

4.3.2 Classifier Correction. Post-processing approaches can also directly be applied to classification
models, which Savani et al. [323] called intra-processing. A successfully trained classification model

is adapted to obtain a fairer one. Such modification have been applied to Naive Bayes [49], Logistic

Regression [170], Decision Trees [186, 194, 397], Neural Networks [104, 250, 255, 323] and Regression

Models [80].

Hardt et al. [144] proposed the modification of classifiers to achieve fairness with respect to

Equalized Odds and Equality of Opportunity. Given an unfair classifier 𝑌 , the classifier 𝑌 is derived

by solving an optimization problem under consideration of fairness loss terms. This approach has

been adapted and extended by further publications [27, 140, 259, 264].

Woodworth et al. [366] showed that this kind of modification can lead to a poor accuracy, for

example when the loss function is not strictly convex. In addition to constraints during training,

they proposed an adaptation of the approach by Hardt et al. [144].

Pleiss et al. [291] split a classifier in two (ℎ0, ℎ1), for the privileged and unprivileged group. To

balance the false positive and false negative rate of the two classifiers, ℎ1 is adjusted such that with

a probability of 𝛼 the class mean is returned rather than the actual prediction. Noriega-Campero

et al. [271] followed the calibration approach of Pleiss et al. [291].

Kamiran et al. [186] modified Decision Tree classifiers by relabeling leaf nodes. The goal of

relabeling was to reduce bias while sacrificing as little accuracy as possible. A greedy procedure

was followed which iteratively selects the best leaf to relabel (i.e., highest ratio of fairness improve-

ment per accuracy loss). Kanamori and Arimura [194] formulated the modification of branching

thresholds for Decision Trees as a mixed integer program.
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Kim et al. [207] proposed Multiaccuracy Boost, a post-processing approach similar to boosting

for training classifiers. Given a black-box classifier and a learning algorithm, Multiaccuracy Boost
iteratively adapts the current classifier based on its predictive performance.

4.3.3 Output Correction. The latest stage of applying bias mitigation methods is the correction of

the output. In particular, the predicted labels are modified.

Pedreschi et al. [282] considered the correction of rule-based classifiers, such as CPAR [380]. For

each individual, the 𝑘 rules with highest confidence are selected to determine the probability for

each output label. Given that some of the rules can be discriminatory, their confidence level is

adjusted to reduce biased labels.

Menon and Williamson [257] proposed a plugin approach for thresholding predictions. To

determine the thresholds to use, the class probabilities are estimated using logistic regression.

Kamiran et al. [187, 188] introduced the notion of reject option which modifies the prediction of

individuals close to the decision boundary. In particular, individuals belonging to the unprivileged

group receive a positive outcome and privileged individuals an unfavourable outcome. Similarly,

Lohia et al. [237] relabeled individuals that are likely to receive biased outcomes, but rather than

considering the decision boundary, they used an “individual bias detector” to find predictions that

are likely suffer from individual discrimination. This work was extended in 2021, where individuals

were ranked based on their “Unfairness Quotient” (i.e., the difference between regular prediction

and with perturbed protected attribute). Fish et al. [121] proposed a confidence-based approach

which returns a positive label for each prediction above a given threshold. This has also been

applied to AdaBoost [120]. Other than using a general threshold for all instances, group dependent

thresholds can be used [15, 78, 159, 167, 208, 284, 391, 392].

Chiappa [72] addressed the fairness of causal models under consideration of a counterfactual

world in which individuals belong to a different population group. The impact of the protected

attribute on the prediction outcome is corrected to ensure that it coincides with counterfactual

predictions. This way, sensitive information is removed while other information remains unchanged.

4.4 Combined Approaches
While most publications proposed the use of a single type of bias mitigation method, we found

70 that applied multiple techniques at the same time (e.g., two pre-processing methods, one in-

processing and one post-processing methods). Table 7 summarizes these approaches.

Among these 70 publications, 86% (60 out of 70) applied in-processing, 54% (38 out of 70) applied

pre-processing, and 31% (22 out of 70) applied post-processing methods.

Additionally, 26 out of 70 publications applied multiple types of bias mitigation methods at the

same stage of the development process (e.g., two pre-processing approaches). In particular, the

are 7 publications which applied multiple pre-processing methods. Among these 7 publications, 5

applied sampling and relabeling [47, 164, 185, 337, 418]. The remaining 19 out of 26 publications

applied multiple in-processing methods, 17 of which include regularization or constraints.

47 publications applied at least two methods at different stages of the development process for ML

models (e.g., one pre-processing and one in-processing method). This illustrates that bias mitigation

methods can be used in conjunction [129]. Moreover, there are three publications that addressed

bias mitigation at each stage: pre-processing, in-processing and post-processing [49, 140, 159].

Calders and Verwer [49] proposed three approaches for achieving discrimination-free classifica-

tion of naive bayes models. At first, a latent variable is added to represent unbiased labels. The data is

then used to train a model for each possible sensitive attribute value. Lastly, the probabilities output

by the model are modified to account for unfavourable treatment (i.e., increasing the probability of

positive outcomes for the unprivileged group and reducing it for the privileged group).
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Table 7. Publications with multiple bias mitigation methods. “X” indicates that the publication applies a bias
mitigation approach of the corresponding category.

Processing Method

Authors Pre In Post

Sun et al. [337] x x x

Calders et al. [47] x x

Žliobaite et al. [418] x x

Hajian and Domingo-Ferrer [143] x x

Kamiran and Calders [185] x x

Iosifidis et al. [164] x x

Chakraborty et al. [61] x x

Oneto et al. [276] x x x

Calders and Verwer [49] x x x

Gupta et al. [140] x x x

Iosifidis et al. [159] x x x

Pérez-Suay et al. [285] x x

Komiyama and Shimao [209] x x

Kilbertus et al. [202] x x

Grgić-Hlača et al. [139] x x

Madras et al. [245] x x

Xu et al. [375] x x

Abay et al. [7] x x

Hu et al. [153] x x

Chakraborty et al. [62] x x

Chuang and Mroueh [77] x x

Zhang et al. [401] x x

Grari et al. [137] x x

Du and Wu [105] x x

Amend and Spurlock [21] x x

Cruz et al. [89] x x

Chen et al. [65] x x

Liang et al. [230] x x

Agarwal and Deshpande [13] x x

Chen et al. [69] x x

Wu et al. [368] x x

Rateike et al. [301] x x

Kim and Cho [205] x x

Suriyakumar et al. [340] x x

Zhang et al. [400] x x

Wei et al. [362] x x

Pentyala et al. [284] x x

Li et al. [229] x x

Processing Method

Authors Pre In Post

Mishler and Kennedy [258] x x x x

Quadrianto and Sharmanska [294] x x

Agarwal et al. [11] x x

Gillen et al. [130] x x

Kearns et al. [196] x x

Goel et al. [131] x x

Beutel et al. [39] x x

Kilbertus et al. [201] x x

Liu et al. [234] x x

Kamani [181] x x

Perrone et al. [286] x x

Grari et al. [136] x x

Ranzato et al. [300] x x

Park et al. [280] x x

Wang et al. [356] x x

Zhao et al. [410] x x

Roy et al. [312] x x

Boulitsakis-Logothetis [46] x x

Kamiran et al. [186] x x

Fish et al. [120] x x

Woodworth et al. [366] x x

Pleiss et al. [291] x x

Kim et al. [206] x x

Chiappa [72] x x

Noriega-Campero et al. [271] x x

Chzhen and Schreuder [81] x x

Kim et al. [203] x x

Jiang et al. [170] x x

Chzhen et al. [80] x x

Kobayashi and Nakao [208] x x

Iosifidis et al. [163] x x

Mohammadi et al. [260] x x

Gupta et al. [140] tackled the problem of bias mitigation for situations where group labels are

missing in the datasets. To combat this issue, they created a latent “proxy” variable for the group

membership and incorporated constraints for achieving fairness for such proxy groups in the

training procedure. Lastly, they followed the approach of Hardt et al. [144] to debias and existing

classifier by adding an additional variable to the prediction problem (see Section 4.3.2).

Iosifidis et al. [159] followed an ensemble approach of multiple AdaBoost classifiers. In particular,

each classifier is trained on an equal amount of instances from each population group and label by

sampling. Predictions are then modified by applying group-dependent thresholds.
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Table 8. Frequency of classification model usage for evaluating bias mitigation methods. Amounts are
provided for each category and as a unique measure to avoid counting publications with multiple approaches
double.

Method

Model Unique Pre In Post

Logistic Regression 140 58 80 19

Neural Network 102 34 65 17

Random Forest 45 20 22 14

SVM 37 15 18 9

Decision Tree 36 14 16 9

Naive Bayes 24 12 11 5

Linear Regression 22 4 20 3

Nearest Neighbor 13 7 2 5

AdaBoost 8 1 5 4

XGBoost 8 1 6 1

Causal 7 2 6 1

LightGBM 4 2 3 0

Bandit 3 0 3 0

Boosting 3 0 2 2

J48 2 1 1 0

Bayesian 2 0 1 1

Hoeffding Tree 2 1 1 0

Gaussian Process 2 2 0 0

CPAR 1 0 0 1

RIPPER 1 1 0 0

PART 1 1 0 0

C4.5 1 1 0 0

CBA 1 0 1 0

Method

Model Unique Pre In Post

Lattice 1 1 1 1

Lasso 1 0 1 0

PSL 1 0 1 0

BART 1 0 1 0

RTL 1 0 1 0

Tree Ensemble 1 0 1 0

AUE 1 1 0 0

CART 1 0 1 0

SMOTEBoost 1 0 1 0

Gradient boosted trees 1 1 0 1

Cox model 1 0 1 0

Decision Rules 1 0 1 0

Gradient Tree Boosting 1 0 1 0

Kmeans 1 0 1 0

OSBoost 1 0 1 0

POEM 1 0 1 0

Markov random filed 1 0 1 0

SMSGDA 1 0 1 0

Probabilistic circuits 1 0 1 0

Rule Sets 1 0 1 0

Ridge Regression 1 0 1 1

Extreme Random Forest 1 1 0 0

Factorization Machine 1 1 0 0

Discriminant analysis 1 0 1 0

Generalized Linear Model 1 0 1 0

4.5 Classification Models
Here we outline the classification models on which the three types of bias mitigation methods

(pre-, in-, post-processing) have been applied on. Table 8 shows the frequency with which each

type of classification model has been applied.

Currently, the most frequently used classification model is Logistic Regression, for each method

type (pre-, in-, post-processing), with a total of 140 unique publications using it for their experiments.

The second most frequently used classification models are Neural Networks (NNs). A total of 102

publication used NNs for their experiments, with the majority being in-processing methods. Linear

Regression models have been used in 22 publications.

Decision Trees (36 publications) and Random Forests (45 publications) are also frequently used.

Moreover, different Decision Tree variants have been used, such as Hoeffding trees, C4.5, J48 and

Bayesian random forests.

While the range of classification models is diverse, some of them are similar to one another:

• Boosting: AdaBoost, XGBoost, SMOTEBoost, Boosting, LightGBM, OSBoost, Gradient Tree

Boosting, CatBoost;

• Rule-based: RIPPER, PART, CBA, Decision Set, Rule Sets, Decision Rules.

Figure 4 illustrates the number of different classification models considered during experiments.

It is clear to see that the majority of publications (70%) applied their bias mitigation method to

only one classification model. While in-processing methods are model specific and directly modify
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Fig. 4. Number of classification models (clf) used for evaluation.

the training procedure, pre-processing and most post-processing bias mitigation methods can be

developed independently from the classification models they are used for. Therefore, they can be

devised once and applied to multiple classification models for evaluating their performance. Our

observations confirm this intuition: only 24% of publications with in-processing methods consider

more than one classificationmodel, while 35% and 43% of pre- and post-processing methods consider

more than one respectively.

5 DATASETS
In this section, we investigate the use of datasets for evaluating bias mitigation methods. Among

these datasets, some have been divided into multiple subsets (e.g., risk of recidivism or violent

recidivism, medical data for different time periods). For clarity, we treat data from the same source

as a single dataset.

Following this procedure, we gathered a total of 83 unique datasets. We discuss these datasets in

Section 5.1 (e.g., what is the most frequently used dataset?) and Section 5.2 (e.g., how many datasets

do experiments consider?). Additionally, 56 publications created synthetic or semi-synthetic datasets

for their experiments. Section 5.3 provides information on the creation of such synthetic data.

For further details on datasets, we refer to Le Quy et al. [219] who surveyed 15 datasets and

provided detailed information on the features and dataset characteristics. Additionally, Kuhlman

et al. [212] gathered 22 datasets from publications published in the ACM Fairness, Accountability,

and Transparency (FAT) Conference and 2019 AAAI/ACM conference on Articial Intelligence,

Ethics and Society (AIES). Fairness datasets for a variety of domains (e.g., health, linguistics, social

sciences, computer vision) can be found in the web app by Fabris et al. [115].
4

5.1 Dataset Usage
In this section, we investigate the frequency with which each dataset set has been used. The purpose

of this analysis is to highlight the importance of each dataset and recommend the most important

datasets to use for evaluating bias mitigation methods. For this purpose, we consider 324 of the

341 publications, as only these 324 publications perform empirical experiments. The remaining

publications do not present any empirical experiment and thus do not consider any dataset.

Among the 83 datasets, two are concerned with synthetic data (i.e., “synthetic” and “semi-

synthetic”) which we address in Section 5.3. Therefore, we are left with 81 datasets. 59% of the

datasets (48 out of 81) are used only once during experiments. Another 14% of the datasets (11 out

4
http://fairnessdata.dei.unipd.it/
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Table 9. Frequency of widely used datasets (i.e., used in at least three publications).

Dataset Name Frequency Percentage

Adult [107] 249 77%

COMPAS [24] 166 51%

German [107] 97 30%

Communities and Crime [303] 42 13%

Bank [265] 38 12%

Law School [364] 33 10%

Default [379] 24 7%

Dutch Census [1] 16 5%

Health [3] 14 4%

MEPS [2] 14 4%

Drug [117] 9 3%

Student [84] 8 2%

Heart disease [107] 7 2%

National Longitudinal Survey of Youth [6] 6 2%

SQF [4] 5 2%

Arrhythmia [107] 5 2%

Wine [83] 4 1%

Ricci [339] 4 1%

University Anonymous (UNIV) 3 1%

Home credit [5] 3 1%

ACS [99] 3 1%

MIMICIII [174] 3 1%

of 81) are only used twice. Thereby, 73% of the datasets (59 out of 81) are used rarely (by one or

two publications).

Table 9 list the frequency of the remaining 22 datasets (used in three or more publications). A list

of all datasets can be found in our online repository [25]. In addition to the frequency, a percentage

is provided (i.e., how many of the 324 publications use this datasets). Among all datasets, the Adult

dataset is used most frequently (by 77% of the publications). While the Adult dataset contains

information from the 1994 US census, Ding et al. [99] derived new datasets from the US census

from 2014 to 2018.

Five other datasets are used by 10% or more of the publications (COMPAS, German Communities

and Crime, Bank, Law School). This shows that in order to enable a simple comparison with

existing work, one should consider at least the Adult and COMPAS dataset. However, these two

datasets have recently received some criticism for their use as benchmark datasets and suitability as

real-world datasets. For instance, the Adult dataset applies a binary label to determine whether an

individual has an income above 50,000 USD. Ding et al. [99] showed that the fairness of ML models

and bias mitigation methods is depending on the income threshold, thereby potentially limiting the

external validity of the Adult dataset for benchmarking. Bao et al. [32] addressed the use of the Risk

Assessment Instrument (RAI) datasets, in particular the COMPAS dataset, for benchmarking ML

fairness. They outlined that the use of such datasets should consider domain context, rather than

using them as a generic example to show the real-world performance of bias mitigation methods.
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Fig. 5. Number of datasets used per publication.

5.2 Dataset Frequency
In addition to detecting the most popular datasets for evaluating bias mitigation methods, we

investigate the number of different datasets used, as this impacts the diversity of the performance

evaluation [212]. Figure 5 visualizes the number of datasets used for each of the 324 publications.

The most commonly used number of datasets considered for experiments is two, which has been

observed in 104 out 324 of the publications. Overall, it can be seen that the number of considered

datasets is relatively small (90% of the publications use four or fewer datasets), with an average of

2.7 datasets per publication. Two publications stand out in particular, with 9 datasets (Chakraborty

et al. [60]), and 11 datasets (Do et al. [102]) respectively. In accordance with existing work, new

publications should evaluate their bias mitigation methods on three datasets, and if possible more.

Hereby it can be of interested to consider a diverse range of datasets based on application domains,

dimensionality or protected attributes [219].

5.3 Synthetic Data
In addition to the 81 existing datasets for experiments, 54 publications created synthetic datasets to

evaluate their bias mitigation method. Moreover, we found 3 publications that use semi-synthetic

data (i.e., modify existing datasets to be applicable for evaluating bias mitigation methods) in their

experiments [110, 201, 245].

The created datasets range from hundreds of data points [98, 145, 216, 274] to 100,000 and

above [96, 148, 164, 388]. While the sampling procedures are well described, some publications do

not state the dataset size used for experiments [29, 75, 134, 136, 203, 248, 255, 393].

As exemplary data creation procedure, we briefly outline the data generation approach applied

by Zafar et al. [387], as it is the most frequently adapted approach by other publications [200,

203, 233, 280, 307–309, 386]. In particular, Zafar et al. [387] generated 4, 000 binary class labels.

These are augmented with 2-dimensional user features which are drawn from different Gaussian

distributions. Lastly, the sensitive attribute is drawn from a Bernoulli distribution.

5.4 Data-split
In this section we analyze whether existing publications provided information on the data-splits,

in particular what sizing has been chosen. Moreover, we investigate how often experiments have

been repeated with such data splits, to account for training instability [123], therefore improving

the conclusion validity of a study [293]. Our focus lies on the data-splits used when evaluating
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the bias mitigation methods (e.g., we are not interested in data-splits that are applied prior for

hyperparameter tuning of classification models [51, 87, 155, 197, 216, 225, 275, 331, 376]).

Among the 324 publications that carry out experiments, 232 provide information on the data-split

used and 143 provide information on the number of runs (different splits) performed. The high

amount of publications that do not provide information on the data-split sizes could be explained

by the fact that some of the 81 datasets provided default splits. For example, the Adult dataset has a

pre-defined train-test split of 70%-30%, and Cotter et al. [85] used designated data splits for four

datasets.

A widely adopted approach for addressing data-splits for applying bias mitigation methods

is k-fold cross validation. Such methods divide the data in 𝑘 partitions and use each part once

for testing and the remaining 𝑘 − 1 partitions for training. Overall, 47 publication applied cross

validation: 10-fold (23 times), 5-fold (21 times), 3-fold (twice), 20-fold (once), and once without

specification of 𝑘 [131].

If the data-splits are not derived from k-folds, the most popular sizes (i.e., train split size - test

split size) are 80%-20% (39 times) and 70%-30% (35 times) followed by 67%-33% (16 times), 50%-50%

(11 times), 60%-40% (5 times), and 75%-25% (5 times). In addition to these regular sized datas-plits,

there are 23 publication which divide the data into very “specific” splits. For example, Quadrianto

et al. [295] divided the Adult dataset into 28, 222 training, 15, 000 and 2, 000 validation instance.

Another example is the work by Liu and Vicente [233], who chose 5.000 training instances at

random, using the remaining 40, 222 instances for testing.

Once the data is split in training and testing data, experiments are repeated 10 times in 54 out of

143 and 5 times in 42 out of 143 cases. The most repetitions are performed in the work by da Cruz

[90], who trained 48, 000 models per dataset to evaluate different hyperparameter settings.

We have found 16 publications that use different train and test splits for experiments on multiple

datasets. Reasons for that can be found in the stability of bias mitigation methods when dealing

with a large amount of training data [35].

While most publications split the data in two parts (i.e., training and test split), there are 36

publication that use validation splits as well. The sizes for validation splits range from 5% to 30%,

whereas the most common split uses 60% training data, 20% testing data, and 20% validation data.

Furthermore, Mishler and Kennedy [258] allow for a division of the data in up to five different

splits for evaluating their ensemble learning procedure.

Bias mitigation methods that process data in a streaming [162, 164, 329, 401, 402], federated

learning [7, 114, 152, 284, 292], multi-source [158], sequential [20, 301, 409, 410] fashion need to be

addressed differently, as they use small subsets of the training data instead of using all at once.

6 FAIRNESS METRICS
Fairness metrics play an integral part in the bias mitigation process. First they are used to deter-

mine the degree of bias a classification model exhibits before applying bias mitigation methods.

Afterwards, the effectiveness of bias mitigation methods can be determined by measuring the

same metrics after the mitigation procedure. In particular, this section focuses on metrics used for

measuring bias, rather than general notions of fairness such as Fairness through Unawareness (i.e.,
not using the protected attribute).

Recent fairness literature has introduced a variety of different fairness metrics, that each empha-

size different aspect of classification performance.

To provide a structured overview of such a large amount of metrics, we devise metric categories,

and take into account the classifications by Caton and Haas [52], and Verma and Rubin [350].

Overall we categorize the metrics used in the 341 publications in six categories, which are defined
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Table 10. Popular fairness metrics. At least one metric for each category is provided.

Name Section # Description

Statistical Parity Difference 6.2 136 Difference of positive predictions per group

Equality of Opportunity 6.3 91 Equal TPR per population groups

Disparate Impact, P-rule 6.2 60 Ratio of positive predictions per group

Equalized Odds 6.3 51 Equal TPR and FPR per population groups

False Positive Rate 6.3 38 False positive rate difference per group

Accuracy Rate Difference 6.3 29 Difference of prediction accuracy per group

... ...

Causal Discrimination 6.5 7 Different predictions for identical individuals except for protected attribute

Mean Difference 6.1 6 Difference of positive labels per group in the datasets

Mutual information 6.6 4 Mutual information between protected attributes and predictions

... ...

Strong Demographic Disparity 6.4 1 Demographic parity difference over various decision thresholds

based on labels in dataset, predicted outcome, predicted and actual outcomes, predicted probabilities

and actual outcome, similarity, causal reasoning.

In the following, we provide information on how these metric types have been used. In total, we

found 109 unique metrics that have been used by the 324 publications that performed experiments.

Most publications consider a binary setting (i.e., two populations groups and two class labels for

prediction), whereas fairness has also been measured for non-binary sensitive attributes [16, 54, 57,

327, 392], and multi-class predictions [16, 19].

While some of the categories only contain few different metrics (definitions based on labels

in dataset, on predicted probabilities and actual outcome, and on similarity all have 13 or fewer

different metrics); definitions based on predicted outcome have 22, definitions based on predicted and
actual outcomes have 31, and definitions based on Causal Reasoning 27 different metrics. Therefore,

we outline the most frequently used metrics for definitions based on predicted and actual outcomes
and definitions based on causal reasoning.

On average, publications consider two fairness metrics when evaluating bias mitigation methods,

with 45% of the publications only using one fairness metric. The most frequently used metrics are

outlined in Table 10, while listing at least one metric per category. For detailed explanations of

fairness metrics, we refer to Verma and Rubin [350].

In addition to quantifying the bias according to prediction tasks, we foundmetrics that determined

fairness in accordance with feature usage (e.g., do users think this feature is fair [139]) and quality

of representations [254, 320, 335] (see Section 4.1.4).

Notations. To provide equations of fairness metrics, we use the following notation:

• 𝑆 : sensitive attribute to divide populations in two groups (𝑠1, 𝑠2).

• 𝑦: Ground truth label.

• 𝑦: Predicted label (or probability, Section 6.4).

• 𝑃𝑟 : Probability.

• 𝐷 : Dataset, with 𝑁 instances.

6.1 Definitions Based on Labels in Dataset
Fairness definition based on the dataset labels, also known as “dataset metrics”, are used to determine

the degree of bias in an underlying dataset [36]. One purpose of datasets metrics is determine

whether there is a balanced representation of privileged and unprivileged groups in the dataset.

This is in particular useful for pre-processing bias mitigation methods, as they are able to impact

the data distribution of the training dataset.
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Most frequently, datasets metrics are used to measure the disparity in positive labels for popula-

tion groups, such as Mean Difference (MD), elift and slift [264], defined as follows:

𝑀𝐷 = 𝑃𝑟 (𝑦 = 1|𝑆 = 𝑠1) − 𝑃𝑟 (𝑦 = 1|𝑆 = 𝑠2)

𝑒𝑙𝑖 𝑓 𝑡 = 𝑒−𝜖 ≤ 𝑃𝑟 (𝑦 = 1|𝑆 = 𝑠)
𝑃𝑟 (𝑦 = 1) ≤ 𝑒𝜖 ,∀𝑠 ∈ 𝑆

𝑠𝑙𝑖 𝑓 𝑡 = 𝑒−𝜖 ≤ 𝑃𝑟 (𝑦 = 1|𝑆 = 𝑠)
𝑃𝑟 (𝑦 = 1|𝑆 = 𝑠 ′) ≤ 𝑒𝜖 ,∀𝑠, 𝑠 ′ ∈ 𝑆

elift and slift are parameterized by 𝜖 , which allows for an easy comparison of bias between different

classification models, by contrasting the magnitude of their 𝜖 values. Perfect fairness is achieved by

𝜖 = 0. Among these, MD is the most popular metric, used in six publications.

6.2 Definitions Based on Predicted Outcome
Definitions based on predicted outcome, or “Parity-based” metrics, are used to determine whether

different population groups receive the same degree of favour. For this purpose, only the predicted

outcome of the classification needs to be known.

The most popular approach for measuring fairness according to predicted outcome is the concept

of Demographic Parity, which states that privileged and unprivileged groups should receive an equal

proportion of positive labels. This can be done as by computing their difference (Statistical Parity

Difference) or their ratio (Disparate Impact). Similar to Disparate Impact, the p-rule compares two

ratios of positive labels (𝑔𝑟𝑜𝑢𝑝1/𝑔𝑟𝑜𝑢𝑝2, 𝑔𝑟𝑜𝑢𝑝2/𝑔𝑟𝑜𝑢𝑝1) and Among those two ratios, the minimum

value is chosen. The mathematical definition of these metrics is given below:

Statisitcal Parity Difference (SPD) = 𝑃𝑟 (𝑦 = 1|𝑆 = 𝑠1) − 𝑃𝑟 (𝑦 = 1|𝑆 = 𝑠2)

Disparate Impact (DI) =
𝑃𝑟 (𝑦 = 1|𝑆 = 𝑠1)
𝑃𝑟 (𝑦 = 1|𝑆 = 𝑠2)

P-rule =𝑚𝑖𝑛

(
𝑃𝑟 (𝑦 = 1|𝑆 = 𝑠1)
𝑃𝑟 (𝑦 = 1|𝑆 = 𝑠2)

,
𝑃𝑟 (𝑦 = 1|𝑆 = 𝑠2)
𝑃𝑟 (𝑦 = 1|𝑆 = 𝑠1)

)
If the direction of bias is of no interest (i.e., it is not important which group receives a favourable

treatment), then the absolute bias values can be considered [94, 289, 290, 297]. While it is possible

to compute fairness metrics based on differences as well as ratios between two groups, both which

have been applied in the past, Žliobaite [417] advised against ratios as they are more challenging

to interpret.

6.3 Definitions Based on Predicted and Actual Outcomes
Definitions based on predicted and actual outcomes are used to evaluate the prediction performance

of privileged and unprivileged groups (e.g., is the classification model more likely to make errors

when dealing with unprivileged groups?). Similar to definitions based on predicted outcomes, the

rates for privileged and unprivileged groups are compared.

Frequently, metrics based on predicted and actual outcomes are computed from combinations of

confusion matrix measures (i.e., True Positives (TP), False Positives (FP), False Negatives (FN), True

Negatives (TN)), as follows:
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True Positve Rate (TPR) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

False Positve Rate (FPR) =
𝐹𝑃

𝐹𝑃 +𝑇𝑁
False Negative Rate (FNR) =

𝐹𝑁

𝐹𝑁 +𝑇𝑃
True Negative Rate (TNR) =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Positive Predictive Rate (PPR) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Negative Predictive Rate (NPR) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁

False Discovery Rate (FDR) =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃

The most popular metric of this type is Equality of Opportunity (used 90 times), followed by

Equalized odds (used 52 times). While Equality of Opportunity is satisfied when populations groups

have equal TPR, Equalized odds is satisfied if population groups have equal TPR and FPR. An

average score of TPR and FPR is provided by the Average Odds Difference. The formal definition of

these metrics is shown below:

Equality of Opportunity = 𝑇𝑃𝑅𝑆=𝑠1 −𝑇𝑃𝑅𝑆=𝑠2

Equalized Odds = (𝐹𝑃𝑅𝑆=𝑠1 − 𝐹𝑃𝑅𝑆=𝑠2 ) + (𝑇𝑃𝑅𝑆=𝑠1 −𝑇𝑃𝑅𝑆=𝑠2 )

Average Odds =
1

2

((𝐹𝑃𝑅𝑆=𝑠1 − 𝐹𝑃𝑅𝑆=𝑠2 ) + (𝑇𝑃𝑅𝑆=𝑠1 −𝑇𝑃𝑅𝑆=𝑠2 ))

In addition to evaluating fairness in according to the confusion matrix (FPR - 38 times, TNR - 8

times), the accuracy rate (i.e., difference in accuracy for both groups) has been used 29 times. More-

over, conditional TNR and TPR have been evaluated [317, 319] and one can compare populations

groups with regards to performance metrics, such as precision, recall, F1 and Area Under Curve.

6.4 Definitions Based on Predicted Probabilities and Actual Outcome
While Section 6.3 detailed metrics based on actual outcomes and predicted labels, this Section

outlines metrics that consider predicted probabilities instead.

Jiang et al. [170] proposed Strong Demographic Disparity (SDD) and Strong Pairwise Demo-

graphic Parity (SPDD), which are parity metrics computed over a variety of thresholds (i.e., predic-

tion tasks apply a threshold of 0.5 by default):

Strong Pairwise Demographic Parity (SPDD) = E𝜏∼𝑈 (Ω)) |𝑃𝑟 (𝑦 > 𝜏 |𝑆 = 𝑠1) − 𝑃𝑟 (𝑦 > 𝜏 |𝑆 = 𝑠2) |

where E𝜏∼𝑈 (Ω)) denotes the expectation over all possible thresholds 𝜏 , uniformly sampled from all

possible prediction outcomes𝑈 (Ω).
Chzhen et al. [80] also varied thresholds, to compute the Kolmogorov-Smirnov distance. Heidari

et al. [147] measured fairness based on positive and negative residual differences. Agarwal et al.
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[12] computed a Bounded Group Loss (BGL) to minimize the worst loss of any group, according to

least squares.

Another notion of fairness based on predicted probabilities and actual outcomes is calibra-

tion [291]. Calibration describes a scenario where predicted probabilities have a semantic meaning,

for example if 100 individuals receive a prediction of 0.75, then 75 of them should have a positive

label (i.e., a label of 1). Zhang and Weiss [404, 405] proposed the use of a related metric with fair
calibration (FC). FC first sorts predicted probabilities for each subgroup and divides them in 10

equally sized bins (e.g., 100 instances would result in 10 bins of 10 individuals). It is then evaluated

whether the 10 bins of each population group are calibrated, and in a second stage whether differ-

ences between predictions and actual outcomes are consistent across population groups. FC then

generates a binary result, whether the model is fairly calibrated or not.

6.5 Definitions Based on Similarity
Definitions based on similarity are concerned with the fair treatment individuals. In particular, it

is desired that individuals that exhibit a certain degree of similarity receive the same prediction

outcome. For this purpose, different similarity measures have been applied. The most popular

similarity metric used is consistency or inconsistency (used in 4 and 1 publications respectively) [390].

Consistency compares the prediction of an individual with the k-nearest-neighbors according to

the input space [390]:

Consistency = 1 − 1

𝑁𝑘

∑
𝑛

|𝑦𝑛 −
∑

𝑗 ∈𝑘𝑁𝑁 (𝑥𝑛)
𝑦 𝑗 |

Luong et al. [242] also utilized k-nearest-neighbors, to investigate the difference in predictions for

different values of 𝑘 .

Similarities between individuals have been computed according to ℓ∞-distance [314], and eu-

clidean distance with weights for features [390]. Individuals have also been treated as similar if they

have equal labels [37], are equal except for sensitive features or based on predicted labels [349]. If

similarity of individuals is determined solely by differences in sensitive features, one is speaking of

“causal discrimination” [237, 416].
5

In contrast to determining similarity computationally, Jung et al. [178] allowed stakeholders to

judge whether two individuals should receive the same treatment.

Moreover, Ranzato et al. [300] considered four types of similarity relations (Noise, Cat, Noise-

Cat, conditional-attribute), when dealing with numerical and categorical features. Verma et al.

[349] considered two types of similarities: input space (identical on non-sensitive features), output

space (identical prediction). Lahoti et al. [216] built a similarity graph to detect similar individuals.

This graph is built based on pairwise information on individuals that should be treated equally

with respect to a given task.

6.6 Causal Reasoning
Fairness definitions based on causal reasoning take causal graphs in account to evaluate relationships

between sensitive attributes and outcomes [350].

For example, Counterfactual fairness states that a causal graph is fair, if the prediction does not

depend on descendants of the protected attribute [213]. This definition has been adopted by four

publications. Moreover, the impact of protected attributes on the decision has been observed in

two ways: direct and indirect prejudice [399]. Direct discrimination occurs when the treatment

5
Some publications refer to this as “Counterfactual fairness’ [261, 382, 383], but we follow the guidelines of Verma and

Rubin [350] and treat counterfactual fairness as a Causal metric.
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Table 11. Benchmarking against bias mitigation method types. For each bias mitigation category (i.e., pre-,
in-, or post-processing), we count the type of benchmarking methods.

Benchmarked against

Category # None Pre In Post

Pre 114 50 55 37 16

In 184 66 56 108 51

Post 52 16 17 25 27

is based on sensitive attributes. Indirect discrimination results in biased decision for population

groups based on non-sensitive attributes, which might appear to be neutrals. This could occur due

to statistical dependencies between protected and non-protected attributes.

Direct and indirect discrimination can be modelled based on the causal effect along paths taken

in causal graphs [399]. To measure indirect discrimination, Prejudice Index (PI) or Normalized

Prejudice Index (NPI) haven been applied four times [189]. NPI quantifies the mutual information

between protected attributes and predictions. The mathematical definition of these measures follow:

𝑃𝐼 =
∑
𝑦,𝑠∈𝐷

𝑃𝑟 (𝑦, 𝑠)𝑙𝑛 𝑃𝑟 (𝑦, 𝑠)
𝑃𝑟 (𝑠)𝑃𝑟 (𝑦)

𝑁𝑃𝐼 = 𝑃𝐼/(
√
𝐻 (𝑌 )𝐻 (𝑆))))

Here, 𝐻 (𝑋 ) is defined as the entropy function −∑
𝑥 ∈𝐷 𝑃𝑟 (𝑥)𝑙𝑛𝑃𝑟 (𝑥).

Mutual information has also been used to determine the fairness of representations [266, 335].

Similar to determining the degree of mutual information between sensitive attributes and labels, the

ability to predict sensitive information based on representations has been used in nine publications.

7 BENCHMARKING
After establishing on which datasets bias mitigation methods are applied, and which metrics are

used to measure their performance (Section 6), we investigate how they have been benchmarked.

Benchmarking is important for ensuring the performance of biasmitigationmethods. Nonetheless,

we found 15 out of 324 publications that perform experiments but do not compare results with any

type of benchmarking (i.e., out of the 341 publications, 324 perform experiments, among which

308 perform benchmarking). Therefore, the remaining section addresses 308 publications which: 1)

perform experiments; 2) apply benchmarking.

7.1 Baseline
To determine whether bias mitigation methods are able to reduce effectively, different types of

baselines have been used. We use the term “baseline” to describe simple methods for benchmarking,

that can be applied as a basic yet necessary check to determine whether a bias mitigation methods

is effective. Unlike methods presented in Section 7.2 and Section 7.3, these are not based on existing

methods from the 341 publications.

The most general baseline is to compare the fairness achieved by classification models after

applying a bias mitigation method with the fairness of a fairness-agnostic Original Model. If a
method is not able to exhibit an improved fairness over a fairness-agnostic classification model,

then it is not applicable for bias mitigation. Given that this is the minimum requirement for bias

mitigation methods, it is the most frequently used baseline (used in 254 out of 308 experiments).
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Another baseline method is suppressing, which performs a naive attempt of mitigating bias by

removing the protected attribute from the training data. However, it has been found that solely

removing protected attributes does not remove unfairness [47, 283], as the remaining features are

often correlated with the protected attribute. To combat this risk, Kamiran et al. [186] suppressed

not only the sensitive feature but also the k-most correlated ones. Suppressing has been used in 30

out of 308 experiments.

Random baselines constitute more competitive baselines than solely suppressing the protected

attribute. Bias mitigation methods that outperform random baselines show that they are not only

able to improve fairness but also able to perform better than naive methods. Random baselines

have been used in 13 out of 308 experiments.

Moreover, we found four publications that considered a constant classifier for benchmarking

(i.e., a classifier that returns the same label for every instance) [203, 260, 266, 359]. This serves as a

fairness-aware baseline, as every individual and population group receive the same treatment [151].

7.2 Benchmarking Against Bias Mitigation Methods
In addition to baselines, we investigate how methods are benchmarked against other, existing bias

mitigation methods. In particular, we are interested in which methods are popular, how many bias

mitigation methods are used for benchmarking, and to what category these methods belong.

At first, we investigate what type of bias mitigation method are considered for benchmarking

(e.g., are pre-processing methods more likely to benchmark against other pre-processing methods

or in-/post-processing methods). Table 11 illustrates the results. In particular, # shows how many

unique publications propose a given type of bias mitigation method (i.e., there are 114 publications

with pre-processing methods). For each of these methods we determine whether they benchmark

against pre-, in- or post-processing methods. If no benchmarking against other bias mitigation

methods is performed, we count this as “None”.

We find that pre-processing methods are the most likely to not benchmark against other bias

mitigation methods at 44% (50 out of 114). 36% (66 out of 184) of in-processing methods and 31%

(16 out of 52) of post-processing methods do not benchmark against other bias mitigation methods.

Furthermore, we can see that each bias mitigation type is more likely to benchmark against methods

of the same type.

In addition to detecting the type of bias mitigation methods for benchmarking, we are interested

in what approaches in particular are used for benchmarking. Therefore, we count how often each

of the 341 bias mitigation methods we gathered have been used for benchmarking.

Overall, 137 bias mitigation methods have been used as a benchmark by at least one other

publication. Figure 6 illustrates the most frequently used bias mitigation methods for benchmarking.

Among the 18 listed methods, all of which are used for benchmarking by at least eight other

publications, eight are pre-processing, nine in-processing, and four post-processing. Notably, the

five most-frequently used methods include each of the three types: sampling and relabelling for

pre-processing [185], constraints [384, 387] and adversarial learning [393] for in-processing, and

classifier modification for post-processing [144].

7.3 Benchmarking Against Fairness-Unaware Methods
In addition to benchmarking against existing bias mitigation methods, practitioners can use other

methods for benchmarking, which are not designed for taking fairness into consideration. Overall,

we found 51 publications that use fairness-unaware methods for benchmarking (i.e., using a general

data augmentation method to benchmarking fairness-aware resampling).

Table 12 shows the publications that benchmark their proposed method against at least one

fairness-unaware methods, according to the type of approach applied. Among the 13 types of
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Hardt et al. [144]

Kamiran and Calders [185]

Zhang et al. [393]

Zafar et al. [387]

Zafar et al. [384]

Agarwal et al. [11]

Feldman et al. [118]

Zemel et al. [390]

Kamishima et al. [189]

Calmon et al. [50]

Madras et al. [244]

Calders and Verwer [49]

Kamiran et al. [186]

Donini et al. [103]

Pleiss et al. [291]

Kamiran et al. [187]

Kamiran and Calders [183]

Louizos et al. [238]
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Fig. 6. Most frequently benchmarked publications. For each publication, the number of times it has been
used for benchmarking is shown.

approaches, as shown in Section 4.1 - 4.3, seven can be found to benchmark against fairness-

unaware methods. This occurs rarely for post-processing methods, six publications in total, with at

least one per approach type. A total of 23 and 27 publications for pre-processing and in-processing

methods, respectively, benchmark against fairness-unaware methods.

7.4 Source Code Availability
To investigate whether existing work allows for reproducibility of the results and ease of use for

benchmarking, we reviewed whether the 341 surveyed publications shared source code. Specifically,

we have collected links to implementations from the publications directly. If no link was available,

we performed a google search to check for resources we might have missed.
6
With this additional

search, we were able to find 64 implementations. Overall, we found 192 publications with available

source code (56% of the 341 publications).

Figure 7 illustrates the proportion of publications with code available per year. Early years (2009-

2016) show a high variation in the proportion of publications with source code available, ranging

from 17% to 67%. Such a variation is caused by the small number of publications. In 2018 and 2019,

the proportion of publications with shared source code is below 50%, 46% and 49% respectively.

6
For each publications, we searched for “paper title” and “paper title github” and checked the first page of search results for

links to external resources.
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Table 12. Publications that benchmark against at least one fairness-unaware method.

Type Category Section References

Pre

Sampling 4.1.2

Abusitta et al. [8], Celis et al. [56], Cruz et al. [89], Xu et al. [375]

Du and Wu [105], Roh et al. [309], Xu et al. [372], Yan et al. [376]

Dablain et al. [91], Pentyala et al. [284], Zhang et al. [401]

Representation 4.1.4

Creager et al. [88], Gupta et al. [141], Louizos et al. [238], Salazar et al. [317]

Balunović et al. [30], Galhotra et al. [126], Oh et al. [273], Qi et al. [292]

Jaiswal et al. [166], Lahoti et al. [215], Sarhan et al. [321], Shui et al. [330]

In

Regularization 4.2.1 Jiang et al. [171], Liu et al. [234], Wang et al. [356], Zhang and Weiss [404, 405]

Constraints 4.2.1

Ding et al. [100], Du and Wu [105], Zhang et al. [394], Zhao et al. [409]

Fukuchi et al. [124], Narasimhan [269], Wang et al. [356], Zhao et al. [410]

Adversarial 4.2.2

Lahoti et al. [214], Roh et al. [307], Sadeghi et al. [316], Xu et al. [375]

Rezaei et al. [305], Yazdani-Jahromi et al. [378]

Adjusted 4.2.4

Cruz et al. [89], Iosifidis and Ntoutsi [162], Liu et al. [234], Luo et al. [241]

Candelieri et al. [51], Sharma et al. [327], Wang et al. [353], Zhang et al. [401]

Lee et al. [222], Maheshwari and Perrot [247], Zhao et al. [410]

Post

Input 4.3.1 Adler et al. [10]

Classifier 4.3.2 Mehrabi et al. [255], Wu and He [370]

Output 4.3.3 Alabdulmohsin and Lucic [17], Kamiran et al. [188], Pentyala et al. [284]
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Fig. 7. Proportion of publications that publicly shared the source code used in their study, per year.

The most recent years showed an increase in shared implementations, with the maximum achieved

in 2020 with 71% of the publications to share source code.

Moreover, we examined existing surveys for frameworks providinf implementations of bias

mitigation methods [52, 68, 108, 223, 256, 288, 336], and found three frameworks that do so: Themis-

ML [31], AIF 360 [36], Fairlearn [42]. In total, Themis-ML [31] implements bias mitigation from three

publications, Fairlearn [42] implements four methods, and AIF 360 [36] implements 13 methods.
7

While our focus lies on the sharing and reuse of bias mitigation methods, datasets are also

an important resource to share to allow for reproducibility. Many datasets are already publicly

available, however some datasets are proprietary and cannot be shared publicly. Where available,

we provide links to datasets and source code implementations in our online repository [25].

7
1st of March 2023
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8 CHALLENGES AND OPPORTUNITIES
This section provides further discussion and insights on the surveyed publications. We outline

several challenges, based on the current literature, as well as discuss research opportunities for the

creation and evaluation of new bias mitigation methods.

8.1 Challenges
Research on bias mitigation is fairly young and does therefore enable challenges and opportuni-

ties for future research. Here, we highlight five challenges that we extracted from the collected

publications, that call for future action or extension of current work.

8.1.1 Fairness Definitions. A variety of different metrics have been proposed and used in practice

(see Section 6), which can be applied to different use cases. However, with such a variety of metrics

it is difficult to evaluate bias mitigation on all and ensure their applicability. Consolidating a

common set of metrics to use is still an open challenge [91, 128, 256], as can be seen by the use

of 109 different fairness metrics in the literature, as discussed in Section 6. While consolidating

existing fairness notions is one problem, it is also relevant to ensure that the used metrics are

representative for the problem at hand[33, 322]. Often, this means evaluating fairness in a binary

classification problem for two population groups.While this can be the correct way tomodel fairness

scenarios, it is not sufficient to handle all cases, such that future work should focus on multi-class

problems [55, 155, 185, 261, 264], and non-binary sensitive attributes, which was mentioned by

only 15 publications [16, 28, 49, 55, 118, 119, 137, 183, 185, 189, 195, 257, 289, 302, 347].

Other challenges regarding metrics include the trade-offs when dealing with accuracy and/or

multiple fairness metrics [11, 52, 272, 287], as well as the allowance of some degree of discrimination

as long it as explainable (e.g., enforcing a fairness criteria completely could lead to unfairness in

another) [49, 184, 185, 390].

8.1.2 Fairness Guarantees. Guarantees are of particular importance when dealing with domains

that fall under legislation and regulatory controls [118, 189]. Thereby, it is not always sufficient to

establish the effectiveness of a bias mitigation method based on the performance on the test set

without any guarantees. Fairness guarantees can help in this situation, by providing performance

guarantees with regards to a specific fairness metric and bound the degree of bias [53, 177]. In

particular, Dunkelau and Leuschel [108] pointed out that most bias mitigationmethods are evaluated

on test sets and their applicability to real-world tasks depends on whether the test set reliably

represents reality. If that is not the case, fairness guarantees could ensure that bias mitigation

methods are able to perform well with respect to a given fairness metric and unknown data

distributions. Therefore, eight publications considered fairness guarantees as a relevant avenue

of future work. Similarly, allowing for interpretable and explainable methods can aid in this

regard [173, 189, 295, 366].

8.1.3 Datasets. Another challenge that arises when applying bias mitigation methods is the

availability and use of datasets. The most pressing concern is the reliability and access to protected

attributes, which was mentioned in nine publications, as this information is often not available in

practice [149].

Moreover, it is not guaranteed that the annotation process of the training data is bias free [144].

If possible an unbiased data collection should be enforced [294]. Other options are the debiasing of

ground truth labels [381, 416] or use of expert opinions to annotate data [104]. If feasible, more

data can be collected [66, 173], which is difficult from a research perspective, as commonly, existing

and public datasets are used without the chance to manually collect new samples.
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Besides, the variety of protected attributes addressed in previous experiments, as found by

Kuhlman et al. [212], is lacking diversity, with the majority of cases considering race and gender

only. In practice, “collecting more training data” is the most common approach for debiasing,

according to interviews conducted by Holstein et al. [149]. However, an interviewee questioned

whether such a fairness intervention is fair, as the targeting of subgroups for additional data

collection may be a biased procedure.

8.1.4 Real-world Applications. While the experiments are conducted on existing, public datasets, it

is not clear whether they can be transferred to real-world applications without any adjustments.

For example, Hacker and Wiedemann [142] see the challenge of data distributions changing over

time, which would require continuous implementations of bias mitigation methods.

Moreover, developers might struggle to detect the relevant population groups to consider when

measuring andmitigating bias [149], whereas the datasets investigated in Section 5 often simplify the

problem and already provide binarized protected attributes (e.g., in the COMPAS, six “demographic”

categories are transformed to “Caucasian” and “not Caucasian” [36]). Therefore, Martinez et al.

[252] stated that automatically identifying sub-populations with high-risk during the learning

procedure as a field of future work.

Given the multitude of fairness metrics (as seen in Section 6), real world applications could

even suffer further unfairness after applying bias mitigation methods due to choosing incorrect

criteria [221]. Similarly, showing low bias scores does not necessarily lead to a fair application, as

the choice of metrics could be used for “Fairwashing” (i.e., using fake explanations to justify unfair

decisions) [23, 255]. Nonetheless, Sylvester and Raff [341] argue that considering fairness criteria

while developing ML models is better than considering none, even if the metric is not optimal.

Sharma et al. [328] show the potential of user studies to not only provide bias mitigation methods

that work well in a theoretical setting, but to make sure practitioners are willing to use them. In

particular, the are interesting in finding how comfortable developers and policy makers are with

regards to training data augmentation.

To facilitate the use and implementation of existing bias mitigation methods, metrics and datasets,

popular toolkits such as AIF360 [36] and Fairlearn [42] can be used.

8.1.5 Extension of Experiments. Lastly, a challenge and field of future research is the extension of

conducted experiments to allow for more meaningful results.

The most frequently discussed aspect of extending experiments is the consideration of further

metrics (in 40 publications). Moreover, the usefulness of bias mitigation methods can be investigated

when applied to additional classification models. This was pointed out by 12 publications. Given

the 81 datasets that were used at least once, and on average 2.7 datasets used per publication, only

eight publications see the consideration of further datasets as a useful consideration for extending

their experiments [51, 62, 63, 90, 150, 211, 357, 376].

While the consideration of additional metrics, classification models and datasets does not lead to

changes in the training procedure and experimental design, there are also intentions to apply bias

mitigation methods to other tasks and contexts, such as recommendations [195, 387], ranking [154,

189, 387] and clustering [189].

8.2 Research Opportunities
In the course of this survey, we have collected 341 publications with regards to various approaches

for bias mitigation methods. This collection helps us understand which approaches have already

been applied and allows us to outline some aspects that appear underexplored and provide oppor-

tunities for future research.
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Firstly, from the 341 publications we collected, it can be seen that in-processing methods are the

most widely explored methods. There are almost twice as many publications with in-processing

methods than pre-processing, and nearly four times as many in-processing methods than post-

processing methods. Therefore, addressing post-processing bias mitigation method seems unex-

plored in contrast to the other two method types. In particular the modification of inputs in a

post-processing stage has only been considered by two publications (Section 4.3.1) [10, 229]. How-

ever, this type of bias mitigation method could be further investigated without considerable effort

by developing new methods, simply by applying existing pre-processing methods (Section 4.1) to

the testing data.

Generally speaking, pre- and post-processingmethods are classifier-agnostic and can be evaluated

on a variety of classification models without modification to the underlying algorithm. Nonetheless,

Bandits have been investigated with neither of these two method types, only by in-processing

methods [130, 176, 177].

Moreover, the combination of pre- and post-processing methods has only been addressed four

times [229, 284, 362, 400]. The number of classification models considered by these four publications

range from 1 to 3. This is a promising combination of approaches, as one can perform experiments

with bias mitigation methods at two different stages (i.e., before and after training) on various

classification models and thereby collect extensive empirical evidence for fairness improvements.

Additionally, we found several publications that applied multiple bias mitigation methods of the

same type (e.g., two pre-processing methods). Six of these applied multiple pre-processing methods

and 19 applied multiple in-processing methods (Table 7). However, we found no publication that

applied multiple post-processing methods.

Lastly, our data collection shows that there exist a multitude of datasets and metrics, which can

enable a rigorous evaluation of novel bias mitigation methods.

For one, bias mitigation methods can be evaluated on up to 81 datasets, whereas bias mitigation

methods evaluated on three datasets exceed the average of 2.7 datasets used for evaluation. When

applying bias mitigation methods to a dataset, it is important to mention the protected attributes

considered and potential criticisms that could impact the ability to make claims about applicability

for real world systems [32, 99].

The 109 metrics used in the literature thus far, are classified in six categories. Thereby, bias

mitigation method can be evaluated by multiple metrics of a same category, or multiple metrics

from different categories. In addition to using fairness metrics to evaluate the performance of

bias mitigation methods, performance metrics, such as accuracy, should be used to determine

the fairness-accuracy trade-off achieved when applying bias mitigation methods [151]. To ensure

the competitiveness of results, methods must always be benchmarked against baselines as well

as previous existing relevant methods, especially when their implementation is made publicly

available (our survey highlights that 192 studies provided source code implementations, and as

such they could be used as a benchmark for future proposals).

9 CURRENT BEST PRACTICES / RECOMMENDATIONS
In this section, we would like to outline current practices for the empirical evaluation of bias

mitigation methods, that we have observed from the 341 publications. However, we note that

increasing the comprehensiveness of the empirical evaluation is always positive to support the

validity of results (e.g., applying bias mitigation methods to a higher number of datasets, or using

more metrics for evaluation). Our recommendations, which will allow new experiments to be in

line with prior experiments conducted, are as follows: 1. Check existing approaches, to confirm the

novelty of the bias mitigation method under evaluation.
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2. Apply your bias mitigation method to at least three datasets, taking diversity and criticism into

account when making claims about real world impact.

3. State the protected attributes for each dataset.

4. Evaluate your bias mitigation method on at least two fairness metrics, as well as an performance

metric (e.g., accuracy).We suggest using different metric types to reduce the correlation of individual

fairness metrics.

5. Benchmark at least against the original model and consider similar, existing bias mitigation

methods as well.

6.Apply your bias mitigationmethod tomultiple classificationmodels, in particular when proposing

pre- or post-processing methods. Logistic regression and neural networks are frequently used.

7. Try to repeat experiments at least 10 times for standard training splits (e.g. 70% or pre-defined

data-splits).

8. Share code and numerical results, in particular when results are presented in bar charts.

10 CONCLUSION
In this literature survey, we focused on the adoption of bias mitigation methods to achieve fairness

in classification problems and provided an overview of 341 publications. Our survey first categories

bias mitigation methods according to their type (i.e., pre-processing, in-processing, post-processing).

We found 123 pre-processing, 212 in-processing, and 56 post-processing methods, showing that

in-processing methods are the most commonly used. We devised 13 categories for the three method

types, based on their approach (e.g., pre-processing methods can perform sampling). The most

frequently applied approaches perform changes to the loss function in an in-processing stage

(51 publications applying regularization and 74 applying constraints). Other approaches are less

frequently used, with input correction in a post-processing stage only being used twice.

We further provided insights on the evaluation of bias mitigation methods according to three

aspects: datasets, metrics, and benchmarking. We found a total of 81 datasets that have been used

at least once by one of the 341 publications, among which the Adult dataset is the most popular

(used by 77% of publications). Even though 81 datasets are available for evaluating bias mitigation

methods, only 2.7 datasets are considered on average.

Similarly, we found a large number of fairness metrics that have been used at least once (109

unique metrics), which we divide in six categories. The most frequently used metrics belong to two

categories: 1) Definitions based on predicted outcome; 2) Definitions based on predicted and actual

outcomes.

When it comes to benchmarking bias mitigation methods, they can be compared against base-

lines, other bias mitigation methods, or non-bias mitigation approaches. Among the three baselines

we found (original model, suppressing, random), the 82% of bias mitigation methods consider the

original model (i.e., the classification model without any bias mitigation applied) as a baseline. Com-

monly, methods are compared against other bias mitigation methods. 51 publications benchmark

against fairness-unaware methods. Among the collected publications, we found 56% (192 out of

341) that make their source code available, thereby supporting replicability and benchmarking.

Moreover, we found three frameworks implementing and making available existing bias mitigation

methods [31, 36, 42].

Lastly, we list current opportunities and challenges that have been discerned from the collected

publications. This includes the synthesizing of fairness metrics, as there is no consensus reached

on what metrics to use. In addition to measuring improvements, future bias mitigation methods

can take fairness guarantees in account. The application of bias mitigation methods in practice

is challenging, as developers might not be able to detect relevant population groups for which to

measure bias and reliability of datasets (i.e., are prior observations biased?). Therefore, we hope that
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this survey helps researchers and practitioners to gain an understanding of the current, existing

bias mitigation approaches and support the development of new methods.
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