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ABSTRACT
Online Judge platforms play a pivotal role in education, competi-
tive programming, recruitment, career training, and large language
model training. They rely on predefined test suites to judge the
correctness of submitted solutions. It is therefore important that the
solution judgement is reliable and free from potentially misleading
false positives (i.e., incorrect solutions that are judged as correct). In
this paper, we conduct an empirical study of 939 coding problems
with 541,552 solutions, all of which are judged to be correct accord-
ing to the test suites used by the platform, finding that 43.1% of the
problems include false positive solutions (3,700 bugs are revealed
in total). We also find that test suites are, nevertheless, of high qual-
ity according to widely-studied test effectiveness measurements:
88.2% of false positives have perfect (100%) line coverage, 78.9%
have perfect branch coverage, and 32.5% have a perfect mutation
score. Our findings indicate that more work is required to weed out
false positive solutions and to further improve test suite effective-
ness. We have released the detected false positive solutions and the
generated test inputs to facilitate future research.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Online Judge (OJ) systems are designed for providing coding tasks
and then evaluating the solutions submitted by users. The tasks
are typically challenging coding problems (e.g., those with tricky
corner cases and complex engineering trade-offs) that include a
narrative statement of requirements, together with example inputs
and outputs. OJ platforms have been widely adopted to support
education [21, 34, 67], code contests [57, 66], recruitment [66], and
programming training [18]. OJ problems and solutions are also
essential resources for the training data of large language models,
such as ChatGPT [49], AlphaCode [36] and Github’s Copilot [1].

Take recruitment as an example, big companies such as Ama-
zon, Linkedin, and Bytedance use OJ platforms to source, screen,
and interview developers. In addition, many OJ platforms help
would-be software engineers train against a set of typical coding
interview problems [3, 4, 27, 44, 70]. OJ platforms thereby form a
critical gatekeeper that partly determines the composition of the
Software Engineering profession: they contribute to the processes
by which software engineers are educated, trained, and assessed,
and the criteria for joining the Software Engineering profession. It
is therefore essential to understand the properties of the OJ process
from multiple perspectives.

Existing research on OJ platforms primarily focuses on appli-
cations in Software Engineering education [8, 21, 34, 57, 67, 79].
However, there have been very few studies on the issues that might
impact the efficacy of the online judgement process. It is here that
Software Testing research has a role to play in finding ways to iden-
tify and improve candidate solutions, and the test suites used to
evaluate them. In particular, OJ platforms use predefined test suites
to automatically judge the correctness of submitted solutions [66].
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Software testing thereby has a direct, profound, and lasting im-
pact on the correct operation of OJ systems, and on the advice and
guidance they provide.

There is no previous work that seeks to systematically under-
stand and assess OJ test effectiveness. Forišek et al. [20] have previ-
ously highlighted the problem that software testing might prove to
be unreliable for code contests such as the ACM International Colle-
giate Programming Contest (ICPC) and the International Olympiad
in Informatics (IOI) competitions. However, although they identi-
fied these important potential limitations, there has, hitherto, been
no further empirical study. Based on the current literature, we thus
have no results on OJ test suite effectiveness. Nor do we have any
assessment of the prevalence of false positive solutions (i.e., in-
correct solutions that are judged as correct) among those offered
to train, recruit and guide the Software Engineering practitioner
community.

With the rise of using large language models for code generation,
it is more and more vital to guarantee that the OJ solutions in the
training data are correct. In fact, we have already observed a case
where ChatGPT provides an incorrect solution which is exactly
identical to one of our detected false positive solutions1. This case
further reveals the importance of understanding and detecting false
positive solutions in OJ platforms.

This paper tackles these important gaps in the current literature
on OJ platforms. Based on a large-scale empirical study of 541,552
code solutions to 939 publicly available coding problems, the paper
assesses OJ test suite effectiveness with respect to 4,703,239 mutants.
All solutions have passed the predefined tests and are thus judged,
by the OJ platform, to be correct. We collect our dataset from At-
Coder [27], a well-known OJ platform that makes test suites and
model solutions publicly available. We measure the line coverage,
branch coverage, and mutation score for all the solutions we collect,
and calculate their correlation with program features such as lines
of code and the number of tests. We then use test generation and
differential testing to detect whether there remain false positive
solutions among those offered. Finally, we report on the degree to
which widely-studied coverage techniques are effective at exposing
any weaknesses in the OJ test suites.

Our study reveals the following key findings: 1) Overall, OJ tests
have very good reliability according to coverage andmutation score:
91.5% of the OJ solutions have full line coverage, and 85.8% have
full branch coverage. Although only 42.8% of the solutions have
full mutation scores, the majority (e.g., 95.3% for Python) of the sur-
vived mutants are equivalent mutants. 2) The correlation between
line coverage, branch coverage, and mutation score highly depends
on the programming language that a solution adopts. Additionally,
the number of tests is observed to have a negative correlation with
coverage and mutation score on the OJ solutions that we study. 3)
Despite the high coverage and mutation score (modulo equivalent
mutants), we detect 3,700 bugs, which are ignored by the existing
OJ tests. A large proportion (43.1%) of the OJ problems that we
study are found to contain false positive solutions. 4) A further
investigation of the detected false positive solutions indicates that
88.7% of the false positive solutions have full line coverage, 79.0%
have perfect branch coverage, and 37.8% have full mutation scores.

1The details for the false positive solution can be found on our homepage [37].

Figure 1: Online Judge PlatformWorkflow.

These observations reveal the limitations and challenges of the ex-
isting test assessment techniques as well as a series of opportunities
to improve them.

To conclude, this paper makes the following contributions:
• An empirical study on the coverage and mutation score for online
judge solutions that have passed the predefined tests.

• An analysis of uncovered code and survived mutants.
• An investigation on the effectiveness of coverage and mutation
score in avoiding false positive solutions.

• An open-source benchmark with false positive solutions to facil-
itate software bug-related research [37].
The rest of the paper is organized as follows. Section 2 introduces

the preliminaries of our study. Section 3 describes our research
questions and experimental setup. Section 4 answers the research
questions based on the experimental results we obtained. Section 5
discusses the threats to the validity of this study and the implica-
tions of our results. Section 6 summarizes related work, followed
by concluding remarks in Section 7.

2 PRELIMINARIES
2.1 Online Judge Platforms
OJ platforms provide coding problems (namely OJ problems) for
users, and then automatically judge the correctness of the solutions
submitted by the users. Figure 1 presents the workflow of a generic
OJ platform.

An OJ problem mainly consists of a problem statement and a pre-
defined test suite. The problem statement introduces the coding tasks
and specifies the input and output formats (e.g., a series of integers)
of the problem. In addition, it provides the input constraints (e.g.,
the input should be a positive integer if it represents the number
of objects). The problem statement often provides example inputs
and outputs to guide users. The users can specify the programming
language they want to use, write the code to solve the OJ problem,
and then submit their own solutions to the OJ platform. Once a
solution is submitted, the OJ platform compiles the solutions (if
necessary) according to the specified language and judges the solu-
tion’s correctness by using a predefined test suite. The predefined
test suite is not visible to users. A submitted solution is considered
correct only if it can produce correct outputs for all the test cases
in the test suite [45].

The test suites are therefore the OJ platform “judges”, who deter-
mine whether a submitted solution is correct. A vital yet underex-
plored problem is: How reliable are these “judges”? Is it likely that
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the test suites misjudge the correctness of some solutions? This
paper aims to answer such questions. If the test suite judges a buggy
solution as correct, we call the solution a false positive solution.

2.2 Test Assessment Metrics
The main goal of this study is to assess the reliability of test suites
in OJ platforms. To this end, we use three test assessment metrics
that are most widely studied in the literature: line coverage (LC),
branch coverage (BC), and mutation score (MS) [32, 69].
• Line coverage measures the percentage of executed lines of the
source code against the total lines of code when running the test
suite. Its assessment of the test suite is based on the truth that
bugs in the uncovered code can never be detected by the test
suite.

• Branch coverage is similar to line coverage. It measures the
percentage of covered branches. For example, an if statement in
the source code creates two execution branches, and a reliable
test suite is expected to cover both branches.

• Mutation score is the score used in mutation testing [50]. Mu-
tation testing makes minor changes to the source code by using
different mutation operators. The modified programs are called
mutants. A mutant is called an “equivalent mutant” if its semantic
is equivalent to the original program, despite being syntactically
different. If the test suite is not able to differentiate a mutant
and its original program, we call this mutant a “survived” mu-
tant. Otherwise, we call it a “killed” mutant. The mutation score
is the percentage of killed mutants against the total number of
non-equivalent mutants. In practice, due to the challenges in
automatic equivalent mutant detection, mutation score is often
calculated as the percentage of killed mutants against the whole
set of mutants in the existing mutation testing tools [9, 13, 46].
Considering that uncovered mutants cannot be killed, we use two
types of mutation scores in our study, i.e., the original mutation
score and the covered mutation score. The former is computed
based on all mutants (i.e., mutants applied to any line of the
program); the latter is computed based on only those mutants ap-
plied to covered lines of the program (i.e., lines that are executed
by the test suite).

3 METHODOLOGY
This section introduces our research questions, data collection pro-
cess, test assessment techniques, and false positive identification
approach that we use to detect bugs that have been overlooked by
existing OJ test suites.

3.1 Research Questions
We aim to answer the following research questions in our study.
RQ1: What coverage and mutation score are achieved by the OJ
test suites used to judge coding solutions?
RQ1.1: What coverage is achieved by the OJ test suites and what is
the cause for uncovered code?
RQ1.2: What mutation score is achieved by the OJ test suites and what
is the cause for survived mutants?
RQ1.3: How do coverage and mutation score correlate with other
problem characteristics (e.g., problem difficulty, the number of tests,
and lines of code)?

Table 1: Sizes of solutions and tests in the dataset we collect.

Measurement Min Max Average

Lines of codes (Python) 1 413 13.5
Lines of codes (Java) 1 4,507 68.0
Lines of codes (C++) 1 1,066 31.2
Sizes of tests 2 148 30.9

RQ2: Are there false positive solutions that are judged as correct
by OJ test suites but are actually buggy?
RQ3: How do existing test assessment techniques contribute to the
identification of false positive solutions?

3.2 Dataset Collection
To answer our research questions, we need to analyze OJ problems
as well as user-submitted solutions and predefined OJ test suites. To
this end, we use data from AtCoder [27] for the following reasons:
1) it is a well-known OJ platform with more than 150,000 active
users; 2) its data has been widely used for research purposes [23, 36,
40], and is included in the well-known CodeNet dataset [55] and
CodeContests dataset [36]; 3) it is the only popular OJ platform
that makes its full set of predefined tests available to download2.

We downloaded the AtCoder problems and the corresponding
accepted solutions (i.e., solutions that are judged as correct by the
predefined test suites) from CodeContest, where duplicate problems
and solutions were already removed [36, 55]. This data consists
of 939 coding problems and 541,552 accepted solutions, including
168,909 Python solutions, 138,401 Java solutions, and 234,242 C++
solutions. In our study, we focus on solutions written in Python,
Java, and C++, because these are the three most popular languages
in OJ platforms [36], accounting for 96.7% of all solutions available.

We then collect the predefined test suites for each problem from
the official website provided by Atcoder [28]. Among the 939 coding
problems downloaded fromCodeContest, AtCoder website does not
provide full test suites for 88 problems that are outdated. We thus
use the remaining 851 problems in RQ1 and RQ3 for coverage and
mutation score analysis, whereas we use the whole set of problems
in RQ2 where the availability of tests does not affect the results.
Table 1 summarizes the sizes (min/max/avg) of solutions and test
suites in our dataset.

For each solution, we also collect the difficulty of the problem,
the number of predefined tests, and the lines of code. We obtain
the difficulty for each coding problem calculated by a third-party
website [47], which is estimated statistically according to the level
of users who solve the problem successfully during the contest.

3.3 Code Coverage Analysis
To answer RQ1, we first measure the line coverage and branch
coverage of the test suites. Line coverage and branch coverage are
the two most commonly-used coverage metrics in academia and
industry [42].

2CodeContests provides test cases for other OJ platforms, but the test cases are only
example tests in the problem statements and a subset of hidden test cases that are
made available at the evaluation result pages once a contest is finished, which are
different from the predefined full set of tests adopted by the platforms.
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For Python solutions, we use Coverage.py [48], a widely-used
tool for measuring the coverage of Python code. For C++ solutions,
we use the source-based code coverage feature of clang [35] in order
to measure line coverage and branch coverage. For Java solutions,
we use JaCoCo [30], which is well-known for its integration with
the Eclipse workbench.

We also manually analyze the uncovered code for each language.
We randomly sample the solutions with uncovered code to ensure
a 95% confidence level and a 5% confidence interval following pre-
vious work to save manual efforts while also obtaining statistically
significant conclusions [12, 38, 75]. Then, the first two authors, who
have five and eight years experience of participating in OJ contests,
manually analyze the sampled solutions. The analysis consists of
two rounds. In the first round, the two authors independently ana-
lyze each solution and identify the cause for the uncovered code.
In the second round, they discuss their results jointly and resolve
conflicts by introducing other authors as arbitrators.

3.4 Mutation Score Analysis
To answer RQ1, we also need tomeasure themutation score achieved
by the OJ test suites. We use mutmut [9], a tool having over 600
stars on GitHub, to conduct mutation testing for Python solu-
tions. Mutmut is widely adopted for mutation testing research on
Python [15, 22, 24, 71]. We use Mull [17, 46] to conduct mutation
testing for C++ solutions, which is also a widely used tool with
more than 600 stars on GitHub. We set the mutation operator as
“cxx_default”, the most common setting for Mull [17, 31]. For Java,
we use PITest, a state-of-the-art mutation testing tool with 1.4k
stars on GitHub [13, 65]. As suggested by PITest, we configure the
mutation operators as “DEFAULTS”, which is stable and tends to
generate fewer equivalent mutants [53].

For survived mutants that are not killed by the test suites, we
check whether they are equivalent mutants by manual analysis.
The mutation tools we use for Java and C++ solutions conduct
byte-code level and intermediate representation level mutations
respectively and do not produce physical mutants. We thus focus on
the survived Python mutants that can be obtained directly through
the Python mutation tool.

Similar to what we explained in Section 3.3, we randomly select
381 mutants from 74,447 survived Python mutants to ensure a 95%
confidence level and a 5% confidence interval. Then the first two
authors manually check the survived mutants following the same
procedure of analyzing uncovered code (Section 3.3).

3.5 False Positive Solution Identification
To identify false positive solutions, we randomly generate extra
test inputs and then use differential testing to detect the solutions
that yield different outputs from the majority of the solutions. Al-
phaCode [36] also uses this method to identify the false positive
solutions it generates for OJ problems.

3.5.1 Test Input Generation. To answer RQ2, we randomly generate
100 inputs for each OJ problem. The input types of OJ problems
are often number, vector, and graph under specified constraints. To
generate a random number, we sample the number uniformly from
a range specified in the constraints. To generate a random vector,
such as a string or an array of integers, we sample each element in

Figure 2: The procedure of detecting false positive solutions.

this vector uniformly from the range specified in the constraints.
To generate a random graph, we use Cyaron [39], which builds a
random graph by repeatedly adding an edge between two random
vertices. For example, if the input constraints of the A+B problem
(See Figure 2) are 0 ≤ 𝐴 ≤ 105 and 0 ≤ 𝐵 ≤ 109, our random input
generator samples an integer uniformly from 0 to 105 as 𝐴, and
samples an integer uniformly from 0 to 109 as 𝐵.

3.5.2 Test Oracle Generation. For the newly generated inputs, it
is difficult to automatically identify the explicit oracles. To tackle
the oracle problem, following AlphaCode [36], we use differential
testing [41]. Differential testing runs the same set of inputs to a
series of programs with the same functionality and detects the
difference in their outputs.

Specifically, for each OJ problem, we feed the generated inputs
to all solutions that are judged as correct by the OJ test suites, and
then collect the outputs of these solutions. The solutions whose
outputs are different from the majority solutions are considered
false positive solutions.

Figure 2 shows the procedure of differential testing with an
example of the A+B problem. The inputs are two integers A and
B, and the user is asked to compute the result of 𝐴 + 𝐵. We feed
a generated input “𝐴 = 2, 𝐵 = 2” to the user-submitted solutions
that are judged as correct. As a result, the last solution outputs “5”
while other solutions output “4”. Since this OJ problem has only
one correct answer, we consider the last solution a false positive
solution. There are multi-answer OJ problems, where there are
multiple correct answers. To this end, we manually filter out 48
(5.1%) multi-answer problems for RQ2 and identify false positive
solutions for the remaining 891 OJ problems. The validity of this
approach is further investigated in Section 4.2.

4 RESULTS
This section provides results and analysis to answer our RQs.

4.1 RQ1: Code Coverage and Mutation Score
RQ1 explores the coverage and mutation score achieved by the
predefined OJ test suites. We also explore the correlation between
coverage, mutation score and other program characteristics (i.e.,
problem difficulty, lines of code, and the number of tests) to under-
stand potential factors that may influence the assessment results.

4.1.1 RQ1.1 - Code Coverage.
Solution-level coverage analysis:We first measure line coverage
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Table 2: RQ1.1: Ratio of solutions with full line coverage and
branch coverage. Overall, 91.5% of the solutions are fully line
covered, and 85.8% are fully branch covered.

Language Line coverage Branch coverage

Python 98.4% 96.3%
Java 78.2% 74.2%
C++ 97.2% 88.3%

Total 91.5% 85.8%

and branch coverage at the solution level. Table 2 shows the ratio
of solutions with full line coverage and branch coverage for each
language. We observe that the majority of the Python and C++
solutions are fully covered: 98.4% of Python solutions and 97.2%
of C++ solutions are fully line covered; 96.3% of Python solutions
and 88.3% of C++ solutions are fully branch covered; in contrast,
the coverage for Java solutions are relatively low: 78.2% of Java
solutions are fully line covered, and 74.2% of Java solutions are
fully branch covered. This may be due to the fact that Java is more
verbose [73] and as such it might be more difficult to fully cover
Java code with respect to fully covering Python and C++ code when
using the same test suite.
Problem-level coverage analysis: We also study the code cover-
age at the problem level. There are hundreds of solutions for each
problem, and we explore the standard deviation of line/branch cov-
erage for these solutions. Fig 3 shows the Cumulative Distribution
Function (CDF) results. It is interesting to observe that the coverage
results for different solutions targeting the same problem are very
similar for Python and C++: The majority of the problems’ coverage
standard deviation is below 0.1. Nevertheless, for Java, over 40%
of the problems have a standard deviation larger than 0.2. In the
following, we dig deep into the uncovered code and investigate the
cause and categories of uncovered code.
Analysis of uncovered code: Our coverage analysis reveals 2,145
Python solutions, 23,366 Java solutions and 8,094 C++ solutions
with an imperfect line or branch coverage. Following the procedure
introduced in Section 3.3, we randomly select 257 Python solutions,
372 Java solutions, and 302 C++ solutions to ensure a 95% confi-
dence level and a 5% confidence interval. We then manually analyze
these sampled solutions, which led us to discover three main types
of uncovered code: 1) Missing Branch means the uncovered part
is a branch that affects program behaviours but is not executed
during testing. Errors in this type of uncovered code will not be
exposed by the existing tests, thereby yielding a false positive so-
lution. 2) Template Code means the uncovered code is from user
templates. Some users copy chunks of templated code into all of
their solutions to improve efficiency during coding competitions.
The code templates are pre-written codes that can be widely used
for different problems, such as common I/O parsers, common math-
ematical functions, and popular data structure classes. The unused
pre-written code for a particular problem then becomes dead code
that cannot be covered. 3) Debugging Code is the code users wrote
for debugging before submission. The users may forget to delete
this code after debugging, or simply decide to keep it because it
does not affect the behaviour of the functional code.
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Figure 3: RQ1.1: CDF of problem-level median coverage and
standard deviation. (a) CDF of median line coverage of prob-
lems (b) CDF of median branch coverage of problems (c)
standard deviation of median line coverage of problems (d)
standard deviation of median branch coverage of problems

//Example of Missing Branch:
if (k % 2 == 0) {

long ans = a-b;
if (ans > th || -ans > th) {

System.out.println("Unfair");
} else {

System.out.println(ans);
}

}
//Example of Template Code:

long gcd(long a, long b){
return b == 0 ? a : gcd(b, a % b);
}
int lcm(int a, int b){
return a / gcd(a, b) * b;
}

//Example of Debugging Code:
if (tt0 < 0 || tt1 < 0 || tt0 + tt1 != n) {

throw new RuntimeException();
}

Listing 1: Three main types of uncovered code in Java.

Listing 1 shows examples of the three main types of uncovered
code in the Java language, and Table 3 shows the ratio of solutions
that contain each type of uncovered code. A solution may have
more than one type of uncovered code, and thus the ratios in a row
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Table 3: RQ1.1: Category of uncovered code. Template code
is the main reason of uncovered code.

Language Missing Branch Template Code Debugging Code Others

Python 42.8% 56.3% 4.7% 0.8%
Java 8.2% 93.2% 0.5% 1.1%
C++ 31.8% 68.0% 0.99% 2.0%

Table 4: RQ1.2: Ratio of solutions with full mutation scores.
Overall, the test suites achieve full original mutation scores
for 43.9% of solutions and achieve full covered mutation
scores for 42.8% of solutions.

.

Language Original mutation score Covered mutation score

Python 58.2% 58.4%
Java 40.1% 43.6%
C++ 35.6% 35.7%

Total 42.8% 43.9%

may not necessarily sum up to 1. Interestingly, we observe that
the majority of the uncovered code in Java is caused by Template
Code. One possible reason is that Java is a verbose language [73],
and users have a relatively stronger motivation to copy pre-written
code to save coding time compared to other languages. We also
observe that over half of the uncovered cases in Python and C++
are caused by Template Code or Debugging Code, which are not
supposed to change a program’s behaviour and are unlikely to yield
false positive solutions. In other words, test suites are not expected
to cover them. These observations pose concerns regarding the
effectiveness of coverage criteria in test suite assessment, which
are further explored in RQ2 (Section 4.3).

4.1.2 RQ1.2 - Mutation Score. We conduct mutation testing for all
the collected OJ solutions. For each solution, we collect two types
of mutation scores: original mutation score and covered mutation
score. The former is calculated as the ratio of killed mutants against
the total number of mutants; the latter is the ratio of killed mutants
against only those mutants on covered lines of the program.
Solution-level mutation score analysis: Figure 4 illustrates the
results for mutation score distribution. The last column of Table 4
also shows the ratio of solutions with full mutation scores. For the
original mutation score (Figure 4.(a) and (c)), Java solutions have
lower mutation scores than Python and C++. This is as expected,
because Java solutions have the lowest coverage as shown in Sec-
tion 4.1.1, yet mutants on uncovered code cannot be killed. Once
we count only the mutants on the covered code (Figure 4.(b) and
(d)), the mutation score of Java solutions increases remarkably.

When comparing mutation score with line coverage and branch
coverage, we observe that the values of mutation score are much
lower than the two coverage criteria. In particular, we can observe
from Table 4 that only around 60% of the Python solutions, 40%
of the Java solutions, and 35% of the C++ solutions have a full
mutation score. These observations indicate that achieving full
mutation coverage is more difficult than achieving full statement
or branch coverage.
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Figure 4: RQ1.2: CDF and violin plot of solution-level muta-
tion scores (original and covered). (a) CDF of mutation score
(original) of solutions. (b) CDF of covered mutation score
(covered) of solutions. (c) Violin plot of mutation score (orig-
inal) of solutions. (d) Violin plot of mutation score (covered)
of solutions.

Problem-level mutation score analysis: Figure 5 shows the me-
dian mutation score as well as the standard deviation for different
problems. Compared to Figure 3, the mutation score of different
solutions for one problem is more diverse than the coverage. For ex-
ample, the ratio of problems whose standard deviation being below
0.1 is 85% for mutation score, but almost 100% for line coverage.
Analysis of equivalent mutants: In mutation testing, a mutant
can be equivalent, which means the mutation does not bring any
semantic changes [32, 50]. The existence of equivalent mutants
brings noise to the use of mutation score in assessing test suites
because equivalent mutants cannot be killed. In this section, we
manually check the survived mutants in order to analyze the preva-
lence and categories of equivalent mutants. We only focus on the
mutants that are covered, because they provide extra information
that code coverage cannot provide.

As we describe in Section 3.4, we manually check 381 Python
survived mutants. To better understand these mutants, we classify
them into three types: inequivalent mutants, universally-equivalent
mutants, and constraint-equivalent mutants. If a mutant’s behaviour
is semantically equivalent to the original program, we classify it
as universally-equivalent (which is the same as the definition of
equivalent mutants in traditional mutation testing). If a mutant is
semantically different from the original program, but the difference
exists only for inputs that disobey the input constraints, we classify
it as constraint-equivalent. In other words, constraint-equivalent
mutants are equivalent to the original program under all the inputs
satisfying the constraints. This type of equivalent mutant is impor-
tant because different from traditional programs, an OJ program is
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Figure 5: RQ1.2: CDF of problem-levelmedianmutation score
(original and covered) and standard deviation (stdv). (a) CDF
of median mutation scores (original) of problems (b) CDF
of median mutation scores (covered) of problems (c) stdv of
median mutation scores (original) of problems (d) stdv of
median mutation scores (covered) of problems.

Figure 6: RQ1.2: Composition of survived mutants. Overall,
95.3% of survived mutants are equivalent.

coded to behave correctly for only the inputs under the constraints
of the problem description (see Section 2.1). Last, if a mutant is
semantically different from the original program under any input
satisfying the constraints, we classify it as inequivalent.

Figure 6 shows the distribution of the three types of surviving
mutants. Surprisingly, the majority (95%) of the survived mutants
are either universally-equivalent (30%) or constraint-equivalent
(65%). Inequivalent mutants, which survived due to inadequate test
suites, account for less than 5%.

We suspect that constraint-equivalent mutants are prevalent
because the constraints are usually tight, and the inputs that ex-
pose the differences between mutants and the original program
can easily fall outside the range. For example, there is a problem

whose input constraint is a positive or negative integer. The output
is the sign of the input integer. A passed solution for this problem is
𝑖 𝑓 (𝑥 < 0){𝑝𝑟𝑖𝑛𝑡 𝑓 (“ − ”); }𝑒𝑙𝑠𝑒{𝑝𝑟𝑖𝑛𝑡 𝑓 (“ + ”); }, and a survived mu-
tant is to replace 𝑥 < 0 with 𝑥 < 1. If we mutate 0 to 1 in the
condition statement, the mutant program is constraint-equivalent,
because the test input (i.e., 𝑥 = 0) that causes different behaviours
does not satisfy the input constraints.

The large ratio of equivalent mutants will significantly affect
the effectiveness of mutation scores in accessing OJ tests. If we
use the ratio of equivalent mutants to estimate the mutation score
modulo equivalent mutants, the average covered mutation score
will be changed from 43.9% (shown in Table 4) to 97.4%. In RQ3
(Section 4.3), we dig deep into the effectiveness of mutation score
in test assessment. We also discuss the challenges and research
opportunities for mutation testing in Section 5.

4.1.3 RQ1.3 - Correlation between Different Metrics. The correla-
tion between different test assessment metrics has been widely
studied by previous work [5, 29, 74]. In this part, we explore the
correlation between different metrics on OJ solutions. Our vari-
ables are comparable rank variables so we choose Spearman’s rank
correlation which is suitable for our experiment.

We conduct Spearman correlation analysis for each of the fea-
tures we introduced in Section 3, including:

• LC: Line coverage of the solution.
• BC: Branch coverage of the solution.
• MS-O: Mutation score with all the mutants.
• MS-C: Mutation score with covered mutants.
• L: Lines of code.
• D: Difficulty of the problem the solution attempt to answer.
• #T: The number of test cases per problem.

Figure 7 shows the correlation results. The p-values of all corre-
lations in the figure are smaller than 1e–5. Following conventional
interpretation [59], we regard the correlation coefficient (absolute
value) between 0.9 and 1 as a very strong correlation, 0.7–0.89 as
a strong correlation, 0.4-0.69 as moderate, 0.1-0.39 as weak, and
smaller than 0.1 as negligible. Based on the results obtained, we can
make the following primary observations: 1) line coverage, branch
coverage, and mutations core are strongly, or very strongly, corre-
lated with each other for Java solutions, but are weakly correlated
with each other for Python and C++ solutions. Most existing work
on the correlation between these metrics was conducted on Java
programs [29, 74, 76]. This observation indicates that programming
language is an important factor that should not be overlooked for
such types of correlation analysis. 2) the number of tests has a
negative correlation with code coverage and mutation score, re-
spectively. This is because solutions with more lines of code are
more difficult to have high coverage and mutation score, although
they have more tests than short solutions. This observation is com-
pletely opposite to previous findings where test suite size is either
found to have a very strong correlation with coverage [76] or play
an important role in the observed correlation [29].
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Figure 7: RQ1.3: Spearman’s rank correlation coefficient for different variables. (a) Python (b) Java (c) C++. We find the more
difficult the problem, the harder for test suite to achieve high coverage and mutation score, even with more test cases.

Answer to RQ1: On average, 91.5% of the OJ solutions
have full line coverage, 85.8% have full branch coverage,
and 42.8% have full mutation score. However, the majority
(95.3%) of survived mutants are equivalent mutants. The
correlation between line coverage, branch coverage, and
mutation score highly depends on the programming lan-
guage a solution adopts. Additionally, the number of tests
is observed to have a negative correlation with coverage
and mutation score on OJ solutions.

4.2 RQ2: Prevalence of False Positive Solutions
From RQ1, we have observed that both coverage and mutation score
(modulo equivalent mutants) assess that the existing OJ tests are
very strong. In RQ2, we investigate whether their assessment is
reliable. To answer this research question, we check whether there
are false positive solutions that contain bugs yet they are accepted
as correct solutions by the predefined OJ test suites for the 891 OJ
problems we investigated herein. The experimental setup details
are described in Section 3.5.
Adequacy of the detected false positive solutions: When de-
tecting false positive solutions, we randomly generated 100 inputs
within the constraints specified for each problem. Before reaching
any conclusions, we explore how the number of generated inputs
influences the number of problems that contain false positive so-
lutions as well as the number of false positive solutions. This will
give us hints on the reliability of using 100 inputs for false positive
solution detection. Figure 8 shows the results. The x-axis is the
number of generated inputs. The orange line is the number of prob-
lems that are detected to contain false positive solutions, which
reaches a plateau when there are around 15 inputs. The blue line
is the number of detected false positive solutions, which reaches a
plateau when there are around 95 inputs. These observations give
us confidence that using 100 inputs per OJ problem is powerful in
detecting false positive solutions and problems that contain false
positive solutions.
Number and ratio of false positive solutions: Table 5 shows the
number and ratio of false positive solutions as well as the problems
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Figure 8: RQ2: The effect of the number of generated inputs.
We find that 100 inputs per problem are adequate enough in
finding the problems with false positive solutions.

Table 5: RQ2: Number of false positive solutions and number
of OJ problems with false positive solutions. Overall, 43.1%
of problems are found to contain false positive solutions.

Language False positive solutions (FPS) Problems with FPS

Python 954 (0.9%) 115 (12.9%)
Java 796 (0.8%) 158 (17.7%)
C++ 2,040 (1.4%) 329 (36.9%)

Total 3,700 (1.1%) 384 (43.1%)

with false positive solutions. We find 954 Python false positive solu-
tions over 115 problems, 796 Java false positive solutions over 158
problems, and 2,040 C++ false positive solutions over 329 problems.

Interestingly, from the last row of Table 5, we observe that as
many as 43.1% of the OJ problems are found to have false positive
solutions. This high ratio is out of our expectations, especially
considering the popularity and the large number of users of the
OJ platform we study herein, and the extremely good coverage
and mutation score of the test suites we observed in RQ1. This
brings a question regarding whether coverage and mutation score
is effective in test assessment for OJ platforms, which we further
explore in RQ3.
Distribution of majority output ratio among the false posi-
tive solutions: When we feed a generated test input into different
solutions for an identical problem, false positive solutions will have
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Figure 9: CDF of the minimal majority output ratio of prob-
lems with false positive solutions, 84.1% of the problems
achieve a minimal majority output ratio larger than 0.9.

different test outputs from the majority of solutions. We thus fur-
ther investigate the distribution of the output diversity on the false
positive solutions we have detected. Specifically, we call the per-
centage of solutions with the majority output among all solutions
of a problem asmajority output ratio. For each OJ problem, every
generated test input that leads to different outputs has a majority
output ratio, and we present the smallest majority output ratio
among all such inputs.

Figure 9 shows the distribution. We can see that almost all the
problems’ minimummajority output ratio is larger than 0.5. A larger
majority output ratio often indicates more reliable bug detection
results. There are 14 problems whose outputs are extremely diverse,
and whose majority output ratio is below 0.5. The two first authors
manually check the correctness of their solutions to guarantee that
the solutions with majority outputs are indeed correct, and thus
the solutions with different outputs are buggy. More characteristics
of the false positive solutions are discussed in Section 5.1.

Answer to RQ2: The differential testingmethod we adopt
detects 3,700 bugs, which are ignored by the existing OJ
tests. A large proportion (43.1%) of the OJ problems we
study are found to have false positive solutions.

4.3 RQ3: Effectiveness of Test Suite Assessment
For each solution, both coverage and mutation score can provide
assessment results related to the reliability of the solution’s test
suite. A high assessment score is expected to provide developers
with confidence that the solution is less likely to be buggy. To
answer RQ3, we analyze the number of false positive solutions with
full coverage and mutation score to see how many bugs would
be ignored if developers choose to trust the assessment results
provided by the coverage and mutation score values. Table 6 shows
the results. In each cell, the larger the number and ratio, the less
effective the metric is in assessing test reliability.

The first observation we immediately notice is the surprisingly
high ratios of false positive solutions with a full line coverage. In
particular, as high as 97.7% of the false positive solutions in Python
and 96.3% of the false positive solutions in C++ have 100% line
coverage. This means that the test suites for those solutions are
assessed as perfect by line coverage, but they fail to detect the bug(s)

Table 6: Number and ratio of false positive solutions with
perfect coverage and mutation score. Totally, the test suites
achieve full line coverage, full branch coverage, full muta-
tion scores for 88.7%, 79.0% and 37.8% of the false positive
solutions, respectively.

Language Line Coverage Branch Coverage Mutation Score

Python 389 (97.7%) 382 (96.0%) 239 (60.2%)
Java 331 (69.5%) 284 (59.7%) 138 (28.9%)
C++ 701 (96.3%) 600 (82.4%) 229 (31.5%)

Total 1,421 (88.7%) 1,266 (79.0%) 606 (37.8%)

in the solutions, yielding false positive solutions. In other words, for
Python and C++ solutions, the line coverage hardly provides any
useful information in judging whether the test suite is adequate in
revealing bugs. If developers choose to trust the assessment results
of line coverage, the majority of false positive solutions have perfect
line coverage and will be undetected.

When comparing line coverage, branch coverage, and mutation
score, we observe that for all three programming languages, there
are lower ratios of false positive solutions with a full branch cover-
age than with a full line coverage. These observations suggest that
branch coverage is more powerful than line coverage in exposing
the weakness of tests. The ratios of mutation scores are the low-
est among the three assessment metrics. However, considering the
prevalence of equivalent mutants, it is difficult to reach a conclusion
about the effectiveness of mutation score in avoiding false positive
solutions.

When comparing different programming languages, the three
metrics are themost effective when assessing Java solutions, and the
least effective when assessing Python solutions.We suspect that this
is related to the fact that the Java language is more redundant than
other languages: inputting and outputting, creating data structures,
etc. in Java requires writing more complex code. As a result, Java
coders are more likely to copy a piece of template code to their
submitted solution.

Answer to RQ3: Among the false positive solutions we
have detected, 88.7% of them have full line coverage, 79.0%
have full branch coverage, and 37.8% have full mutation
scores. These observations reveal that a large ratio of bugs
will be ignored if developers choose to fully trust the test
assessment results provided by the coverage and mutation
score of the existing OJ test suites.

5 DISCUSSION
This section discusses the characteristics of our detected false pos-
itive solutions, the threats to the validity of our study and the
implications of our observations.

5.1 Characteristics of False Positive Solutions
This section digs deep into the characteristics of the false positive
solutions we reported in RQ2. We randomly select 50 problems that
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Table 7: Categories of false positive solutions. The examples in the last column can be found in our dataset [37].

Bug Type (Percentage) Description Example(Contest-Solution)

Corner case error (73.18%) The algorithm does not consider corner case inputs. ABC144B-147.py
Incorrect loop range (13.13%) The upper or lower bounds of the loop statement are incorrect. ABC135B-130.py
Incorrect type (5.03%) The code does not convert types for variables. ABC129A-118.py
Incorrect assignment (1.68%) The assignment of variables is incorrect. ABC157C-130.py
Error on float (4.47%) The bug is caused by floating point precision errors. ABC169C-104.py
Error on spelling (1.68%) The bug is caused by the misspelling of variable names. AGC014A-29.py
Hack solution (0.84%) The code is not designed to solve the problem but to take advantage of the weakness of the tests to get passed. ABC150A-65.py

contain false positive solutions and manually analyze their Python
solutions. In total, 358 false positive Python solutions are analyzed.

As one might expect, investigating “the nature of false positive
solution” is akin to investigating the (very wide) question of “the
nature of software bugs”. It is typically a highly context-sensitive
issue and can necessitate a case-by-case answer.

Notwithstanding these inherent limitations, our manual analysis
did highlight some similarities. At the solution level, we summarise
the reasons for the bugs in false positive solutions in Table 7. In
conclusion, most false positive solutions are buggy due to missing
corner cases (i.e., their algorithms do not consider all possible cases
and output incorrect answers on corner case inputs). There are
also false positive solutions due to incorrect loop range, incorrect
variable type, float errors, and incorrect spelling. Interestingly, we
also find three hack solutions, which are not written to solve the
problem but simply to hack the weak test cases with completely
incorrect logic.

At the problem level, we find that different false positive solu-
tions of the same problem often share identical bug reason due to
the same corner case missed by the test suite. Specifically, 90% of
the sampled problems contain bugs of only one type, the rest 10%
of the problems contain bugs of two types and no problem contains
bugs of more than two types.

A more comprehensive analysis would require substantial fur-
ther work, which includes bug localisation and bug repair on each
of the 3,700 false positive solutions and also a comparison with
other bugs found in non-OJ systems. We have made our dataset
public [37] to help fully facilitate such future work.

5.2 Threats to Validity
Dataset Construction. A potential threat to the external validity
of our empirical study lies in the data we use. To mitigate this
threat, we collect data from AtCoder, which is the only popular
OJ platform that has open-sourced its full set of predefined tests
available. We also choose problems published from 2016 to 2021 for
data reliability. Additionally, the problems in our dataset come from
different contests with different difficulties, which indicates a high
diversity. Moreover, we extract all solutions from the CodeContests
dataset, as these solutions have been pre-processed by clustering,
filtering, and de-duplicating, to remove repeated solutions and
invalid solutions [36, 55].
Test Oracle Reliability. Generating correct test oracles is the
main challenge in our work. Differential testing can determine that
there are some wrong programs giving wrong answers but cannot
determine which answer is right, and it may introduce bias into our
work. To mitigate this threat, we first ensure that all the problems

we analyze with differential testing are not multi-answer problems
by checking the description and the example input-output pair of
every problem. Then we calculate the minimal majority answer
ratio to get a better understanding of the validity of our test oracle as
we can trust an answer with a very high percentage (more than 90%),
and actually, we find more than 80% of such a high majority ratio.
Moreover, two authors manually check the legality of generated
inputs of all the problems that are found to have false positive
solutions in differential testing.
Test Assessment Metrics and Tools. A possible threat to con-
struct validity lies in the test assessment metrics and tools that
we use. To mitigate this threat, we select the widely-used and
well-studied [42] test metrics: line coverage, branch coverage, and
mutation score to assess the reliability of the test suites of OJ
problems. We also select the most popular open-source tools on
GitHub [9, 46, 48] to carefully measure these metrics according to
their documentation. Moreover, we configure the tools with the
most common settings for the sake of generality [14, 53].

5.3 Implications and Challenges
Based on the preceding derived findings, we discuss implications
and challenges for OJ platform developers, users, and researchers.
Implications for OJ platform developers. Our study reminds
OJ platform developers that testing does not assure correctness.
It is difficult to judge a program as bug-free even for widely ac-
cessed coding problems with strict input constraints (where the
constraints free the programmers from considering the robustness
of their solution programs). In addition, developers may risk test
reliability if they fully trust the assessment results provided by
the existing coverage and mutation score techniques. Furthermore,
the results of RQ2 demonstrate that using a random test genera-
tion with differential testing can help improve the quality of test
suites and cover more corner cases. OJ platform developers can also
choose to update the test suite of problems routinely as the num-
ber of solutions grows with time, in this way, differential testing
could be more powerful in finding corner cases as more versions of
programs with the same function [19] become available.
Implications for OJ users. Online judge platforms have a huge
user base. According to official reports, there are more than 150,000
registered users of AtCoder. The set of correct solutions is often
made available to OJ platform users for them to learn and train
how to code. Our study reveals that a passed solution is not always
guaranteed to be a correct solution on the OJ platform. OJ platform
users should be aware of this and not take for granted that the
solutions that are accepted by the platforms are all correct solutions.
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Implications for researchers. Based on our study, there are limi-
tations of existing code coverage and mutation testing techniques
in assessing the reliability of tests in bug detection. It is demanding
for software engineering researchers to provide novel coverage
and mutation testing techniques to combat the issues we find. For
coverage criteria, our analysis on uncovered code (Section 4.1.1)
indicates that new coverage criteria that disregard template code
and dead code are needed; for mutation score, removing equivalent
mutants can make mutation testing more practical. In this way, our
results highlight the need for future work on equivalent mutant
detection, especially for constraint-equivalent mutants.

The OJ problems and solutions can serve as well-defined datasets
for software testing research purposes due to many of their unique
characteristics. For example, researchers from the software engi-
neering community can use such datasets for improving the effec-
tiveness of bug prediction and detection techniques.

Moreover, recent years have witnessed the trend of using large
language models for code generation and code completion. Most
code generation tools (e.g., AlphaCode [36]) and commercial prod-
ucts (e.g., OpenAI’s ChatGPT [49], GitHub’s Copilot [1] and Tab-
nine [2]) adopt online judge problems and solutions in their training
data. Our study reminds researchers from the artificial intelligence
community of the existence of false positive solutions when they
adopt datasets from online judge platforms. Researchers can choose
to either filter the false positive solutions in the training data or
conduct proper machine learning testing [72] and black-box re-
pair [62, 63] to improve the correctness and robustness of the gen-
erated code.

6 RELATEDWORK
This section summarises the related literature from two aspects:
online judge systems and test suite reliability.
Online judge systems. OJ systems are firstly designed for educa-
tion, and thus previous studies mainly focus on understanding the
role that OJ platforms play in education, and on improving their
educational effectiveness. Zhao et al. [77] observed that users tend
to choose OJ problems in a sequential manner according to their po-
sitions or choose problems on the same topic. Based on this finding,
they developed a Markov model to detect topics of OJ problems and
recommend new problems to the users. Xia et al. [68] developed
an interactive visualization system that recommends a learning
path for OJ platform users based on other users’ choices. Huang et
al. [25] proposed a deep reinforcement learning framework to rec-
ommend exercises for users by jointly optimizing multi-objective
functions such as smoothness of difficulty and engagement. Zhu et
al.[78] developed a system namely HomoTR to recommend tests for
a program solution by measuring the homology of two solutions.

Recently there are also studies focusing on automatic feedback
and repair for programming solutions. These studies primarily pro-
pose feedback and repair techniques based on code clustering and
code similarity using a large corpus of submitted solutions on the
OJ platform [10]. Radicek et al. [56] proposed a program repair
algorithm based on program matching. Perry et al. [51] proposed
a program clustering algorithm based on quantitative semantic
features for introductory programs such as OJ solutions. Song et
al. [60] leveraged context information of OJ solutions to implement

a function-level matching algorithm to automatically repair incor-
rect solutions. Tan et al. [64] collected incorrect OJ solutions and
generated patches for them to build a benchmark for automated
program repair techniques. All these studies rely on testing to judge
the correctness of a solution, while our work reveals that the test
suite might not be reliable.

Most recently, the OJ problem statement and the correspond-
ing coding solutions have also been used as training data for big
language models, such as AlphaCode [36] and CodeX [11].
Test assessment. The reliability (or effectiveness) of a test suite
is a traditional and important topic in software testing. Code cov-
erage is a general test suite reliability metric, the history of code
coverage dates back to 1963 [43]. Software engineers have pro-
posed different types of coverage criteria such as line coverage,
branch coverage, path coverage, and modified condition/decision
coverage [6, 54, 61]. Mutation testing is another widely-used met-
ric for measuring the reliability of a test suite. Mutation testing
was proposed in 1978 [16], and there has been a lot of research on
mutation testing. The most recent work focuses on the empirical
assessment of practical mutation testing [7, 52, 58] or improving the
effectiveness and performance of mutation testing [26, 33]. In terms
of the assessment of OJ tests, Li et al. [36] produced AlphaCode to
automatically generate OJ solutions. They did a study to manually
checked a sample of their generated solutions. The false positive
solution rate is around 4%. However, they did not study the test
assessment reliability on human solutions.

7 CONCLUSION & FUTUREWORK
In this paper, we presented a large-scale empirical study on the
reliability of the test suites for 939 OJ problems with 541,552 user-
submitted code solutions. We measured line coverage, branch cov-
erage, and mutation scores for these solutions. Furthermore, we
used differential testing to unveil the prevalence of false positive
solutions. We found that 37,00 solutions are buggy yet they pass the
test suite. Such solutions cover 43.1% of the problems available in
the OJ platform under study. We have also revealed the limitation
of using code coverage and mutation score to assess the reliability
of the test suite for OJ solutions.

Our study took the first step in investigating the test suite relia-
bility of online judge platforms. There are several promising future
research directions. As online judge platforms are a wealthy source
of programming problems and code for large language models, and
are daily used by millions of users to improve and test their coding
skills, it is worthwhile to explore the hidden values and threats
behind their use.
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