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ABSTRACT

Online Judge platforms play a pivotal role in education, competi-

tive programming, recruitment, career training, and large language

model training. They rely on prede�ned test suites to judge the

correctness of submitted solutions. It is therefore important that the

solution judgement is reliable and free from potentially misleading

false positives (i.e., incorrect solutions that are judged as correct). In

this paper, we conduct an empirical study of 939 coding problems

with 541,552 solutions, all of which are judged to be correct accord-

ing to the test suites used by the platform, �nding that 43.4% of the

problems include false positive solutions (3,440 bugs are revealed

in total). We also �nd that test suites are, nevertheless, of high qual-

ity according to widely-studied test e�ectiveness measurements:

88.2% of false positives have perfect (100%) line coverage, 78.9%

have perfect branch coverage, and 32.5% have a perfect mutation

score. Our �ndings indicate that more work is required to weed out

false positive solutions and to further improve test suite e�ective-

ness. We have released the detected false positive solutions and the

generated test inputs to facilitate future research.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.
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1 INTRODUCTION

Online Judge (OJ) systems are designed for providing coding tasks

and then evaluating the solutions submitted by users. The tasks

are typically challenging coding problems (e.g., those with tricky

corner cases and complex engineering trade-o�s) that include a

narrative statement of requirements, together with example inputs

and outputs. OJ platforms have been widely adopted to support

education [21, 33, 66], code contests [56, 65], recruitment [65], and

programming training [18]. OJ problems and solutions are also

essential resources for the training data of large language models,

such as ChatGPT [48], AlphaCode [35] and Github’s Copilot [1].

Take recruitment as an example, big companies such as Ama-

zon, Linkedin, and Bytedance use OJ platforms to source, screen,

and interview developers. In addition, many OJ platforms help

would-be software engineers train against a set of typical coding

interview problems [3, 4, 26, 43, 69]. OJ platforms thereby form a

critical gatekeeper that partly determines the composition of the

Software Engineering profession: they contribute to the processes

by which software engineers are educated, trained, and assessed,

and the criteria for joining the Software Engineering profession. It

is therefore essential to understand the properties of the OJ process

from multiple perspectives.

Existing research on OJ platforms primarily focuses on appli-

cations in Software Engineering education [8, 21, 33, 56, 66, 78].

However, there have been very few studies on the issues that might

impact the e�cacy of the online judgement process. It is here that
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Software Testing research has a role to play in �nding ways to iden-

tify and improve candidate solutions, and the test suites used to

evaluate them. In particular, OJ platforms use prede�ned test suites

to automatically judge the correctness of submitted solutions [65].

Software testing thereby has a direct, profound, and lasting im-

pact on the correct operation of OJ systems, and on the advice and

guidance they provide.

There is no previous work that seeks to systematically under-

stand and assess OJ test e�ectiveness. Forišek et al. [20] have previ-

ously highlighted the problem that software testing might prove to

be unreliable for code contests such as the ACM International Colle-

giate Programming Contest (ICPC) and the International Olympiad

in Informatics (IOI) competitions. However, although they identi-

�ed these important potential limitations, there has, hitherto, been

no further empirical study. Based on the current literature, we thus

have no results on OJ test suite e�ectiveness. Nor do we have any

assessment of the prevalence of false positive solutions (i.e., in-

correct solutions that are judged as correct) among those o�ered

to train, recruit and guide the Software Engineering practitioner

community.

With the rise of using large language models for code generation,

it is more and more vital to guarantee that the OJ solutions in the

training data are correct. In fact, we have already observed a case

where ChatGPT provides an incorrect solution which is exactly

identical to one of our detected false positive solutions1. This case

further reveals the importance of understanding and detecting false

positive solutions in OJ platforms.

This paper tackles these important gaps in the current literature

on OJ platforms. Based on a large-scale empirical study of 541,552

code solutions to 939 publicly available coding problems, the paper

assesses OJ test suite e�ectiveness with respect to 4,703,239 mutants.

All solutions have passed the prede�ned tests and are thus judged,

by the OJ platform, to be correct. We collect our dataset from At-

Coder [26], a well-known OJ platform that makes test suites and

model solutions publicly available. We measure the line coverage,

branch coverage, and mutation score for all the solutions we collect,

and calculate their correlation with program features such as lines

of code and the number of tests. We then use test generation and

di�erential testing to detect whether there remain false positive

solutions among those o�ered. Finally, we report on the degree to

which widely-studied coverage techniques are e�ective at exposing

any weaknesses in the OJ test suites.

Our study reveals the following key �ndings: 1) Overall, OJ tests

have very good reliability according to coverage andmutation score:

91.5% of the OJ solutions have full line coverage, and 85.8% have

full branch coverage. Although only 42.8% of the solutions have

full mutation scores, the majority (e.g., 95.3% for Python) of the sur-

vived mutants are equivalent mutants. 2) The correlation between

line coverage, branch coverage, and mutation score highly depends

on the programming language that a solution adopts. Additionally,

the number of tests is observed to have a negative correlation with

coverage and mutation score on the OJ solutions that we study. 3)

Despite the high coverage and mutation score (modulo equivalent

mutants), we detect 3,440 bugs, which are ignored by the existing

OJ tests. A large proportion (43.4%) of the OJ problems that we

1The details for the false positive solutions can be found in our homepage [36].

Figure 1: Online Judge PlatformWork�ow.

study are found to contain false positive solutions. 4) A further

investigation of the detected false positive solutions indicates that

88.7% of the false positive solutions have full line coverage, 79.0%

have perfect branch coverage, and 37.8% have full mutation scores.

These observations reveal the limitations and challenges of the ex-

isting test assessment techniques as well as a series of opportunities

to improve them.

To conclude, this paper makes the following contributions:

• An empirical study on the coverage and mutation score for online

judge solutions that have passed the prede�ned tests.

• An analysis of uncovered code and survived mutants.

• An investigation on the e�ectiveness of coverage and mutation

score in avoiding false positive solutions.

• An open-source benchmark with false positive solutions named

TrickyBugs [36] to facilitate software bug-related research.

The rest of the paper is organized as follows. Section 2 introduces

the preliminaries of our study. Section 3 describes our research

questions and experimental setup. Section 4 answers the research

questions based on the experimental results we obtained. Section 5

discusses the threats to the validity of this study and the implica-

tions of our results. Section 6 summarizes related work, followed

by concluding remarks in Section 7.

2 PRELIMINARIES

2.1 Online Judge Platforms

OJ platforms provide coding problems (namely OJ problems) for

users, and then automatically judge the correctness of the solutions

submitted by the users. Figure 1 presents the work�ow of a generic

OJ platform.

An OJ problem mainly consists of a problem statement and a pre-

de�ned test suite. The problem statement introduces the coding tasks

and speci�es the input and output formats (e.g., a series of integers)

of the problem. In addition, it provides the input constraints (e.g.,

the input should be a positive integer if it represents the number

of objects). The problem statement often provides example inputs

and outputs to guide users. The users can specify the programming

language they want to use, write the code to solve the OJ problem,

and then submit their own solutions to the OJ platform. Once a

solution is submitted, the OJ platform compiles the solutions (if

necessary) according to the speci�ed language and judges the solu-

tion’s correctness by using a prede�ned test suite. The prede�ned

test suite is not visible to users. A submitted solution is considered
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correct only if it can produce correct outputs for all the test cases

in the test suite [44].

The test suites are therefore the OJ platform “judges”, who deter-

mine whether a submitted solution is correct. A vital yet underex-

plored problem is: How reliable are these “judges”? Is it likely that

the test suites misjudge the correctness of some solutions? This

paper aims to answer such questions. If the test suite judges a buggy

solution as correct, we call the solution a false positive solution.

2.2 Test Assessment Metrics

The main goal of this study is to assess the reliability of test suites

in OJ platforms. To this end, we use three test assessment metrics

that are most widely studied in the literature: line coverage (LC),

branch coverage (BC), and mutation score (MS) [31, 68].

• Line coverage measures the percentage of executed lines of the

source code against the total lines of code when running the test

suite. Its assessment of the test suite is based on the truth that

bugs in the uncovered code can never be detected by the test

suite.

• Branch coverage is similar to line coverage. It measures the

percentage of covered branches. For example, an if statement in

the source code creates two execution branches, and a reliable

test suite is expected to cover both branches.

• Mutation score is the score used in mutation testing [49]. Mu-

tation testing makes minor changes to the source code by using

di�erent mutation operators. The modi�ed programs are called

mutants. A mutant is called an equivalent mutant if its semantic

is equivalent to the original program, despite being syntactically

di�erent. If the test suite is not able to di�erentiate a mutant

and its original program, we call this mutant a survived mu-

tant. Otherwise, we call it a killed mutant. The mutation score

is the percentage of killed mutants against the total number of

non-equivalent mutants. In practice, due to the challenges in

automatic equivalent mutant detection, mutation score is often

calculated as the percentage of killed mutants against the whole

set of mutants in the existing mutation testing tools [9, 13, 45].

Considering that uncovered mutants cannot be killed, we use two

types of mutation scores in our study, i.e., the original mutation

score and the covered mutation score. The former is computed

based on all mutants (i.e., mutants applied to any line of the

program); the latter is computed based on only those mutants ap-

plied to covered lines of the program (i.e., lines that are executed

by the test suite).

3 METHODOLOGY

This section introduces our research questions, data collection pro-

cess, test assessment techniques, and false positive identi�cation

approach that we use to detect bugs that have been overlooked by

existing OJ test suites.

3.1 Research Questions

We aim to answer the following research questions in our study.

RQ1: What coverage and mutation score are achieved by the OJ

test suites used to judge coding solutions?

RQ1.1: What coverage is achieved by the OJ test suites and what is

the cause for uncovered code?

Table 1: Sizes of solutions and tests in the dataset we collect.

Measurement Min Max Average

Lines of codes (Python) 1 413 13.5

Lines of codes (Java) 1 4,507 68.0

Lines of codes (C++) 1 1,066 31.2

Sizes of tests 2 148 30.9

RQ1.2: What mutation score is achieved by the OJ test suites and what

is the cause for survived mutants?

RQ1.3: How do coverage and mutation score correlate with other

problem characteristics (e.g., problem di�culty, the number of tests,

and lines of code)?

RQ2: Are there false positive solutions that are judged as correct

by OJ test suites but are actually buggy?

RQ3: How do existing test assessment techniques contribute to the

identi�cation of false positive solutions?

3.2 Dataset Collection

To answer our research questions, we need to analyze OJ problems

as well as user-submitted solutions and prede�ned OJ test suites. To

this end, we use data from AtCoder [26] for the following reasons:

1) it is a well-known OJ platform with more than 150,000 active

users; 2) its data has been widely used for research purposes [23, 35,

39], and is included in the well-known CodeNet dataset [54] and

CodeContests dataset [35]; 3) it is the only popular OJ platform

that makes its full set of prede�ned tests available to download2.

We downloaded the AtCoder problems and the corresponding

accepted solutions (i.e., solutions that are judged as correct by the

prede�ned test suites) from CodeContest, where duplicate problems

and solutions were already removed [35, 54]. This data consists

of 939 coding problems and 541,552 accepted solutions, including

168,909 Python solutions, 138,401 Java solutions, and 234,242 C++

solutions. In our study, we focus on solutions written in Python,

Java, and C++, because these are the three most popular languages

in OJ platforms [35], accounting for 96.7% of all solutions available.

We then collect the prede�ned test suites for each problem from

the o�cial website provided by Atcoder [27]. Among the 939 coding

problems downloaded fromCodeContest, AtCoder website does not

provide full test suites for 88 problems that are outdated. We thus

use the remaining 851 problems in RQ1 and RQ3 for coverage and

mutation score analysis, whereas we use the whole set of problems

in RQ2 where the availability of tests does not a�ect the results.

Table 1 summarizes the sizes (min/max/avg) of solutions and test

suites in our dataset.

For each solution, we also collect the di�culty of the problem,

the number of prede�ned tests, and the lines of code. We obtain

the di�culty for each coding problem calculated by a third-party

website [46], which is estimated statistically according to the level

of users who solve the problem successfully during the contest.

2CodeContests provides test cases for other OJ platforms, but the test cases are only
example tests in the problem statements and a subset of hidden test cases that are
made available at the evaluation result pages once a contest is �nished, which are
di�erent from the prede�ned full set of tests adopted by the platforms.
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3.3 Code Coverage Analysis

To answer RQ1, we �rst measure the line coverage and branch

coverage of the test suites. Line coverage and branch coverage are

the two most commonly-used coverage metrics in academia and

industry [41].

For Python solutions, we use Coverage.py [47], a widely-used

tool for measuring the coverage of Python code. For C++ solutions,

we use the source-based code coverage feature of clang [34] in order

to measure line coverage and branch coverage. For Java solutions,

we use JaCoCo [29], which is well-known for its integration with

the Eclipse workbench.

We also manually analyze the uncovered code for each language.

We randomly sample the solutions with uncovered code to ensure

a 95% con�dence level and a 5% con�dence interval following pre-

vious work to save manual e�orts while also obtaining statistically

signi�cant conclusions [12, 37, 74]. Then, the �rst two authors, who

have �ve and eight years experience of participating in OJ contests,

manually analyze the sampled solutions. The analysis consists of

two rounds. In the �rst round, the two authors independently ana-

lyze each solution and identify the cause for the uncovered code.

In the second round, they discuss their results jointly and resolve

con�icts by introducing other authors as arbitrators.

3.4 Mutation Score Analysis

To answer RQ1, we also need tomeasure themutation score achieved

by the OJ test suites. We use mutmut [9], a tool having over 600

stars on GitHub, to conduct mutation testing for Python solu-

tions. Mutmut is widely adopted for mutation testing research on

Python [15, 22, 24, 70]. We use Mull [17, 45] to conduct mutation

testing for C++ solutions, which is also a widely used tool with

more than 600 stars on GitHub. We set the mutation operator as

“cxx_default”, the most common setting for Mull [17, 30]. For Java,

we use PITest, a state-of-the-art mutation testing tool with 1.4k

stars on GitHub [13, 64]. As suggested by PITest, we con�gure the

mutation operators as “DEFAULTS”, which is stable and tends to

generate fewer equivalent mutants [52].

For survived mutants that are not killed by the test suites, we

check whether they are equivalent mutants by manual analysis.

The mutation tools we use for Java and C++ solutions conduct

byte-code level and intermediate representation level mutations

respectively and do not produce physical mutants. We thus focus on

the survived Python mutants that can be obtained directly through

the Python mutation tool.

Similar to what we explained in Section 3.3, we randomly select

381 mutants from 74,447 survived Python mutants to ensure a 95%

con�dence level and a 5% con�dence interval. Then the �rst two

authors manually check the survived mutants following the same

procedure of analyzing uncovered code (Section 3.3).

3.5 False Positive Solution Identi�cation

To identify false positive solutions, we randomly generate extra

test inputs and then use di�erential testing to detect the solutions

that yield di�erent outputs from the majority of the solutions. Al-

phaCode [35] also uses this method to identify the false positive

solutions it generates for OJ problems.

Figure 2: The procedure of detecting false positive solutions.

3.5.1 Test Input Generation. To answer RQ2, we randomly generate

100 inputs for each OJ problem. The input types of OJ problems

are often number, vector, and graph under speci�ed constraints. To

generate a random number, we sample the number uniformly from

a range speci�ed in the constraints. To generate a random vector,

such as a string or an array of integers, we sample each element in

this vector uniformly from the range speci�ed in the constraints.

To generate a random graph, we use Cyaron [38], which builds a

random graph by repeatedly adding an edge between two random

vertices. For example, if the input constraints of the A+B problem

(See Figure 2) are 0 ≤ � ≤ 105 and 0 ≤ � ≤ 109, our random input

generator samples an integer uniformly from 0 to 105 as �, and

samples an integer uniformly from 0 to 109 as �.

3.5.2 Test Oracle Generation. For the newly generated inputs, it is

di�cult to automatically identify the explicit oracles. To tackle the

oracle problem, we use di�erential testing [40]. Di�erential testing

runs the same set of inputs to a series of programs with the same

functionality and detects the di�erence in their outputs.

Speci�cally, for each OJ problem, we feed the generated inputs

to all solutions that are judged as correct by the OJ test suites, and

then collect the outputs of these solutions. The solutions whose

outputs are di�erent from the majority solutions are considered

false positive solutions.

Figure 2 shows the procedure of di�erential testing with an

example of the A+B problem. The inputs are two integers A and

B, and the user is asked to compute the result of � + �. We feed

a generated input “� = 2, � = 2” to the user-submitted solutions

that are judged as correct. As a result, the last solution outputs “5”

while other solutions output “4”. Since this OJ problem has only

one correct answer, we consider the last solution a false positive

solution. There are multi-answer OJ problems, where there are

multiple correct answers. To this end, we manually �lter out 48

(5.1%) multi-answer problems for RQ2 and identify false positive

solutions for the remaining 891 OJ problems. The validity of this

approach is further investigated in Section 4.2.

4 RESULTS

This section provides results and analysis to answer our RQs.

4.1 RQ1: Code Coverage and Mutation Score

RQ1 explores the coverage and mutation score achieved by the

prede�ned OJ test suites. We also explore the correlation between
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Table 2: RQ1.1: Ratio of solutions with full line coverage and

branch coverage. Overall, 91.5% of the solutions are fully line

covered, and 85.8% are fully branch covered.

Language Line coverage Branch coverage

Python 98.4% 96.3%

Java 78.2% 74.2%

C++ 97.2% 88.3%

Total 91.5% 85.8%

coverage, mutation score and other program characteristics (i.e.,

problem di�culty, lines of code, and the number of tests) to under-

stand potential factors that may in�uence the assessment results.

4.1.1 RQ1.1 - Code Coverage.

Solution-level coverage analysis:We �rst measure line coverage

and branch coverage at the solution level. Table 2 shows the ratio

of solutions with full line coverage and branch coverage for each

language. We observe that the majority of the Python and C++

solutions are fully covered: 98.4% of Python solutions and 97.2%

of C++ solutions are fully line covered; 96.3% of Python solutions

and 88.3% of C++ solutions are fully branch covered; in contrast,

the coverage for Java solutions are relatively low: 78.2% of Java

solutions are fully line covered, and 74.2% of Java solutions are

fully branch covered. This may be due to the fact that Java is more

verbose [72] and as such it might be more di�cult to fully cover

Java code with respect to fully covering Python and C++ code when

using the same test suite.

Problem-level coverage analysis: We also study the code cover-

age at the problem level. There are hundreds of solutions for each

problem, and we explore the standard deviation of line/branch cov-

erage for these solutions. Fig 3 shows the Cumulative Distribution

Function (CDF) results. It is interesting to observe that the coverage

results for di�erent solutions targeting the same problem are very

similar for Python and C++: The majority of the problems’ coverage

standard deviation is below 0.1. Nevertheless, for Java, over 40%

of the problems have a standard deviation larger than 0.2. In the

following, we dig deep into the uncovered code and investigate the

cause and categories of uncovered code.

Analysis of uncovered code: Our coverage analysis reveals 2,145

Python solutions, 23,366 Java solutions and 8,094 C++ solutions

with an imperfect line or branch coverage. Following the procedure

introduced in Section 3.3, we randomly select 257 Python solutions,

372 Java solutions, and 302 C++ solutions to ensure a 95% con�-

dence level and a 5% con�dence interval. We then manually analyze

these sampled solutions, which led us to discover three main types

of uncovered code: 1) Missing Branch means the uncovered part

is a branch that a�ects program behaviours but is not executed

during testing. Errors in this type of uncovered code will not be

exposed by the existing tests, thereby yielding a false positive so-

lution. 2) Template Code means the uncovered code is from user

templates. Some users copy chunks of templated code into all of

their solutions to improve e�ciency during coding competitions.

The code templates are pre-written codes that can be widely used

for di�erent problems, such as common I/O parsers, common math-

ematical functions, and popular data structure classes. The unused
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Figure 3: RQ1.1: CDF of problem-level median coverage and

standard deviation. (a) CDF of median line coverage of prob-

lems (b) CDF of median branch coverage of problems (c)

standard deviation of median line coverage of problems (d)

standard deviation of median branch coverage of problems

pre-written code for a particular problem then becomes dead code

that cannot be covered. 3) Debugging Code is the code users wrote

for debugging before submission. The users may forget to delete

this code after debugging, or simply decide to keep it because it

does not a�ect the behaviour of the functional code.

Listing 1 shows examples of the three main types of uncovered

code in the Java language, and Table 3 shows the ratio of solutions

that contain each type of uncovered code. A solution may have

more than one type of uncovered code, and thus the ratios in a row

may not necessarily sum up to 1. Interestingly, we observe that

the majority of the uncovered code in Java is caused by Template

Code. One possible reason is that Java is a verbose language [72],

and users have a relatively stronger motivation to copy pre-written

code to save coding time compared to other languages. We also

observe that over half of the uncovered cases in Python and C++

are caused by Template Code or Debugging Code, which are not

supposed to change a program’s behaviour and are unlikely to yield

false positive solutions. In other words, test suites are not expected

to cover them. These observations pose concerns regarding the

e�ectiveness of coverage criteria in test suite assessment, which

are further explored in RQ2 (Section 4.3).

4.1.2 RQ1.2 - Mutation Score. We conduct mutation testing for all

the collected OJ solutions. For each solution, we collect two types

of mutation scores: original mutation score and covered mutation

score. The former is calculated as the ratio of killed mutants against

the total number of mutants; the latter is the ratio of killed mutants

against only those mutants on covered lines of the program.
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//Example of Missing Branch:

if (k % 2 == 0) {

long ans = a-b;

if (ans > th || -ans > th) {

System.out.println("Unfair");

} else {

System.out.println(ans);

}

}

//Example of Template Code:

long gcd(long a, long b){

return b == 0 ? a : gcd(b, a % b);

}

int lcm(int a, int b){

return a / gcd(a, b) * b;

}

//Example of Debugging Code:

if (tt0 < 0 || tt1 < 0 || tt0 + tt1 != n) {

throw new RuntimeException();

}

Listing 1: Three main types of uncovered code in Java.

Table 3: RQ1.1: Category of uncovered code. Template code

is the main reason of uncovered code.

Language Missing Branch Template Code Debugging Code Others

Python 42.8% 56.3% 4.7% 0.8%

Java 8.2% 93.2% 0.5% 1.1%

C++ 31.8% 68.0% 0.99% 2.0%

Table 4: RQ1.2: Ratio of solutions with full mutation scores.

Overall, the test suites achieve full original mutation scores

for 43.9% of solutions and achieve full covered mutation

scores for 42.8% of solutions.

.

Language Original mutation score Covered mutation score

Python 58.2% 58.4%

Java 40.1% 43.6%

C++ 35.6% 35.7%

Total 42.8% 43.9%

Solution-level mutation score analysis: Figure 4 illustrates the

results for mutation score distribution. The last column of Table 4

also shows the ratio of solutions with full mutation scores. For the

original mutation score (Figure 4.(a) and (c)), Java solutions have

lower mutation scores than Python and C++. This is as expected,

because Java solutions have the lowest coverage as shown in Sec-

tion 4.1.1, yet mutants on uncovered code cannot be killed. Once

we count only the mutants on the covered code (Figure 4.(b) and

(d)), the mutation score of Java solutions increases remarkably.

When comparing mutation score with line coverage and branch

coverage, we observe that the values of mutation score are much
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Figure 4: RQ1.2: CDF and violin plot of solution-level muta-

tion scores (original and covered). (a) CDF of mutation score

(original) of solutions. (b) CDF of covered mutation score

(covered) of solutions. (c) Violin plot of mutation score (orig-

inal) of solutions. (d) Violin plot of mutation score (covered)

of solutions.

lower than the two coverage criteria. In particular, we can observe

from Table 4 that only around 60% of the Python solutions, 40%

of the Java solutions, and 35% of the C++ solutions have a full

mutation score. These observations indicate that achieving full

mutation coverage is more di�cult than achieving full statement

or branch coverage.

Problem-level mutation score analysis: Figure 5 shows the me-

dian mutation score as well as the standard deviation for di�erent

problems. Compared to Figure 3, the mutation score of di�erent

solutions for one problem is more diverse than the coverage. For ex-

ample, the ratio of problems whose standard deviation being below

0.1 is 85% for mutation score, but almost 100% for line coverage.

Analysis of equivalent mutants: In mutation testing, a mutant

can be equivalent, which means the mutation does not bring any

semantic changes [31, 49]. The existence of equivalent mutants

brings noise to the use of mutation score in assessing test suites

because equivalent mutants cannot be killed. In this section, we

manually check the survived mutants in order to analyze the preva-

lence and categories of equivalent mutants. We only focus on the

mutants that are covered, because they provide extra information

that code coverage cannot provide.

As we describe in Section 3.4, we manually check 381 Python

survived mutants. To better understand these mutants, we classify

them into three types: inequivalent mutants, universally-equivalent

mutants, and constraint-equivalent mutants. If a mutant’s behaviour

is semantically equivalent to the original program, we classify it

as universally-equivalent (which is the same as the de�nition of

equivalent mutants in traditional mutation testing). If a mutant is
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Figure 5: RQ1.2: CDF of problem-levelmedianmutation score

(original and covered) and standard deviation (stdv). (a) CDF

of median mutation scores (original) of problems (b) CDF

of median mutation scores (covered) of problems (c) stdv of

median mutation scores (original) of problems (d) stdv of

median mutation scores (covered) of problems.

semantically di�erent from the original program, but the di�erence

exists only for inputs that disobey the input constraints, we classify

it as constraint-equivalent. In other words, constraint-equivalent

mutants are equivalent to the original program under all the inputs

satisfying the constraints. This type of equivalent mutant is impor-

tant because di�erent from traditional programs, an OJ program is

coded to behave correctly for only the inputs under the constraints

of the problem description (see Section 2.1). Last, if a mutant is

semantically di�erent from the original program under any input

satisfying the constraints, we classify it as inequivalent.

Figure 6 shows the distribution of the three types of surviving

mutants. Surprisingly, the majority (95%) of the survived mutants

are either universally-equivalent (30%) or constraint-equivalent

(65%). Inequivalent mutants, which survived due to inadequate test

suites, account for less than 5%.

We suspect that constraint-equivalent mutants are prevalent

because the constraints are usually tight, and the inputs that ex-

pose the di�erences between mutants and the original program

can easily fall outside the range. For example, there is a problem

whose input constraint is a positive or negative integer. The output

is the sign of the input integer. A passed solution for this problem is

8 5 (G < 0){?A8=C 5 (“ − ”); }4;B4{?A8=C 5 (“ + ”); }, and a survived mu-

tant is to replace G < 0 with G < 1. If we mutate 0 to 1 in the

condition statement, the mutant program is constraint-equivalent,

because the test input (i.e., G = 0) that causes di�erent behaviours

does not satisfy the input constraints.

Figure 6: RQ1.2: Composition of survived mutants. Overall,

95.3% of survived mutants are equivalent.

The large ratio of equivalent mutants will signi�cantly a�ect

the e�ectiveness of mutation scores in accessing OJ tests. If we

use the ratio of equivalent mutants to estimate the mutation score

modulo equivalent mutants, the average covered mutation score

will be changed from 43.9% (shown in Table 4) to 97.4%. In RQ3

(Section 4.3), we dig deep into the e�ectiveness of mutation score

in test assessment. We also discuss the challenges and research

opportunities for mutation testing in Section 5.

4.1.3 RQ1.3 - Correlation between Di�erent Metrics. The correla-

tion between di�erent test assessment metrics has been widely

studied by previous work [5, 28, 73]. In this part, we explore the

correlation between di�erent metrics on OJ solutions. Our vari-

ables are comparable rank variables so we choose Spearman’s rank

correlation which is suitable for our experiment.

We conduct Spearman correlation analysis for each of the fea-

tures we introduced in Section 3, including:

• LC: Line coverage of the solution.

• BC: Branch coverage of the solution.

• MS-O: Mutation score with all the mutants.

• MS-C: Mutation score with covered mutants.

• L: Lines of code.

• D: Di�culty of the problem the solution attempt to answer.

• #T: The number of test cases per problem.

Figure 7 shows the correlation results. The p-values of all corre-

lations in the �gure are smaller than 1e–5. Following conventional

interpretation [58], we regard the correlation coe�cient (absolute

value) between 0.9 and 1 as a very strong correlation, 0.7–0.89 as

a strong correlation, 0.4-0.69 as moderate, 0.1-0.39 as weak, and

smaller than 0.1 as negligible. Based on the results obtained, we can

make the following primary observations: 1) line coverage, branch

coverage, and mutations core are strongly, or very strongly, corre-

lated with each other for Java solutions, but are weakly correlated

with each other for Python and C++ solutions. Most existing work

on the correlation between these metrics was conducted on Java

programs [28, 73, 75]. This observation indicates that programming

language is an important factor that should not be overlooked for

such types of correlation analysis. 2) the number of tests has a

negative correlation with code coverage and mutation score, re-

spectively. This is because solutions with more lines of code are

more di�cult to have high coverage and mutation score, although
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Figure 7: RQ1.3: Spearman’s rank correlation coe�cient for di�erent variables. (a) Python (b) Java (c) C++. We �nd the more

di�cult the problem, the harder for test suite to achieve high coverage and mutation score, even with more test cases.

they have more tests than short solutions. This observation is com-

pletely opposite to previous �ndings where test suite size is either

found to have a very strong correlation with coverage [75] or play

an important role in the observed correlation [28].

Answer to RQ1: On average, 91.5% of the OJ solutions

have full line coverage, 85.8% have full branch coverage,

and 42.8% have full mutation score. However, the majority

(95.3%) of survived mutants are equivalent mutants. The

correlation between line coverage, branch coverage, and

mutation score highly depends on the programming lan-

guage a solution adopts. Additionally, the number of tests

is observed to have a negative correlation with coverage

and mutation score on OJ solutions.

4.2 RQ2: Prevalence of False Positive Solutions

From RQ1, we have observed that both coverage and mutation score

(modulo equivalent mutants) assess that the existing OJ tests are

very strong. In RQ2, we investigate whether their assessment is

reliable. To answer this research question, we check whether there

are false positive solutions that contain bugs yet they are accepted

as correct solutions by the prede�ned OJ test suites for the 891 OJ

problems we investigated herein. The experimental setup details

are described in Section 3.5.

Adequacy of the detected false positive solutions: When de-

tecting false positive solutions, we randomly generated 100 inputs

within the constraints speci�ed for each problem. Before reaching

any conclusions, we explore how the number of generated inputs

in�uences the number of problems that contain false positive so-

lutions as well as the number of false positive solutions. This will

give us hints on the reliability of using 100 inputs for false positive

solution detection. Figure 8 shows the results. The x-axis is the

number of generated inputs. The orange line is the number of prob-

lems that are detected to contain false positive solutions, which

reaches a plateau when there are around 15 inputs. The blue line

is the number of detected false positive solutions, which reaches a

plateau when there are around 95 inputs. These observations give

us con�dence that using 100 inputs per OJ problem is powerful in
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Figure 8: RQ2: The e�ect of the number of generated inputs.

We �nd that 100 inputs per problem are adequate enough in

�nding the problems with false positive solutions.

Table 5: RQ2: Number of false positive solutions and number

of OJ problems with false positive solutions. Overall, 43.4%

of problems are found to contain false positive solutions.

Language False positive solutions (FPS) Problems with FPS

Python 846 (0.8%) 115 (12.9%)

Java 793 (0.8%) 159 (17.8%)

C++ 1,801 (1.2%) 331 (37.1%)

Total 3,440 (1.0%) 387 (43.4%)

detecting false positive solutions and problems that contain false

positive solutions.

Number and ratio of false positive solutions: Table 5 shows the

number and ratio of false positive solutions as well as the problems

with false positive solutions. We �nd 846 Python false positive solu-

tions over 115 problems, 793 Java false positive solutions over 159

problems, and 1,801 C++ false positive solutions over 331 problems.

Interestingly, from the last row of Table 5, we observe that as

many as 43.4% of the OJ problems are found to have false positive

solutions. This high ratio is out of our expectations, especially

considering the popularity and the large number of users of the

OJ platform we study herein, and the extremely good coverage

and mutation score of the test suites we observed in RQ1. This

brings a question regarding whether coverage and mutation score

is e�ective in test assessment for OJ platforms, which we further

explore in RQ3.
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Figure 9: CDF of the minimal majority output ratio of prob-

lems with false positive solutions, 84.1% of the problems

achieve a minimal majority output ratio larger than 0.9.

Distribution of majority output ratio among the false posi-

tive solutions: When we feed a generated test input into di�erent

solutions for an identical problem, false positive solutions will have

di�erent test outputs from the majority of solutions. We thus fur-

ther investigate the distribution of the output diversity on the false

positive solutions we have detected. Speci�cally, we call the per-

centage of solutions with the majority output among all solutions

of a problem asmajority output ratio. For each OJ problem, every

generated test input that leads to di�erent outputs has a majority

output ratio, and we present the smallest majority output ratio

among all such inputs.

Figure 9 shows the distribution. We can see that almost all the

problems’ minimummajority output ratio is larger than 0.5. A larger

majority output ratio often indicates more reliable bug detection

results. There are 14 problems whose outputs are extremely diverse,

and whose majority output ratio is below 0.5. The two �rst authors

manually check the correctness of their solutions to guarantee that

the solutions with majority outputs are indeed correct, and thus

the solutions with di�erent outputs are buggy. More characteristics

of the false positive solutions are discussed in Section 5.1.

Answer to RQ2: The di�erential testing method we adopt

detects 3,440 bugs, which are ignored by the existing OJ

tests. A large proportion (43.4%) of the OJ problems we

study are found to have false positive solutions.

4.3 RQ3: E�ectiveness of Test Suite Assessment

For each solution, both coverage and mutation score can provide

assessment results related to the reliability of the solution’s test

suite. A high assessment score is expected to provide developers

with con�dence that the solution is less likely to be buggy. To

answer RQ3, we analyze the number of false positive solutions with

full coverage and mutation score to see how many bugs would

be ignored if developers choose to trust the assessment results

provided by the coverage and mutation score values. Table 6 shows

the results. In each cell, the larger the number and ratio, the less

e�ective the metric is in assessing test reliability.

The �rst observation we immediately notice is the surprisingly

high ratios of false positive solutions with a full line coverage. In

particular, as high as 97.7% of the false positive solutions in Python

and 96.3% of the false positive solutions in C++ have 100% line

Table 6: Number and ratio of false positive solutions with

perfect coverage and mutation score. Totally, the test suites

achieve full line coverage, full branch coverage, full muta-

tion scores for 88.7%, 79.0% and 37.8% of the false positive

solutions, respectively.

Language Line Coverage Branch Coverage Mutation Score

Python 389 (97.7%) 382 (96.0%) 239 (60.2%)

Java 331 (69.5%) 284 (59.7%) 138 (28.9%)

C++ 701 (96.3%) 600 (82.4%) 229 (31.5%)

Total 1,421 (88.7%) 1,266 (79.0%) 606 (37.8%)

coverage. This means that the test suites for those solutions are

assessed as perfect by line coverage, but they fail to detect the bug(s)

in the solutions, yielding false positive solutions. In other words, for

Python and C++ solutions, the line coverage hardly provides any

useful information in judging whether the test suite is adequate in

revealing bugs. If developers choose to trust the assessment results

of line coverage, the majority of false positive solutions have perfect

line coverage and will be undetected.

When comparing line coverage, branch coverage, and mutation

score, we observe that for all three programming languages, there

are lower ratios of false positive solutions with a full branch cover-

age than with a full line coverage. These observations suggest that

branch coverage is more powerful than line coverage in exposing

the weakness of tests. The ratios of mutation scores are the low-

est among the three assessment metrics. However, considering the

prevalence of equivalent mutants, it is di�cult to reach a conclusion

about the e�ectiveness of mutation score in avoiding false positive

solutions.

When comparing di�erent programming languages, the three

metrics are themost e�ective when assessing Java solutions, and the

least e�ective when assessing Python solutions.We suspect that this

is related to the fact that the Java language is more redundant than

other languages: inputting and outputting, creating data structures,

etc. in Java requires writing more complex code. As a result, Java

coders are more likely to copy a piece of template code to their

submitted solution.

Answer to RQ3: Among the false positive solutions we

have detected, 88.7% of them have full line coverage, 79.0%

have full branch coverage, and 37.8% have full mutation

scores. These observations reveal that a large ratio of bugs

will be ignored if developers choose to fully trust the test

assessment results provided by the coverage and mutation

score of the existing OJ test suites.

5 DISCUSSION

This section discusses the characteristics of our detected false pos-

itive solutions, the threats to the validity of our study and the

implications of our observations.
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Table 7: Categories of false positive solutions. The examples in the last column can be found in our dataset TrickyBugs [36].

Bug Type (Percentage) Description Example(Contest-Solution)

Corner case error (73.18%) The algorithm does not consider corner case inputs. ABC144B-147.py

Incorrect loop range (13.13%) The upper or lower bounds of the loop statement are incorrect. ABC135B-130.py

Incorrect type (5.03%) The code does not convert types for variables. ABC129A-118.py

Incorrect assignment (1.68%) The assignment of variables is incorrect. ABC157C-130.py

Error on �oat (4.47%) The bug is caused by �oating point precision errors. ABC169C-104.py

Error on spelling (1.68%) The bug is caused by the misspelling of variable names. AGC014A-29.py

Hack solution (0.84%) The code is not designed to solve the problem but to take advantage of the weakness of the tests to get passed. ABC150A-65.py

5.1 Characteristics of False Positive Solutions

This section digs deep into the characteristics of the false positive

solutions we reported in RQ2. We randomly select 50 problems that

contain false positive solutions and manually analyze their Python

solutions. In total, 358 false positive Python solutions are analyzed.

As one might expect, investigating “the nature of false positive

solution” is akin to investigating the (very wide) question of “the

nature of software bugs”. It is typically a highly context-sensitive

issue and can necessitate a case-by-case answer.

Notwithstanding these inherent limitations, our manual analysis

did highlight some similarities. At the solution level, we summarise

the reasons for the bugs in false positive solutions in Table 7. In

conclusion, most false positive solutions are buggy due to missing

corner cases (i.e., their algorithms do not consider all possible cases

and output incorrect answers on corner case inputs). There are

also false positive solutions due to incorrect loop range, incorrect

variable type, �oat errors, and incorrect spelling. Interestingly, we

also �nd three hack solutions, which are not written to solve the

problem but simply to hack the weak test cases with completely

incorrect logic.

At the problem level, we �nd that di�erent false positive solu-

tions of the same problem often share identical bug reason due to

the same corner case missed by the test suite. Speci�cally, 90% of

the sampled problems contain bugs of only one type, the rest 10%

of the problems contain bugs of two types and no problem contains

bugs of more than two types.

A more comprehensive analysis would require substantial fur-

ther work, which includes bug localisation and bug repair on each

of the 3,440 false positive solutions and also a comparison with

other bugs found in non-OJ systems. We have made our dataset

TrickyBugs [36] public to help fully facilitate such future work.

5.2 Threats to Validity

Dataset Construction. A potential threat to the external validity

of our empirical study lies in the data we use. To mitigate this

threat, we collect data from AtCoder, which is the only popular

OJ platform that has open-sourced its full set of prede�ned tests

available. We also choose problems published from 2016 to 2021 for

data reliability. Additionally, the problems in our dataset come from

di�erent contests with di�erent di�culties, which indicates a high

diversity. Moreover, we extract all solutions from the CodeContests

dataset, as these solutions have been pre-processed by clustering,

�ltering, and de-duplicating, to remove repeated solutions and

invalid solutions [35, 54].

Test Oracle Reliability. Generating correct test oracles is the

main challenge in our work. Di�erential testing can determine that

there are some wrong programs giving wrong answers but cannot

determine which answer is right, and it may introduce bias into our

work. To mitigate this threat, we �rst ensure that all the problems

we analyze with di�erential testing are not multi-answer problems

by checking the description and the example input-output pair of

every problem. Then we calculate the minimal majority answer

ratio to get a better understanding of the validity of our test oracle as

we can trust an answer with a very high percentage (more than 90%),

and actually, we �nd more than 80% of such a high majority ratio.

Moreover, two authors manually check the legality of generated

inputs of all the problems that are found to have false positive

solutions in di�erential testing.

Test Assessment Metrics and Tools. A possible threat to con-

struct validity lies in the test assessment metrics and tools that

we use. To mitigate this threat, we select the widely-used and

well-studied [41] test metrics: line coverage, branch coverage, and

mutation score to assess the reliability of the test suites of OJ

problems. We also select the most popular open-source tools on

GitHub [9, 45, 47] to carefully measure these metrics according to

their documentation. Moreover, we con�gure the tools with the

most common settings for the sake of generality [14, 52].

5.3 Implications and Challenges

Based on the preceding derived �ndings, we discuss implications

and challenges for OJ platform developers, users, and researchers.

Implications for OJ platform developers. Our study reminds

OJ platform developers that testing does not assure correctness. It

is di�cult to judge a program as bug-free even for widely accessed

coding problems with strict input constraints. In addition, develop-

ers may risk test reliability if they fully trust the assessment results

provided by the existing coverage and mutation score techniques.

Furthermore, the results of RQ2 demonstrate that using a random

test generator with di�erential testing can help improve the quality

of test suites and cover more corner cases. OJ platform developers

can also choose to update the test suite of problems routinely as

the number of solutions grows with time, in this way, di�erential

testing could be more powerful in �nding corner cases as more

versions of programs with the same function [19] become available.

Implications for OJ users. Online judge platforms have a huge

user base. According to o�cial reports, there are more than 150,000

registered users of AtCoder. The set of correct solutions is often

made available to OJ platform users for them to learn and train

how to code. Our study reveals that a passed solution is not always

guaranteed to be a correct solution on the OJ platform. OJ platform
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users should be aware of this and not take for granted that the

solutions that are accepted by the platforms are all correct solutions.

Implications for researchers. Based on our study, there are limi-

tations of existing code coverage and mutation testing techniques

in assessing the reliability of tests in bug detection. It is demanding

for software engineering researchers to provide novel coverage

and mutation testing techniques to combat the issues we �nd. For

coverage criteria, our analysis on uncovered code (Section 4.1.1)

indicates that new coverage criteria that disregard template code

and dead code are needed; for mutation score, removing equivalent

mutants can make mutation testing more practical. In this way, our

results highlight the need for future work on equivalent mutant

detection, especially for constraint-equivalent mutants.

The OJ problems and solutions can serve as well-de�ned datasets

for software testing research purposes due to many of their unique

characteristics. For example, researchers from the software engi-

neering community can use such datasets for improving the e�ec-

tiveness of bug prediction and detection techniques.

Moreover, recent years have witnessed the trend of using large

language models for code generation and code completion. Most

code generation tools (e.g., AlphaCode [35]) and commercial prod-

ucts (e.g., OpenAI’s ChatGPT [48], GitHub’s Copilot [1] and Tab-

nine [2]) adopt online judge problems and solutions in their training

data. Our study reminds researchers from the arti�cial intelligence

community of the existence of false positive solutions when they

adopt datasets from online judge platforms. Researchers can choose

to either �lter the false positive solutions in the training data or

conduct proper machine learning testing [71] and black-box re-

pair [61, 62] to improve the correctness and robustness of the gen-

erated code.

6 RELATED WORK

This section summarises the related literature from two aspects:

online judge systems and test assessment.

Online judge systems. OJ systems are �rstly designed for educa-

tion, and thus previous studies mainly focus on understanding the

role that OJ platforms play in education, and on improving their ed-

ucational e�ectiveness. Zhao et al. [76] developed a Markov model

to detect topics of OJ problems and recommend new problems for

the users. Xia et al. [67] developed an interactive visualization sys-

tem that recommends a learning path for OJ platform users based

on other users’ choices. Zhu et al.[77] developed a system namely

HomoTR to recommend tests for a program solution by measuring

the homology of two solutions.

Recently there are also studies focusing on automatic feedback

and repair for programming solutions. These studies primarily pro-

pose feedback and repair techniques based on code clustering and

code similarity using a large corpus of submitted solutions on the

OJ platform [10]. Radicek et al. [55] proposed a program repair

algorithm based on program matching. Perry et al. [50] proposed

a program clustering algorithm based on quantitative semantic

features for introductory programs such as OJ solutions. Song et

al. [59] leveraged context information of OJ solutions to implement

a function-level matching algorithm to automatically repair incor-

rect solutions. Tan et al. [63] collected incorrect OJ solutions and

generated patches for them to build a benchmark for automated

program repair techniques. All these studies rely on testing to judge

the correctness of a solution, while our work reveals that the test

suite might not be reliable.

Most recently, the OJ problem statement and the correspond-

ing coding solutions have also been used as training data for big

language models, such as AlphaCode [35] and CodeX [11].

Test assessment. The reliability (or e�ectiveness) of a test suite

is a traditional and important topic in software testing. Code cov-

erage is a general test suite reliability metric, the history of code

coverage dates back to 1963 [42]. Software engineers have pro-

posed di�erent types of coverage criteria such as line coverage,

branch coverage, path coverage, and modi�ed condition/decision

coverage [6, 53, 60]. Mutation testing is another widely-used met-

ric for measuring the reliability of a test suite. Mutation testing

was proposed in 1978 [16], and there has been a lot of research on

mutation testing. The most recent work focuses on the empirical

assessment of practical mutation testing [7, 51, 57] or improving the

e�ectiveness and performance of mutation testing [25, 32]. In terms

of the assessment of OJ tests, Li et al. [35] produced AlphaCode to

automatically generate OJ solutions. They did a study to manually

checked a sample of their generated solutions. The false positive

solution rate is around 4%. However, they did not study the test

assessment reliability on human solutions.

7 CONCLUSION & FUTUREWORK

In this paper, we presented a large-scale empirical study on the

reliability of the test suites for 939 OJ problems with 541,552 user-

submitted code solutions. We measured line coverage, branch cov-

erage, and mutation scores for these solutions. Furthermore, we

used di�erential testing to unveil the prevalence of false positive

solutions. We found that 3,440 solutions are buggy yet they pass the

test suite. Such solutions cover 43.4% of the problems available in

the OJ platform under study. We have also revealed the limitation

of using code coverage and mutation score to assess the reliability

of the test suite for OJ solutions.

Our study took the �rst step in investigating the test suite relia-

bility of online judge platforms. There are several promising future

research directions. As online judge platforms are a wealthy source

of programming problems and code for large language models, and

are daily used by millions of users to improve and test their coding

skills, it is worthwhile to explore the hidden values and threats

behind their use. We have made our dataset TrickyBugs [36] public

to help facilitate future work.
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