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Abstract—LLM-powered coding and development assistants
have become prevalent to programmers’ workflows. However,
concerns about the trustworthiness of LLMs for code persist
despite their widespread use. Much of the existing research
focused on either training or evaluation, raising questions about
whether stakeholders in training and evaluation align in their
understanding of model trustworthiness and whether they can
move toward a unified direction. In this paper, we propose a
vision for a unified trustworthiness auditing framework, DATA-
TRUST, which adopts a data-centric approach that synergisti-
cally emphasizes both training and evaluation data and their
correlations. DATATRUST aims to connect model trustworthiness
indicators in evaluation with data quality indicators in training. It
autonomously inspects training data and evaluates model trust-
worthiness using synthesized data, attributing potential causes
from specific evaluation data to corresponding training data and
refining indicator connections. Additionally, a trustworthiness
arena powered by DATATRUST will engage crowdsourced input
and deliver quantitative outcomes. We outline the benefits that
various stakeholders can gain from DATATRUST and discuss the
challenges and opportunities it presents.

I. TRUSTWORTHINESS AUDITING OF LLMS FOR CODE

Large language models (LLMs) for code [1]–[5] have
demonstrated significant potential in supporting various stages
of the software development lifecycle [6]–[14]. As a re-
sult, LLM-powered coding and development assistants are
now widely integrated into programmers’ daily workflows.
A prominent example is GitHub Copilot [15], an LLM-
based coding assistant adopted by over 77,000 businesses and
downloaded more than 20.3 million times from the VSCode
Plugin marketplace (data as of September 24, 2024).

Despite the widespread adoption of LLMs for code in real-
world development, significant concerns persist regarding their
trustworthiness, particularly in dimensions such as robustness,
security, timeliness, privacy, fairness, etc. In addition to the
inherent risks common to general-purpose LLMs (e.g., jail-
breaking threats) [16]–[18], LLMs for code introduce addi-
tional concerns specific to code and software development.
For example, the code generated by these models may contain
vulnerabilities or weaknesses that pose serious code security
risks [19]. Therefore, advancing towards more trustworthy
LLMs for code has become an increasingly pressing issue.

While state-of-the-art research has concentrated on specific
trustworthiness dimensions in either training [3], [4] or eval-
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uation [19]–[22], the modern development and application
of LLMs have evolved into a complex, iterative process of
model training (including fine-tuning) and evaluation, involv-
ing multiple stakeholders. This raises crucial questions: Have
stakeholders in training and evaluation aligned their under-
standings of model trustworthiness? How can they be system-
atically guided toward a unified direction rather than relying
on heuristic attempts? To address these, a unified trustworthi-
ness auditing framework is essential—one that synergistically
integrates both training and evaluation processes along with
their iterative cycles. Specifically, we present a data-centric
vision for this framework, named DATATRUST, which attempts
to connect the trustworthiness indicators in evaluation to the
quality indicators in training. Building on this foundation,
DATATRUST autonomously conducts independent inspections
of training data and evaluates model trustworthiness using syn-
thesized data, attributing potential causes identified in specific
evaluation data to their corresponding training data and aiding
in the refinement of indicator connections. A trustworthiness
arena powered by DATATRUST can be launched to further
engage crowd sources and deliver quantitative and comparative
auditing outcomes such as leaderboards.

DATATRUST can deliver benefits to a range of stakeholders:
• LLM Vendors. For vendors controlling both training data and

production LLMs, DATATRUST streamlines the development
of trustworthy LLMs for code. It provides insights into the
cycle of training data inspection, filtering, model training,
evaluation, and root cause analysis. Furthermore, publishing
auditing reports for both training data and models enhances
trustworthiness transparency for downstream stakeholders.



• LLM Evaluators. DATATRUST offers comprehensive trust-
worthiness evaluations, supporting continuous trustworthi-
ness report (e.g., leaderboards) updates for both commercial
and open-source LLMs and training corpora. It provides
valuable insights for downstream stakeholders in selecting
models or data. Moreover, identified trustworthiness issues
can help upstream stakeholders, like LLM vendors, conduct
root cause analysis on their training data.

• LLM Users. DATATRUST engages LLM users in two ways:
by enabling them to review auditing reports or leaderboards
for insights into model trustworthiness, and by collecting
trustworthiness issues encountered by users to create a
crowd-sourced trustworthiness arena, which helps evaluators
refine assessments and vendors perform root cause analysis.
This paper calls for collaboration between academic and

industrial communities to refine the data-centric vision and
tackle challenges in implementing the DATATRUST framework
for trustworthy LLMs for code. The goal is to align under-
standings, standardize auditing processes, and enhance the
transparency of LLM trustworthiness and their data, ultimately
benefiting a wide range of stakeholders.

II. DATATRUST: METHODOLOGY AND CHALLENGES

Figure 1 presents an overview of DATATRUST’s method-
ology. We start by compiling a comprehensive set of Model
Trustworthiness Indicators across various dimensions and link-
ing them to corresponding Training Data Quality Indicators.
These indicators guide (i) the assessment of training data qual-
ity and (ii) the construction of thorough evaluation data. Based
on this foundation, we design three key data-centric processes:
Training Data Inspection, Evaluation Data Synthesis, and Root
Cause Attribution. These processes iteratively operate during
the training and evaluation phases of LLMs for code, contin-
uously refining indicator connections while engaging multiple
stakeholders. We will leverage existing scanning tools, crowd-
sourced resources, and analysis methods, integrating them with
advanced technologies like LLM-based agents. Additionally,
we introduce a Data-Driven Trustworthiness Arena to engage
users actively, enhancing the comparison and benchmarking
of mainstream LLMs for code and their training datasets.

A. Trustworthiness Indicators and Connections

Each entry is represented as an indicator pair T ◦ E , where
T denotes a quality indicator for training data and E represents
a trustworthiness indicator for model evaluation.
• Diversity ◦Robustness. Training data often lacks diversity,

leading to imbalanced distributions across domains, func-
tionalities, and identifiers. This can raise model robust-
ness concerns, such as inconsistent performance across
domains [23] and vulnerabilities to adversarial attacks [24].

• Security ◦ Security. Security risks, including various soft-
ware vulnerabilities are commonly found in open-source
code repositories and may remain undetected for extended
periods [19]. Consequently, the presence of insecure data
samples in the training data might result in LLMs generating
insecure outputs, such as vulnerable code.

• Timeliness ◦Timeliness. Training data sourced from open-
source code repositories over extended periods may include
outdated information, such as the use of outdated code
patterns, inactive libraries, and deprecated APIs [21]. This
might cause the trained LLMs to generate outdated outputs.

• Copyright ◦Copyright. Source files in training data may be
subject to specific licensing terms or copied from other
licensed repositories, raising two major copyright concerns.
First, the training data might introduce the risk of license
term violations, particularly when used for training commer-
cial LLMs [25]. Second, the trained LLMs might generate
outputs that raise user concerns regarding copyright [26].

• Privacy ◦Privacy. Training data often contains hard-coded
privacy-sensitive information, particularly software creden-
tials (e.g., API keys and passwords) and personally identifi-
able information (e.g., names and addresses), which LLMs
might inadvertently reproduce during inference [20], [27].

• Fairness ◦Fairness. Machine learning algorithms are fre-
quently reported to exhibit fairness issues related to pro-
tected demographic attributes [28]. LLMs for code, which
are trained on historical code data, have been shown to
perpetuate these biases, generating code/algorithms that may
discriminate against certain demographic groups [29], [30].
✏ Challenge 1. The complex working mechanisms of

LLMs make it challenging to construct precise and fine-
grained connections between model trustworthiness indicators
and training data quality indicators. This challenge also moti-
vates our call to action for the synergistic auditing framework
that integrates both training and evaluation processes.

B. Training Data Inspection

Based on these indicators, DATATRUST automatically in-
spects the training data of LLMs for code to identify potential
quality issues that could impact the model trustworthiness.

Integrating Diverse Scanning Tools. We can integrate
a range of scanning and analysis tools to conduct targeted
data inspections. These include code element extraction and
semantics annotation for profiling data diversity, static vulner-
ability scanning for assessing security, software composition
analysis (SCA) for tracking library and API versions, clone
detection for analyzing license violations and establishing
traceability, and regular expression generation for detecting
privacy-sensitive information, fairness analysis, among others.

✏ Challenge 2. Scalability is a challenge when scanning
large training corpora, which can contain millions of files (e.g.,
603 million in DeepSeek-Coder’s corpus [3], [4]), leading
to resource and time constraints. A practical solution is to
sample a portion of the data for initial inspection, providing
an approximate quality assessment.

LLM-based Inspection Agents. The results generated
by existing scanning tools are often not directly usable as
measurable quality indicators and need to be refined and
aggregated. LLM-based agents are well-suited to handle this
task. For example, an agent that explores the training corpus
and understands code semantics through static analysis (e.g.,
identifier extraction) is crucial for profiling data diversity.



Another agent is required to count deprecated libraries or
APIs by cross-referencing online API documentation, based
on library and API version tracing results from SCA tools.

✏ Challenge 3. Existing scanning tools have varied pre-
requisites, input/output formats, and configuration options,
making integration challenging but offering innovation op-
portunities. To enhance integration, future efforts could fo-
cus on domain-specific languages (DSLs) for agent and tool
communication, on-demand intelligent configuration selection
for more flexible inspections, and aggregating results from
different tools for more reliable decisions.

C. Evaluation Data Synthesis
To audit the trustworthiness of LLMs for code across var-

ious indicators, DATATRUST automatically synthesizes eval-
uation data and benchmarks by referencing a wide range of
evolving resources.

Aggregating Diverse Crowd Resources. In addition to
existing evaluations that rely on (semi-)manually curated
benchmarks [23], DATATRUST dynamically generates compre-
hensive, up-to-date evaluation data by leveraging diverse real-
time sources. These resources include open-source software
platforms, API documentation, package management tools,
developer Q&A forums, vulnerability databases, search en-
gines, and social media. By gathering insightful information
related to coding and software development, DATATRUST
can inspire concrete test cases and deliver a more adaptable
trustworthiness auditing. For example, it retrieves domain-
specific coding task descriptions from GitHub to evaluate the
domain robustness of the LLM under test (LLMUT). For
security, recent malware and vulnerability reports are sourced
from package managers, vulnerability databases, and social
media. Additionally, discussions on other concerns across
these resources inform evaluations of specific dimensions.

LLM-based Synthesis Agents. Diverse resources must
be processed into executable test cases, which DATATRUST
achieves using LLM-based agents. Each agent handles data
synthesis for a specific evaluation dimension, with modules for
automated data fetching (e.g., vulnerability disclosures), test
case generation (e.g., probing prompts and oracles), and result
inspection. For example, in deprecated API usage evaluation,
the agent fetches release notes (e.g., from Libraries.io [31]) to
identify deprecated APIs, retrieves related code snippets from
sources like GitHub, and generates prompts to test whether
the LLM under test still uses the deprecated APIs.

✏ Challenge 4. Crowd resources, like informal text from
Stack Overflow, are heterogeneous and challenging to in-
tegrate. This opens research opportunities, such as creating
unified intermediate representations (IRs), developing adaptive
crawling and parsing methods, and refining information fusion
and conflict resolution. These tasks could leverage LLMs for
web exploration, code generation (e.g., HTML parsing code),
and information summarization.

D. Root Cause Attribution
The trustworthiness issues identified during evaluation are

often connected to specific instances within the training data.

We use root cause attribution to link trustworthiness issues
identified during evaluation to problematic instances in the
training data. This is crucial for systematic trustworthiness
auditing and developing trustworthy LLMs for code because it
(i) refines the connections between model trustworthiness and
training data quality, (ii) addresses incomplete training data
inspections by identifying previously unknown problematic
instances, and (iii) provides clearer insights into which train-
ing instances significantly impact the model’s trustworthiness
when combined with direct inspection results.

Adopting Diverse Attribution Methods. Various instance-
level attribution methods exist to assess the correlation be-
tween evaluation instances and training instances. These meth-
ods include influence functions [32], similarity search [33],
gradient-based analysis [34], attention analysis [35], each with
its own strengths and weaknesses, and some may overlap
in functionality. In addition to instance-level attribution, the
identified issues can also facilitate pattern-level attribution,
enabling the identification of specific categories of unknown
problematic training data. For each identified issues, we an-
alyze the common patterns contributing to the issues and
translate them into specific, lightweight inspection rules (e.g.,
CodeQL [36] queries for particular types of vulnerabilities).
This also acts as an incremental inspection mechanism, ad-
dressing scalability limitations in training data inspection.

LLM-based Attribution Agents. To leverage the advan-
tages of these diverse methods, we employ LLM-based agents
to perform comprehensive analyses based on the outputs of
these methods, ultimately making informed decisions through
the LLM’s understanding and summarization capabilities for
both code and natural language. For instance, if a code security
issue is detected during evaluation (such as the recurrence of
a newly disclosed vulnerability in LLMUT-generated code),
an attribution agent for code security first utilizes existing
instance-level attribution methods to identify training instances
(such as code snippets or functions) that may have contributed
to the issue. Subsequently, the agent determines the final
instances related to the issue by comparing the code patterns
with the identified vulnerability patterns, leveraging its code
understanding capabilities.

✏ Challenge 5. Although instance-level attribution meth-
ods like influence functions and gradient-based analysis have
shown promise in other domains [33], [37], their perfor-
mance in code-related data analysis remains untested. This
creates risks when applying them for root cause attribution in
LLMs for code, but also presents opportunities. Additionally,
effectively combining instance-level analysis with pattern-
level attribution for incremental training data inspection is a
challenge. A mechanism is needed to ensure the accuracy
of patterns extracted from evaluation issues, guiding more
reliable pattern-level attribution.

E. Data-Engined Trustworthiness Arena

Based on the framework outlined above, DATATRUST can
also provide a data-driven trustworthiness arena inspired by the
Chatbot Arena [38]. This arena features two leaderboards: one



for LLMs for code and another for training data. It continu-
ously maintains and updates these leaderboards by applying
the three data-centric processes to various LLMs for code
and their corresponding training datasets when applicable.
For LLMs with non-open-sourced training data, DATATRUST
can still rank them on the LLMs for code leaderboard using
evaluation data synthesis alone.

Engaging Crowd User Interactions. Additionally, DATA-
TRUST provides interfaces for community contributions like
Chatbot Arena, related to test case creation, oracle validation,
and result confirmation. The key to this initiative is designing
suitable interaction paradigms—such as engaging mini-games
or daily coding tasks—to minimize participant difficulties
and reduce manual efforts for users. To facilitate this, LLM-
based agents are employed to offer guidance and assistance
for crafting and manipulating test inputs, as well as to au-
tomatically convert human-involved tasks into user-friendly
or user-transparently information formats. For instance, if the
data synthesis agent for code security generates a test input
and identifies a recurring vulnerability in the code produced
by the LLMUT, an assistance agent in the arena can gather
additional relevant information about this vulnerability from
diverse resources and present it as a concise, readable checklist
for community contributors.

✏ Challenge 6. Unlike the Chatbot Arena, where tasks
are simple for general users, our trustworthiness arena faces
a higher participation threshold due to the complexity of
certain dimensions. To address this, we need to design more
accessible interaction paradigm by simplifying or restructuring
the tasks. For example, instead of relying solely on yes/no
binary annotations for potentially vulnerable code, we can
provide a checklist of low-level safeguard operations (e.g.,
index range validation) and ask users to verify each item.

III. RELATED WORKS

Trustworthiness issues in general LLMs have garnered
significant attention from both academia and industry. Ex-
isting research has introduced various principles and di-
mensions of trustworthiness and benchmarked several main-
stream LLMs [16], [18], [39]. These dimensions often include
safety/security, fairness, robustness, privacy, machine ethics,
transparency, accountability, and regulations and laws. Since
LLMs for code are frequently built by fine-tuning general
LLMs or by training on both text and code corpora, they
inherently inherit these broader trustworthiness concerns. For
instance, LLMs for code may be vulnerable to adversarial
attacks, which can undermine their robustness [24].

Within the software engineering community, trustworthiness
in LLMs for code is also becoming an increasingly important
issue. Lo [40] has called for trustworthy and synergistic
AI for Software Engineering (AI4SE), offering a systematic
overview of many open challenges and opportunities. Yang et
al. [22] revisit the dimensions of trustworthiness in LLMs for
code, covering aspects such as robustness, security, privacy,
explainability, efficiency, and usability, and suggest initial
enhancement principles focusing on training data. Spiess et

al. [41] have introduced correctness calibration techniques
for LLMs for code to improve the trustworthiness of their
outputs. Additionally, other studies address specific trustwor-
thiness dimensions and application areas, such as trustworthy
program synthesis [42], backdoor-trigger taxonomy [43], and
trustworthy code summarization [44].

These works provide a strong foundation for realizing
our unified auditing framework of DATATRUST. Our primary
objective is to align understanding, standardize auditing pro-
cesses, and enhance the transparency of the trustworthiness of
LLMs and their data, ultimately benefiting a broad spectrum
of stakeholders.

IV. SUMMARY

In this paper, we propose a vision for a unified trust-
worthiness auditing framework, DATATRUST, which adopts
a data-centric approach that synergistically emphasizes the
relationship between training and evaluation data. DATATRUST
seeks to connect model trustworthiness indicators in evalua-
tion with data quality indicators in training. It autonomously
inspects training data, evaluates model trustworthiness using
synthesized data, and attributes potential causes from specific
evaluation data to their corresponding training data while
refining indicator connections. DATATRUST can achieve exten-
sibility through the integration of diverse tools and resources,
as well as evolvability by incorporating real-world informa-
tion and knowledge. Nevertheless, open challenges remain,
particularly concerning tool integration, resource aggregation,
method adoption, and interaction paradigms, all of which
present valuable opportunities for future research.

V. FUTURE PLANS

We propose several actionable plans with achievable time-
lines. First, we will focus on a subset of DATATRUST to initiate
exploration and implementation, starting with a prototype.
This subset will include a few key indicators, such as security
and copyright, applied to open-source LLMs for code (e.g.,
StarCoder) alongside open-source training data, and a well-
established application task such as code generation. Second,
we will implement the three data-centric auditing processes,
using the selected indicators, LLMs, and application task,
designing approaches to address the challenges identified
earlier. Third, we will launch an initial arena platform to
engage participants, providing continuously updated leader-
boards. Finally, we will refine the methodology and complete
DATATRUST through collaboration and feedback from the
broader community.
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