
Dissecting Global Search: A Simple yet Effective
Method to Boost Individual Discrimination Testing

and Repair
Lili Quan∗, Tianlin Li†, Xiaofei Xie‡, Zhenpeng Chen†, Sen Chen§, Lingxiao Jiang‡, Xiaohong Li∗

∗Tianjin University, Tianjin, China †Nanyang Technological University, Singapore
‡Singapore Management University, Singapore §Nankai University, Tianjin, China

quanlili@tju.edu.cn, tianlin001@e.ntu.edu.sg, xfxie@smu.edu.sg, zhenpeng.chen@ntu.edu.sg,
tigersenchen@163.com, lxjiang@smu.edu.sg, xiaohongli@tju.edu.cn

Abstract—Deep Learning (DL) has achieved significant success
in socially critical decision-making applications but often exhibits
unfair behaviors, raising social concerns. Among these unfair
behaviors, individual discrimination—examining inequalities be-
tween instance pairs with identical profiles differing only in
sensitive attributes such as gender, race, and age—is extremely
socially impactful. Existing methods have made significant and
commendable efforts in testing individual discrimination before
deployment. However, their efficiency and effectiveness remain
limited, particularly when evaluating relatively fairer models. It
remains unclear which phase of the existing testing framework
(global or local) is the primary bottleneck limiting performance.

Facing the above issues, we first identify that enhancing the
global phase consistently improves overall testing effectiveness
compared to enhancing the local phase. This motivates us to
propose Genetic-Random Fairness Testing (GRFT), an effective
and efficient method. In the global phase, we use a genetic
algorithm to guide the search for more global discriminatory
instances. In the local phase, we apply a light random search to
explore the neighbors of these instances, avoiding time-consuming
computations. Additionally, based on the fitness score, we also
propose a straightforward yet effective repair approach. For a
thorough evaluation, we conduct extensive experiments involving
6 testing methods, 5 datasets, 261 models (including 5 naively
trained, 64 repaired, and 192 quantized for on-device deploy-
ment), and sixteen combinations of sensitive attributes, showing
the superior performance of GRFT and our repair method.

Index Terms—Individual Discrimination, Fairness, DNNs

I. INTRODUCTION

Deep Learning (DL) has achieved remarkable success and
demonstrated great potential in tackling complex tasks, par-
ticularly in socially critical decision-making applications [1]–
[4]. However, they often exhibit unfair behaviors in sensitive
application areas [5]–[9], raising significant social concerns
and violating the fairness requirements of software [10], [11].
For example, studies [3] show that pedestrian detectors are sig-
nificantly biased at night, with more females going undetected
than males, causing severe security concerns, perpetuating
gender discrimination, and exacerbating social inequalities.
Therefore, it is crucial to enhance fairness throughout the

This work was done during Lili Quan’s visit to Singapore Management
University. Tianlin Li and Xiaohong Li are the corresponding authors.

entire development and deployment process of DL systems,
particularly in socially critical scenarios.

Specifically, existing studies on deep neural network fair-
ness can be primarily divided into two categories: individual
discrimination [12]–[15] and group fairness [16]–[19]. Indi-
vidual discrimination requires similar decisions for similar
individuals, while group fairness requires equal treatment for
different groups based on a protected attribute. Individual dis-
crimination is capable of identifying discriminatory behaviors
that may be ignored by group fairness measures. Specifically,
individual discrimination allows for a more powerful and gran-
ular examination of discriminatory behavior that arises due to
changes in only the sensitive attribute in various contexts. In
contrast, group fairness measures may fail to detect discrim-
ination when the model treats the same group oppositely in
different situations. Thus, in this work, we primarily focus
on addressing the issue of individual discrimination in deep
neural networks (DNNs).

To thoroughly test individual discrimination in DNNs, exist-
ing methods [14], [15], [20]–[25] primarily generate individual
discriminatory instances (IDIs) in a two-phase generation
framework. Recognizing that the neighbors of IDIs are likely
to be discriminatory, they first identify diverse instances as
global seeds (the global phase). Then, they iteratively search
the neighbors of these global seeds to uncover as many
as possible IDIs (the local phase). Specifically, ADF [23]
and EIDIG [15] guide the search direction through gradients
in both phases. NeuronFair [24] and DICE [25] improve
upon previous methods by optimizing gradient guidance using
neuron behaviors or information-theoretic characterization of
discrimination. ExpGA [14] collects high-quality global seeds
through interpretable methods and then uses a Genetic Algo-
rithm to search for more IDIs in the local phase.

Despite the advanced nature of current efforts, their ef-
ficiency and effectiveness remain limited, particularly when
evaluating fairer models, even with white-box access (e.g.,
NeuronFair [24] takes 3,324 seconds to generate only 148 IDIs
for models improved by Faire [26], as detailed in table II).
To understand which phase is the key bottleneck, we conduct

a preliminary study comparing the impact of enhancing the
global versus local phases under the same search budget
(Details in Section II-C). Our findings show that enhancing
the global phase is significantly more rewarding: increasing
global IDIs consistently improves overall testing effectiveness
than enhancing the local phase.

Motivated by this, we mainly focus on improving the global
search algorithm to enhance the overall effectiveness and effi-
ciency of fairness testing. Considering this factor, we propose
Genetic-Random Fairness Testing (GRFT), a straightforward
yet effective and efficient fairness testing method. In the global
phase, we utilize a genetic algorithm that effectively guides
the search process toward generating more global IDIs from
a single seed. The fitness function is designed based on the
model output differences between the original and correspond-
ing mutated cases. This significant increase in generated global
IDIs allows us to adopt an efficient and less sophisticated
search strategy in the local phase while maintaining high
effectiveness. Thus in the local phase, we perform a light
method (i.e., random search) to explore the neighbors of the
identified global IDIs, avoiding time-consuming computations.
Additionally, our proposed method requires only black-box
access to the target model.

The fitness score used in GRFT typically measures the
degree of unfairness or bias in a model’s predictions. This
insight inspires us to improve model fairness by reducing the
model’s fitness scores. Specifically, we propose a straightfor-
ward yet effective repair approach that constructs instance
pairs from the original training data and introduces a novel
loss function aimed at directly reducing differences in model
outputs between these pairs. This new loss function ensures
that while the model continues to perform well on the primary
task, it also becomes less likely to exhibit biased behavior.

To conduct a thorough investigation, we extend the perfor-
mance study beyond existing methods that primarily evaluate
vanilla models (i.e., naively-trained models before any repair),
which can lead to misleading conclusions about the effective-
ness of these testing and repair methods. We comprehensively
assess the fairness of models across three dimensions: the
vanilla model before repair, the repaired model, and the
quantized model which indicates performance when deployed
on a device.

The extensive experiments reveal that GRFT can find
more IDIs more quickly than all baselines across all models
and datasets. For example, on average, across all datasets,
compared to the best-performing baseline EIDIG, GRFT takes
only 0.96% (i.e., 84 seconds) of the time to discover 3.07 times
(i.e., 278,344) more IDIs in the models repaired by Faire.
Moreover, compared to existing repair methods, our repair
method significantly improves the fairness performance of the
model. For example, GRFT on average discovers 2,850.6 IDIs
in the models repaired by our method, which is a 60.50%
reduction compared to the flipping-based retrained models.

Contributions. In summary, this research makes the fol-
lowing contributions:

• This paper highlights that increasing the number of global

IDIs improves testing effectiveness more than enhancing
the local phase under the same budget.

• We propose GRFT, a novel method that uses genetic
algorithms in the global phase and random search in
the local phase for more efficient and effective IDI
generation.

• We propose a straightforward yet effective repair method
by introducing a novel loss function to reduce differences
in model outputs between instance pairs.

• We conduct extensive experiments involving 6 testing
methods, 261 models (including 5 naively-trained, 64
repaired, and 192 quantized models), 5 datasets, and 16
combinations of sensitive attributes to demonstrate the
efficiency and effectiveness of our method.

• We release our testing and repair tool in https://
sites.google.com/view/faireness-testing-grft.

II. BACKGROUND & PRELIMINARY STUDY

A. Deep Neural Networks

Deep Neural Networks (DNNs), inspired by the neural net-
works of the human brain, are renowned for their exceptional
performance [27]. These networks typically consist of multiple
layers of interconnected neurons.

Definition 1: A Deep Neural Network (DNN) f consists of
multiple layers ⟨l0, l1, . . . , lk, lo⟩, where l0 is the input layer, lo
is the output layer, and l1, . . . , lk are hidden layers. The inputs
of each layer are from the outputs of the previous layer.

In this work, we mainly focus on the classifier f : X → Y ,
where X is a set of inputs and Y is a set of classes. Given an
input x ∈ X , we use fl(x) to represent the internal features
extracted by the layer l (i.e., the neuron output values at l).

B. Problem Definition

1) Individual Discrimination: There are various metrics
for evaluating the fairness of machine learning models [28].
Among them, individual fairness asserts that similar inputs
differing only in protected attributes should not lead to dis-
criminatory outcomes. We adopt the definition of individual
discrimination from [23]. Let the attribute set of the dataset
be A = A1, A2, · · · , An, with P ⊂ A representing protected
attributes (e.g., gender, race, age) and NP denoting non-
protected attributes. We define a discriminatory instance as
follows.

Definition 2 (Discriminatory Instance): x = a1, a2, · · · , an
is an arbitrary instance in dataset, where ai represents the value
of attribute Ai. We define x as a discriminatory instance of
a DNN when there is a x′ = a′1, a

′
2, · · · , a′n in the instance

space that satisfies the following conditions:
• ∃p ∈ P, s.t., ap ̸= a′p;
• ∀q ∈ NP, s.t., aq = a′q;
• f(x) ̸= f(x′)

2) Repairing Individual Discrimination : The repair could
be defined as: given a DNN f that suffers from individual
discrimination, we aim to repair the DNN f as a fairer DNN
f ′. Given any input x, if we change some values of the

Table 1

#Global IDIs 0 (100,1000) (200,500) (400,250) (500,200)

#Local Iteration 1000 500 250 200

EIDIG 0 15438 19332 23058 24834

ADF 0 17694 21623 25341 27525

NeuronFair 0 13232 16223 19296 20984

#Global IDIs

 T
ot

al
 N

um
be

r o
f I

DI
s

0

7500

15000

22500

30000

Number of Global IDIs
0 (100,1000) (200,500) (400,250) (500,200)

EIDIG
ADF
NeuronFair

0

7000

14000

21000

28000

EIDIG ADF NeuronFair

(100,1000) (200,500) (400,250) (500,200)

1

Fig. 1: Result of preliminary study

protected attributes as x′, the classification output should be
not changed, i.e., f ′(x) = f ′(x′). The definition could be:

fθ(x) = fθ(x′) ∧ f(x) = fθ(x),

where fθ means the new model with the learned parameters
θ. For the input x and x′, we expect that the decisions of the
DNN on these two inputs rely on the features that are as similar
as possible, and the original functionality is not affected.

C. Preliminary Study

Existing methods typically generate m IDIs during the
global phase and then perform n local iterations for each
IDI, resulting in a total of m × n iterations. We ignore the
cost of the global phase here since it is often minimal due to
significantly fewer global iterations (e.g., 10 global iterations
versus 1000 local iterations). However, it remains unclear:
Given a fixed m×n budget, how should resources be allocated
to maximize testing effectiveness? To explore it, we investigate
the following two strategies:

- Strategy 1: Enhance the global phase by increasing m,
the number of IDIs, while reducing n, the number of local
iterations per IDI.

- Strategy 2: Enhance the local phase by giving a smaller
m and increasing n, thus focusing on more iterations per IDI.

Existing methods predominantly follow Strategy 2, adopting
a lightweight global phase (e.g., generating only one IDI
per seed input with 10 iterations) and performing a more
intensive local phase (e.g., 1000 iterations per IDI). However,
the effectiveness of this approach compared to Strategy 1
remains unclear.

To address this gap, we conducted a preliminary study
to compare these two strategies. Using a fixed budget of
m × n = 100, 000, we evaluated four configurations: (100,
1000), (200, 500), (400, 250), (500, 200), where each pair
represents (m,n). As shown in Figure 1, our findings reveal
that increasing m (the number of global IDIs) consistently
improves testing effectiveness.

III. METHODOLOGY

A. Testing Individual Discrimination

Based on findings (in Section II-C) that enhancing the global
phase yields greater performance rewards than enhancing the
local phase, we designed GRFT, a simple and effective method
that combines a more efficient global search algorithm (i.e.,
Genetic Algorithm) with a lightweight local search algorithm
(i.e., Random).

Dataset

Global Generation
MutationCrossoverSelection Discrimination Check

non-sensitivesensitive

...

...

...

DatasetClusterSeed

1 ... 02 4 1

1
... 0

3 0
21

... 0
2 4

11 ... 03 0 2

0 ... 03 4 4

1 ... 13 4 4 Model1 ... 03 4 4

1 ... 03 4 1

Discriminatory
Samples

Discriminatory Samples

Local Generation

Local Perturbation Discrimination Check

Seed Sample Selection

0 ... 03 5 4

0 ... 03 4 4
+1

0 ... 03 5 4

1 ... 03 5 4 Model

Fig. 2: Overview of GRFT

Algorithm 1: Global Generation
Input : s: a seed sample, max iter: maximum number of

iterations
Output: D: IDIs set
Const : m: size of population, r1: crossover rate, r2:

mutate rate

1 D:=∅;
2 X:=initPopulation(s,m);
3 iter:=0;
4 while iter ≤ max iter do
5 Calculate fitness values for the chromosomes in X;
6 for x ∈ X do
7 if discriminationCheck(x)==True then
8 D:=D ∪ x;

9 if Len(D) ̸= 0 then
10 return D
11 for i ∈ [0,m] do
12 if isBestFitness(X [i]) then
13 Continue;

14 Select x1, x2 using tournament selection;
15 X [i] := Crossover(x1, x2, r1);
16 X [i] := Mutate(X [i], r2);

17 iter += 1

18 return D

1) Overview: Figure 2 provides an overview of GRFT. To
ensure diverse instances, we first cluster the original training
dataset using algorithms like K-Means [29] and select seed
samples from the clusters. GRFT then discovers IDIs from
each seed through two phases: global generation and local
generation. The global phase takes the seed samples as input
and employs a genetic algorithm (GA) to efficiently search
for more IDIs through population initialization, selection,
crossover, and mutation operations. Based on the globally
generated IDIs, the local stage aims to discover IDIs near them
through local perturbation and search iterations.

2) Global Generation: Existing studies [13], [15], [23]
often generate IDIs by guiding the search process using the
gradient of the loss function or model output with respect to
input x, which can be time-consuming. Moreover, findings in
Section II-C indicate that improving the global phase leads to
greater performance gains. Motivated by the high convergence
speed and strong search capabilities of GA, we adopt GA in
the global phase. Algorithm 1 presents the GA procedure for
generating IDIs, with its key components detailed as follows.

Algorithm 2: Tournament Selection
Input : fitness: fitness values, X: current population,

tournament size: size of tournament
Output: x1, x2: selected samples for crossover

1 tournament1 := randomSelect(population,
tournament size);

2 tournament2 := randomSelect(population,
tournament size);

3 x1 := getBestFitnessIndvidual(fitness, tournament1);
4 x2 := getBestFitnessIndvidual(fitness, tournament2);
5 return x1, x2

Population Construction This step constructs the initial
population based on a seed sample. In this paper, we focus on
tabular datasets. For the encoding of GA, we consider a whole
sample instance as a chromosome, and each attribute as a
gene. Given a sample x, we generate a new sample x′ through
random perturbation of non-protected attributes chosen from x.
Since the attributes are all preprocessed as categorical values
in tabular samples, the perturbation is done by increasing or
decreasing the value by sg unit (random select from [−c, c]). c
is used to constrain the difference between the attribute value
of x and x′. The generated new chromosome will be checked
to ensure that each attribute value complies with the constraints
of the dataset. Attribute values that exceed the valid range will
be clipped. As the initial step (Line 2 in Algorithm 1), we
randomly generate m samples as the initial population.

Fitness Function Intuitively, if two instances differ only
in protected attributes, a larger discrepancy in their model
outputs suggests that these attributes significantly influence
the model’s inference. This implies that such instances are
more prone to becoming discriminatory under slight perturba-
tions. Based on this intuition, we design a fitness function
fitness(x) for a sample x as shown in Equation (1). It
quantifies the absolute difference between the model’s output
probabilities for x and xk using L1-norm. xk is derived from
x and n is the number of samples that differ from x only in
the protected attributes. The higher the fitness value, the more
likely the sample x is to be mutated into IDIs. In each search
iteration, this function is used to calculate the fitness value for
each chromosome in the population X (Line 5 in Algorithm 1).

fitness(x) =
∑n

k=0||f(x)− f(xk)||1. (1)

Selection This step selects high-quality chromosomes to
generate the next population based on fitness score. In this
paper, we adopt the tournament strategy, where the chro-
mosome with the best fitness score in each tournament is
selected for crossover (Line 14 in Algorithm 1). Algorithm 2
details the selection process. Specifically, tournament size
chromosomes are randomly selected from the top 10% ranked
individuals in the current population as a tournament. Then,
the chromosomes with the highest fitness score are selected
from tournament1 and tournament2 respectively.

Crossover, and Mutation The crossover randomly ex-
changes the attribute values under the correspondence index

2 10 10 1 31 8 0 0x1

x2

03

2 20 9 1 22 5 0 0 04
crossover

a0 a1 a2 a3 a4 a5 a9a6 a7 a8 a10 a11

2 20 9 1 31 5 0 0x3

x4

03

03
mutation

a0 a1 a2 a3 a4 a5 a9a6 a7 a8 a10 a11

+1
2 30 9 1 405 00 3

+1-1

Fig. 3: The example of crossover and mutation

(Line 15 in Algorithm 1). Next, the mutator randomly selects
three non-protected attributes to increase or decrease sg units
(same as population construction) at a predefined mutation
rate r2 (Line 16 in Algorithm 1). The mutated chromosome
is then checked to ensure compliance with dataset constraints,
and any attribute values exceeding the valid range are clipped.

Figure 3 illustrates an example of crossover and mutation.
Chromosomes x1 and x2, used for crossover, are generated
based on the dataset Census Income. The protected attributes
a0, a6, and a7 correspond to age, race, and gender, re-
spectively, and are shown in the blue boxes. By randomly
crossing the attributes {a1, a2, a4, a6, a9} of x1 and x2, a new
chromosome x3 is obtained. Then, the non-protected attributes
a3,a8, and a10 of x3 are mutated to 0, 3, and 4, respectively,
resulting in the final new chromosome x4.

3) Local Generation: Based on the IDIs found in the
global phase, the local phase aims to explore the IDIs near
them. Existing methods that rely on gradient calculations and
iterative searching are time-consuming. However, our more
effective global search algorithm allows us to adopt an efficient
and less sophisticated search strategy in the local phase while
maintaining high performance. Furthermore, neighbors of IDIs
are often also likely to be discriminatory. Therefore, we
employ a lightweight random search in the local phase.

Algorithm 3 shows the process of local generation. For each
discriminatory instance d generated in the global phase, this
phase iteratively searches through max iter random samples
(Line 3). In each iterative search, one non-protected attribute
of d is randomly selected (Line 6) and either increased or
decreased by 1 (Lines 7 and 10). The mutated instance is then
checked to determine if it is still discriminatory (Line 11). If
it is no longer discriminatory, the search continues from the
original discriminatory instance d0 (Line 14).

B. Repairing Individual Discrimination

The fitness score (Equation (1)) used in GA typically
quantifies the degree of model unfairness. Higher fitness scores
indicate a greater likelihood of discriminatory behavior, while
lower scores suggest better fairness. To improve fairness, we
reduce the model’s tendency to produce high fitness scores by
adding a loss term. We use Lcls to denote the cross entropy
loss item and the retraining loss item could be revised as:

L = Lcls + λ

x∈X∑
x

fitness(x), (2)

where λ is used to modulate the weight of the two items.
This revised loss function integrates traditional classification

accuracy with a fairness-focused term, ensuring strong perfor-
mance on the primary task while reducing biased behavior.
Note that we only need to sample x from the original training

Algorithm 3: Local Generation
Input : Dg: IDIs generated in global phase, max iter:

maximum number of iterations, np: non-protected
attributes

Output: Dl: IDIs set

1 Dl:=∅;
2 iter:=0;
3 for d ∈ Dg do
4 while iter ≤ max iter do
5 d0:=copy(d);
6 attribute:= randomSelect(np);
7 if random.uniform() ≤ 0.5 then
8 d [attribute] += 1;

9 else
10 d [attribute] -= 1;

11 if discriminationCheck(d) == True then
12 Dl:=Dl ∪ d;

13 else
14 d:=d0;

15 iter += 1

data X , which eliminates the need for a large volume of
generated IDIs.

IV. EVALUATION

In this section, we evaluate the performance of the proposed
testing and repair method. We first outline the experimental
setup and then, we introduce our evaluation aiming to answer
the following research questions:

• RQ1: How does GRFT outperform other baselines across
vanilla, repaired, and quantized models?

• RQ2: How does GRFT perform in both the global and
local phases?

• RQ3: How efficient is GRFT?
• RQ4: How effective is the proposed repair method?

A. Experimental Setup

1) Datasets and Models.: We conduct experiments on five
popular datasets including Census Income [30], Bank Mar-
keting [30], German Credit [30], COMPAS [31], LSAC [32].
These tabular datasets are commonly used in individual fair-
ness testing [15], [21], [23]. ❶ Census Income. The dataset,
created by Barry Becker from the 1994 Census database,
contains 48,842 instances and 14 attributes. The original aim
is to determine whether a person makes over $50K a year.
Among these 14 attributes, race, gender, and age are defined as
protected attributes. ❷ Bank Marketing.The dataset contains
over 45,000 instances and 16 attributes, with age being the
only protected attribute. The original aim of this dataset is
to assess whether a bank term deposit product would be
subscribed to (yes) or not (no). ❸ German Credit. This
dataset provides an assessment of creditworthiness based on
personal and financial records. It contains 1,000 examples
with 20 attributes. ❹ COMPAS. COMPAS (Correctional
Offender Management Profiling for Alternative Sanctions) is
a commercial algorithm used by judges and parole authorities

to predict recidivism. A 2-year follow-up study showed that
the algorithm is biased against black inmates and favors white
defendants. ❺ LSAC. The LSAC dataset tracks students who
entered law school in the fall of 1991 through three or more
years of law examinations. National race- and gender-specific
bar passage data are available for analysis and study. We
train six-layer fully connected DNN models following prior
work [15], [23], [26]. More details on our website [33].

2) Testing Baselines: We select 5 state-of-the-art testing
approaches applicable for DNNs to compare with GRFT. The
white-box baselines include ADF [23], EIDIG [15], Neuron-
Fair [14], and the black-box baselines include ExpGA [14] and
LIMI [13]. The white-box method DICE [25] is not selected
because it uses the same gradient-guided strategy as ADF, with
Shannon entropy to quantify individual discrimination (QID),
generating multiple non-IDIs in the global phase (high QID
value). This greatly increases time costs in the local phase,
taking over four times longer for only a slight increase in
IDIs. The results are available on our website [33].

3) Repairing Baselines: Following Faire [26], we select
the following repairing baselines for comparison. ❶ IDIs
retraining [15], [23]. ADF [23] and EIDIG [15] incorporate
their generated IDIs into the training data to retrain the model
and improve fairness. As shown in EIDIG, it outperforms
ADF in retraining performance; thus, we primarily use EIDIG
to generate retraining data. Following EIDIG, all IDIs across
protected attribute combinations are added to the training data,
forming the baseline Mdis. ❷ Flipping-based retraining [26].
A basic method for augmenting the training data involves flip-
ping the protected attributes of each instance (e.g., generating
a new instance by changing the gender from woman to man).
During the learning process, the model learns to be insensitive
to the protected attributes because the ground truth remains
unchanged while only the protected attributes vary. We denote
this baseline as Mflip. ❸ Multitask Learning [34]. A com-
mon approach to mitigate protected features uses a multi-task
setting, training a protected attribute classifier alongside the
original task. The loss function minimizes the original cross-
entropy loss (L1) while maximizing the classifier’s cross-
entropy loss (L2). The final loss is L = λ1L1 − λ2L2.
We denote this method as Mmt. ❹ Faire [26]. This method
identifies protected neurons and non-protected neurons. A
condition layer is added to penalize protected neurons and
promote non-protected neurons at each layer. The model is
then fine-tuned using the original data, freezing hidden layers’
weights and training only the condition layers, denoted as
MFaire. ❺ CARE [35]. This method localizes faulty neurons
through causality analysis and optimizes their parameters to
mitigate misbehavior, denoted as MCARE . ❻ RULER [36].
This method balances accuracy and fairness by employing
a two-phase training procedure with an iterative adversarial
approach, denoted as MRULER.

4) Evaluation Metrics: We design the following metrics for
our evaluation: ❶ Discriminatory Instance Number. This
metric tracks the number of IDIs identified, serving as both a
testing and repair metric. For testing, a higher count indicates

thorough detection of fairness issues. For repair, the goal is
to reduce this number, reflecting improved model fairness. ❷
Time. This metric measures the total time needed for fairness
testing to identify IDIs. It covers both global and local phases.
A shorter time indicates higher efficiency, which is important
for practical applications. ❸ Accuracy. The accuracy of the
repaired model is an important indicator for measuring its
utility. The objective of the repair method is to improve the
individual fairness of the given models without sacrificing too
much accuracy.

5) Parameter Setting: Recall that GRFT involves 5 im-
portant parameters, including m and c for population con-
struction, tournament size for sample selection, r1 for the
crossover, and r2 for the mutation. We configure m, c,
tournament size, r1, r2 to 100, 5, 3, 0.5, 0.5 according
to our experimental experience for the tabular dataset. The
parameter λ is set to 1 for the repair method. Additionally,
before the global generation phase, we employ the K-Means
algorithm to cluster the training set. Across all experiments,
following ADF and EIDIG, we set the number of clusters
to 4 and select 1,000 samples as seed, and set the maximum
number of iterations for the global phase and local phase to 10
and 1,000, respectively. Additionally, we use the best settings
reported in the papers for all testing and repair baselines. We
take an average of 10 multiple runs for all experiments to
ensure robust results. Under most parameter settings, the p-
values < 0.02. It shows our results are statistically significant.

B. RQ1: Performance of GRFT across Vanilla, Repaired,
Quantized Models

1) Vanilla Models: The number of IDIs found by each
fairness testing method on vanilla models are shown in Table I.
We can see that all the testing methods yield different results
across various datasets and attribute combinations. ADF and
EIDIG detect the most IDIs on the Bank dataset, while ExpGA
and GRFT detect the most on the LSAC dataset. However,
GRFT consistently outperforms all other methods in detecting
more IDIs across every dataset and attribute combination.
Its superior performance is particularly notable in complex
attribute combinations and larger datasets, such as the LSAC
dataset and the attribute g&r. Furthermore, our black-box
testing method, GRFT, detects an average of 358,843 IDIs
across all datasets and attribute combinations, significantly
higher than the next best method, EIDIG, which identifies
145,420. These results demonstrate GRFT’s robustness and
effectiveness in identifying IDIs.

2) Repaired Models: Table II compares testing methods
across repaired models, showing the average number of IDIs
identified across all protected attributes. A “–” indicates no
IDIs were found. More details are available on our web-
site [33].

We observe that on most repaired models, gradient-based
white-box methods like ADF, EIDIG, and NeuronFair outper-
form black-box methods such as ExpGA and LIMI. However,
on Mflip, LIMI detects more IDIs than ADF and EIDIG.
This may be because models closer to fairness have smoother

TABLE I: Number of IDIs found by each fairness testing
method on vanilla models

Dataset Attr ADF EIDIG NeuronFair ExpGA LIMI GRFT

Census

a 229,544 244,015 288,467 26,117 3,886 496,374
g 50,331 57,130 22,366 2,831 30,194 222,461
r 45,150 53,986 37,366 33 17,848 400,136

a&g 313,364 339,186 313,932 28,402 19,715 857,909
a&r 295,721 324,551 304,666 29,075 14,476 285,600
r&g 125,078 145,463 83,996 8,978 33,334 599,456

Avg 176,531 194,055 175,132 15,906 19,908 476,989

Bank a 236,844 257,761 198,884 9,023 16,809 138,389

Credit

a 197,949 229,846 217,692 19,232 0 497,263
g 30,052 31,285 136,119 0 10,724 269,214

a&g 238,376 259,813 265,393 23,787 26,944 336,819

Avg 155,459 173,648 206,401 21,509 18,834 367,765

COMPAS

g 170 244 118 272 11 382
r 150 158 81 84 29 261

g&r 257 369 153 374 41 475

Avg 192 257 117 243 27 372

LSAC

g 77,172 30,371 20,825 14,389 774 265,654
r 168,425 135,550 123,468 14,070 1,399 614,612

g&r 246,745 217,002 195,091 30,744 1,563 756,486

Avg 164,114 127,641 113,128 19,734 1,245 545,584

Total 140,958 145,420 138,038 13,827 11,849 358,843

gradients, making them less effective for guiding IDI searches.
Notably, all methods failed to find IDIs on Mmt for the Credit
and COMPAS datasets due to the lower model accuracy, which
produced identical outputs for all inputs. LIMI could not find
IDIs on MFaire because the surrogate decision boundary could
not be generated due to the instability of GAN models.

Compared to existing methods, GRFT identifies the most
IDIs across all repaired models, with a significant margin
over the next best method. For example, in Mdis, GRFT finds
405,760 IDIs for the LSAC dataset, a considerable improve-
ment over the best gradient-based method, ADF, which finds
86,798 IDIs. Similarly, in Mflip, GRFT identifies 7,217.4
IDIs, significantly surpassing other methods. These results
underscore GRFT’s robustness in handling diverse fairness-
enhanced models and highlight its potential as a powerful tool
for fairness testing in machine learning.

3) Quantized Models: To assess the impact of quantiza-
tion on model fairness, we apply quantization and testing
to the repaired models. For each model, we consider three
quantization levels (i.e., 1%, 50%, and 100%). We then use
all fairness testing methods to detect IDIs. The results show
that GRFT outperforms other baselines across all datasets
and quantized models. Table III shows the number of IDIs
found by GRFT on the best-performing quantized models (i.e.,
quantized Mflip), where 0% indicates the model that is not
quantized. More detailed results are shown in our website [33].

From the table, it is evident that quantization impacts the
number of IDIs detected. Specifically, as the quantization level
increases, the number of IDIs generally increases across most
datasets and attributes. For instance, in the Census dataset,
the attribute combination of age and race (a&g) shows a
steady increase in IDIs from 6,236 at 0% quantization to
6,704 at 100%. Similarly, in the Credit dataset, the attribute
combination of gender and age (a&g) shows an increase from

TABLE II: Number of IDIs found by fairness testing methods on repaired models

Dataset
Mdis Mmt

ADF EIDIG NeuronFair ExpGA LIMI GRFT ADF EIDIG NeuronFair ExpGA LIMI GRFT

Census 23,296 18,588 13,539 2,058 2,884 92,804 342,338 367,000 264,159 19,378 18,571 372,560
Bank 99,100 86,491 47,090 10,578 14,845 91,530 330,882 323,730 107,467 109 - 233,889
Credit 21,111 14,058 19,202 3,059 5,392 144,650 - - - - - -
COMPAS 499 744 280 848 16 928 - - - - - -
LSAC 86,798 56,013 39,808 16,284 654 405,760 273,741 346,400 145,676 24,801 550 1,120,487

Avg 46,160.8 35,178.8 23,983.8 6,565.4 4,758.2 147,134.4 315,653.7 345,710 172,434 14,762.7 9,560.5 575,645.4

Dataset
Mflip MFaire

ADF EIDIG NeuronFair ExpGA LIMI GRFT ADF EIDIG NeuronFair ExpGA LIMI GRFT

Census 534 442 681 326 884 7,284 82,099 86,543 107,895 3,777 12,098 309,056
Bank 829 558 602 418 1,504 7,931 78,825 78,777 174,818 42 1,027 145,994
Credit 3,237 2,980 8,307 1,382 4,527 14,773 11,191 11,204 28,349 - - 26,902
COMPAS 9 10 7 155 25 241 194 199 148 4,021 10 468
LSAC 287 211 457 821 184 5,858 280,400 275,863 99,930 10,924 - 909,300

Avg 979.2 840.2 2010.8 620.4 1,424.8 7,217.4 90,541.8 90,517.2 82,228 3,752.8 4,378.4 278,344.1

Dataset MCARE MRULER

ADF EIDIG NeuronFair ExpGA LIMI GRFT ADF EIDIG NeuronFair ExpGA LIMI GRFT

Census 40,060 51,266 46,210 3,990 6,063 148,562 79,760 112,405 89,948 12,284 6,535 219,222
Bank 131,750 149,358 172,961 5,208 4,601 98,223 22,596 30,977 57,660 2,833 45 94,083
Credit 162,098 137,475 151,922 17,066 16,604 282,252 62,200 68,417 133,231 4,757 32,719 204,985
COMPAS 108 144 57 7 4 151 173 253 86 155 6 247
LSAC 80,350 73,052 58,534 11,482 816 454,732 102,921 93,076 61,716 8,415 795 463,682

Avg 82,873.2 82,259 85,936.8 7,550.6 5,617.6 196,784 53,530 61,025.6 68,528.2 5,688.8 8,020 196,443.8

TABLE III: Number of IDIs found by GRFT on quantized
Mflip

Dataset Attr 0% 1% 50% 100%

Census

a 5,808 6,037 5,957 5,685
g 4,618 4,855 4,729 4,288
r 4,241 6,096 4,857 6,006
a&g 6,236 8,017 7,967 6,704
a&r 13,012 13,571 12,937 13,629
r&g 9,790 9,535 8,972 9,751

Bank a 7,931 8,955 9,777 8,884

Credit
a 16,572 65,763 70,433 62,142
g 18,048 56,599 54,512 58,467
a&g 9,701 31,559 35,831 29,808

COMPAS
g 67 63 61 63
r 8 50 52 52
g&r 49 66 65 65

LSAC
g 529 4,133 3,808 4,216
r 7,319 5,251 5,721 5,298
g&r 9,727 10,740 8,976 8,648

9,701 at 0% quantization to 29,808 at 100%.
This pattern suggests that quantization generally exacerbates

the fairness issues in the models, leading to an increase in
discriminatory instances detected. The effect is particularly
pronounced in datasets like Credit, where the number of IDIs
increases significantly with higher quantization levels.

Answer to RQ1: GRFT consistently outperforms all
testing baselines in detecting more IDIs across vanilla,
repaired, and quantized models. Moreover, quantization
seems to harm model fairness, as indicated by the rise in
IDIs with higher quantization levels.

C. RQ2: Performance on Global Phase and Local Phase

To understand the reasons for GRFT’s effectiveness, we
conducted a detailed analysis of its performance in the global
and local phases.

1) Global Phase: Table IV presents the number of IDIs
detected by each testing method during the global phase
across vanilla, repaired, and quantized models. Due to space
limitations and the similar results observed on the quantized
and repaired models, we only present results for the top 4
testing baselines and the best-performing quantized Mflip.
LIMI is excluded as it only contains one random exploration
phase. A “–” in the table indicates that no IDIs are found.

We can see that, in the global phase, GRFT significantly
outperforms other state-of-the-art methods across vanilla, re-
paired, and quantized models. Specifically, for 1,000 initial
seeds and the Mflip, GA-based GRFT detects an average
of 2,652 IDIs per dataset, significantly surpassing ADF (i.e.,
63), EIDIG (i.e., 59), NeuronFair (i.e., 112), and ExpGA (i.e.,
84). GRFT can detect more than 1,000 IDIs, which exceeds
the number of seeds. This is because, in each iteration, the
population size is set to 100. Therefore, for each seed, more
than one discriminatory instance can be detected. In contrast,
existing gradient-based methods generate at most one discrim-
inatory instance per seed. For the Census, Credit, COMPAS,
and LSAC datasets, ExpGA produces the fewest IDIs as it does
not search for IDIs but instead uses an interpretability model to
generate high-quality samples. These results demonstrate that
GRFT significantly outperforms other testing methods in the
global phase, primarily due to the superior search capabilities
and fast convergence of the GA.

TABLE IV: Number of IDIs found by each fairness testing method in the global phase

Dataset Mvan Mdis Mmt Mflip

ADF EIDIG NeuronFair GRFT ADF EIDIG NeuronFair GRFT ADF EIDIG NeuronFair GRFT ADF EIDIG NeuronFair GRFT

Census 429 526 521 5,072 301 225 221 2,108 630 667 485 3,431 71 66 109 1,439
Bank 236 576 562 4,229 653 656 328 3,276 835 845 278 4,747 100 89 81 7,931
Credit 439 422 551 5,107 148 91 264 3,109 - - - - 63 78 267 2,438
COMPAS 109 82 50 269 68 114 72 442 - - - - 4 5 4 55
LSAC 592 562 520 4,565 557 403 365 3,454 624 775 399 4,976 78 59 98 1,398

Avg 361 434 441 3,848 345 298 250 2,478 418 457 232 2,631 63 59 112 2,652

MFaire MCARE MRULER Quantized Mflip

Dataset ADF EIDIG NeuronFair GRFT ADF EIDIG NeuronFair GRFT ADF EIDIG NeuronFair GRFT ADF EIDIG NeuronFair GRFT

Census 315 322 334 4,749 228 291 329 3173 359 523 415 3492 71 66 110 1,381
Bank 288 288 516 4,309 608 718 449 3939 158 249 325 3145 111 93 93 1,501
Credit 30 30 111 204 439 404 500 4260 212 261 447 3701 64 78 262 2,469
COMPAS 336 219 44 22 34 55 24 133 43 68 32 188 4 5 3 53
LSAC 641 2,388 238 5,133 459 484 399 3976 574 579 461 3970 77 57 104 1,342

Avg 322 649 249 2,883 354 390 340 3,096 269 336 336 2,899 65 60 114 1,349

2) Local Phase: Despite using only a random search strat-
egy without directional guidance, GRFT detects a significant
number of IDIs in the local phase. For vanilla models, GRFT
detects 301,972 (i.e., 305,820-2,652) instances on average,
accounting for 98.74% of the total instances detected, while
for Mflip, it detects 4,625 (i.e., 7,217-2,652) instances, com-
prising 63.63%. In comparison, ADF, EIDIG, and NeuronFair
detect 916, 781, and 1,989 instances in the local phase,
contributing 93.56%, 92.97%, and 94.42% of their respective
totals. Notably, ExpGA generates fewer IDIs, as its global
phase provides too few high-quality seeds, highlighting the
effectiveness of GRFT in leveraging even a simple random
search for local phase detection.

3) Ablation Analysis : To evaluate the contributions of the
global and local phases, we replace the search algorithms in
GRFT with those from the two best-performing baselines,
EIDIG and NeuronFair, forming variants shown in the first
row of Table V. Specifically, GRFT&NeuronFair represents
the variant combining GRFT’s global search with NeuronFair’s
local search, while EIDIG&GRFT represents the variant com-
bining EIDIG’s global search with GRFT’s local search.

For the evaluation, 1,000 samples from the Census dataset
were randomly selected as seeds, with 10 and 100 iterations set
for the global and local phases, respectively. Each experiment
was repeated three times, and the average results are reported
in Table V, where #IDIs denotes the number of IDIs found,
and #IDIs Per Second measures efficiency, representing the
average number of IDIs generated per second. The metric
#IDIs Per Second was introduced to ensure a fair comparison,
as different methods require varying amounts of time to
complete the same number of iterations.

When replacing Random in GRFT with the local search
algorithm in NeuronFair and EIDIG, more IDIs were generated
after 100 iterations (13,079 vs. 19,738 vs. 23,039). However,
the time required increased significantly (1.79s vs. 2,496.92s
vs. 705.82s), making them 1,394 and 393 times slower. Con-
versely, when replacing NeuronFair and EIDIG with simple
Random, they became much faster (22.43s and 28.58s) but
produced fewer IDIs. These results highlight that enhancing
the global phase while using lightweight search in the local

TABLE V: Performance of variant methods

GA&Random
(GRFT)

GRFT&
NeuronFair

GRFT&
EIDIG

EIDIG&
GRFT

NeuronFair&
GRFT

#IDIs 13,079 19,738 23,039 2,340 1,944
Time (Seconds) 1.79 2,496.92 705.82 22.43 28.58
#IDIS Per Second 7316.75 7.90 32.64 104.32 68.02

Table 1
ADF EIDIG NeuronFair ExpGA LIMI GRFT

Mvan 40572.5 11457.1 33527.6 22035 1559.9 68.4
M_dis 43388.8 9264.8 21493.2 19310.4 1620.1 59
M_mt 53435.5 14053.8 21162.1 22476.6 1397.5 113.6
M_flip 11815.3 2715.7 13715.8 14756.1 1873.2 50.2
M_Faire 13160.8 8727.6 22142.4 19696.7 2381.2 84
M_CARE 15244 6150.4 14773.1 8291.8 650.9 86.5
M_RULER 18402.7 7367.6 24227.5 12579.3 1334.7 89.9
Quantized 11815.8 2817.6 19591.8 11706.6 2142.8 191.2

5149.876 1778.605 7241.348 3510.601 482.651 40.844

Ti
m

e
(S

ec
on

ds
)

10

100

1000

10000

100000

Model Type

Mvan Mdis Mmt Mflip MFaire MCARE MRULER Quantized

Mflip

191.2
89.986.584

50.2
113.6

5968.4

11815.818402.71524413160.811815.3

53435.543388.840572.5

ADF EIDIG NeuronFair ExpGA LIMI GRFT

Va
lu

e
Ax

is

10

100

1000

10000

100000

Mvan M_dis M_mt M_flip M_Faire M_CARE

ADF EIDIG NeuronFair ExpGA LIMI GRFT

1

Fig. 4: Comparison of total time required by fairness testing
methods across vanilla, repaired, and quantized models

phase leads to higher IDIs, especially when the SAME time
budget is applied.

Answer to RQ2: This significant increase in generated
global IDIs allows us to adopt an efficient and less
sophisticated random search strategy in the local phase
while maintaining high effectiveness.

D. RQ3: The Efficiency of GRFT

To evaluate the efficiency of GRFT, we calculated the total
time required for each testing method to complete the search
for each model and 1,000 initial seeds. Figure 4 shows the
average result on vanilla, repaired, and quantized models. Due
to space limitations and the similar results observed on the
quantized and repaired models, we only present results for
the best-performing quantized Mflip. More detailed results
can be found on our website [33]. We can see that for all
models, GRFT completes the search in under 200 seconds,
while ADF, EIDIG, and NeuronFair take over 10,000 seconds
(at least 50 times longer than GRFT). Even the relatively faster
LIMI requires at least 1,000 seconds. It is worth noting that
the times required by baselines are higher than reported in
their papers because we measure the total time to generate all

IDIs from 1,000 seeds (10 global and 1,000 local iterations),
whereas the papers report the time for generating only 1,000
IDIs. Compared to the vanilla models, the testing methods
generally complete the search faster on repaired models, as
fewer IDIs are detected in the global phase in fairer models,
limiting the number of searches in the local phase. These
results indicate that GRFT completes the search process faster
than all baselines, at least 5 times faster than GAN-based LIMI
and even 50 times faster than gradient-guided methods.

Additionally, Table I shows that GRFT identifies more IDIs
across most datasets and models compared to all baselines.
These results indicate that GRFT can discover more IDIs in
less time. For instance, on vanilla models, GRFT identifies
358,843 IDIs in an average of 68.4 seconds, while the next
best method, EIDIG, takes 11,457.6 seconds to find 145,420
instances. Similarly, GRFT takes only 84 seconds to discover
3.07 times more IDIs (i.e., 278,344) than EIDIG does in the
models repaired by Faire.

We believe the primary reason for GRFT’s high perfor-
mance is the combination of the GA and the random iterative
search algorithm. First, the GA significantly enhances the
effectiveness of the global phase, allowing us to adopt an
efficient and less complex search strategy in the local phase
while maintaining high effectiveness. Second, the use of an
unguided, random iterative search in the local phase reduces
time costs by avoiding the complex and time-consuming
gradient computations required by existing methods and by
processing all seeds in batches. In contrast, other baselines
require mutations based on the gradient of input pairs, making
batch processing a challenge.

Answer to RQ3: GRFT significantly reduces the time
required to identify IDIs because they do not require
gradient calculations, demonstrating superior efficiency
over other methods.

E. RQ4: Performance of Our Repair Method

As shown in Table II, a considerable number of IDIs can
still be detected in Mdis, Mmt, and Mfaire. Particularly, more
IDIs can be detected in Mmt than in the vanilla models. For
example, ADF detects about 315,654 IDIs in Mmt, which
is 2.24 times the number found in the vanilla models (i.e.,
140,958). This may stem from the instability of the multitask
learning paradigm in the repair method. While it improves fair-
ness on the original test set, it may fail to enhance robustness
and can even reduce it if misdirected. As observed in Faire,
the adversarial branch often converges to fixed outputs during
training, failing to counter discriminatory patterns effectively.
Notably, for Mmt, no IDIs are detected on the Credit and
COMPAS datasets due to the lower accuracy resulting in the
same output for all inputs.

As a comparison, the number of detected IDIs in models
repaired by our method is shown in Table VI. We can see
that our repair method is highly effective in reducing the
number of IDIs across all datasets. Particularly in the Cen-
sus, Bank, COMPAS, and LSAC datasets, ADF, EIDIG, and

NeuronFair detected fewer than 20 IDIs. ExpGA was unable
to find discriminatory inputs in the Bank and Credit datasets.
While GRFT identifies a relatively higher number of IDIs in
our repaired models due to its rigorous nature, the overall
reduction in bias achieved by our repair method surpasses that
of existing repair methods. For example, GRFT on average
discovers 2,850.6 IDIs in the models repaired by our method,
which is a 60.50% reduction compared to the flipping-based
retrained models. These findings clearly demonstrate that our
repair method is effective in mitigating bias and improving the
fairness of deep learning models, making it a valuable tool in
the development of equitable AI systems.

TABLE VI: Total discriminatory instance number found in our
repair models

Dataset ADF EIDIG NeuronFair ExpGA LIMI GRFT

Census 7 14 17 602 56 1,145
Bank 12 7 6 0 45 400
Credit 1,898 2,554 2,062 0 3,180 12,471
COMPAS 4 4 9 18 0 31
LSAC 8 4 12 7 25 206

Avg 385.8 516.6 421.2 209 826.5 2,850.6

TABLE VII: Accuracy of vanilla and repaired models

Dataset Mvan Mdis Mmt Mflip MFaire MCARE MRULER Ours

Census 0.842 0.844 0.814 0.844 0.828 0.813 0.830 0.841
Bank 0.893 0.891 0.88 0.891 0.884 0.888 0.894 0.892
Credit 0.762 0.745 0.673 0.712 0.705 0.764 0.737 0.744
COMPAS 0.655 0.658 0.530 0.650 0.628 0.649 0.638 0.646
LSAC 0.868 0.857 0.841 0.858 0.828 0.862 0.850 0.867

Avg 0.804 0.799 0.748 0.791 0.775 0.795 0.790 0.798

In addition, the accuracy of vanilla and repaired models
are shown in Table VII. From the table, we can observe that
compared to the vanilla model, most repaired models showed
a decrease in accuracy. Specifically, the Mdis, MCARE , and
our repaired models maintain relatively high accuracy, with an
average accuracy exceeding 79.4% across all datasets, which
represents a decrease of less than 1% compared to the vanilla
models. However, Mmt achieves an average accuracy of 74.8%
across all datasets, representing a decrease of approximately
6% compared to the vanilla models. Specifically, on the
COMPAS dataset, the accuracy of Mmt drops to 0.53, a
12% reduction compared to the vanilla models, significantly
impairing the model’s performance.

These results indicate that our repair method preserves the
model’s original accuracy while resulting in fewer new IDIs.
This demonstrates that our repair method effectively addresses
fairness issues in models.

Answer to RQ4: Our repair method not only preserves
the original accuracy of the model but also results in fewer
new IDIs.

V. DISCUSSION

A. Quality of Synthetic Data

The perturbations of attributes may produce unrealistic
inputs, leading to false positives and an overestimation of

discrimination. To address this limitation, following previous
work [15], [23], each input attribute is constrained to its
minimum and maximum range in the training dataset.

Furthermore, we evaluate the perturbation distance (mea-
sured with cosine distance) and distribution distance (measured
with Maximum Mean Discrepancy) between the generated
IDIs and the original data by randomly selecting 1,000 seeds
from the Census dataset and generating IDIs with all methods
over 10 rounds, repeating each experiment 3 times. The
results show that the average perturbation distance across all
methods ranged from 0.038 to 0.058, with GRFT achieving
a value of 0.046, which is closer to the lower bound of
the range, demonstrating comparable quality to the baselines.
Similarly, the average distribution distance, ranging from 0.007
to 0.014, indicates that all methods preserve the original data
distribution. This is due to the shared mutation strategy that
introduces small, valid perturbations. Notably, we also ana-
lyzed how many IDIs found by GRFT are new or previously
discovered by the baselines, as shown in Figure 5. GRFT
uniquely discovered 72,729 IDIs, significantly more than the
baselines, while only 259 instances are commonly identified
by ADF, EIDIG, or NeuronFair. This advantage arises from
GRFT’s more efficient global search strategies, which allow it
to explore a broader input space.

Fig. 5: IDIs generated by EIDIG, ADF, NeuronFair, and GRFT

B. Deeper Insights into Performance

Our method’s high performance is due to two main factors.
First, the GA in the global phase generates multiple discrim-
inatory instances from each seed, boosting search effective-
ness. Second, the random iterative search in the local phase
avoids the time-consuming gradient calculations used by other
methods. This combination allows our method to outperform
existing approaches in both speed and effectiveness. Notably,
combining the GA with a gradient-based local search might
uncover more discriminatory instances, but it would signifi-
cantly increase the time cost.

C. Generalizability

GRFT is a black-box testing method that can be easily
extended to other models (i.e., CNN) and data types (e.g.,
text and image datasets). Unlike tabular data, the attributes of
the image and text are difficult to modify directly from the
input domain. Therefore, we slightly adjust the modification

TABLE VIII: The testing performance of each method on the
CelebA and SST datasets.

Dataset CelebA SST

Method ADF EIDIG NeuronFair LIMI GRFT ExpGA GRFT

#IDIs 16 16 87 75 543 8 298
Time(Seconds) 3,501 3,526 2,640 647 2,879 1,764 1,545
Time per IDI 218.81 220.37 30.34 8.62 5.30 220.5 5.18

of the protected attribute in GRFT following NeuronFair and
ExpGA, respectively.

For a given image x and classifier f(x), there are three
steps following NeuronFair: First, we build a sensitive attribute
classifier fsa(x) that can distinguish the image’s protected
attributes (e.g., gender). Next, we use the classic FGSM
adversarial attack [37] to modify the images’ protected at-
tributes and flip their predicted results by generating ∆senatt

as follows:

∆senatt = ϵ× sign(
∂fsa(x)pred

∂x
) (3)

satisfying that fsa(x) ̸= fsa(x+∆senatt) where ϵ is a hyper-
parameter to determine perturbation size, sign(·) is a signum
function return -1, 0, or 1. Finally, we leverage GRFT to
generate ∆bias and then determine whether the instance pair
< x+∆bias, x+∆senatt +∆bias > satisfy definition 2.

For a given text sample x containing a sensitive word ai ▷
p, following ExpGA, we modify the protected attribute by
substituting ai with a pair of semantically opposite words,
ãi and ¬ãi. For non-protected attributes, we randomly replace
non-sensitive words with semantically similar words identified
using the word embedding tool Glove [38].

In this study, we evaluate a ResNet-50 model trained on the
image dataset CelebA [39] for smile detection and a 3-layer
CNN model trained on the text dataset SST [40], with gender
as the protected attribute. For the experimental setup, 1,000
seeds are randomly selected, and iterates are set to 10 and 100
in global and local phases, respectively. For the image dataset,
only the global phase is applied, as IDIs generated in the
local phase differ by only a few pixels from the global phase,
contributing minimally to improving classifier fairness. During
image mutation, n ∈ [10, 50] pixels are randomly adjusted by
±1/255. Baselines are evaluated using the optimal settings
from NeuronFair and ExpGA.

The results in Table VIII show that GRFT outperforms all
baselines by identifying more IDIs with higher efficiency. On
the image dataset, GRFT discovers an IDI 41.3x, 41.6x, 5.7x,
and 1.63x faster than ADF, EIDIG, NeuronFair, and LIMI,
respectively. LIMI is faster due to its pre-trained GAN but may
be slow in real-world use. On the text dataset, GRFT generates
298 IDIs in 1,545 seconds, compared to only 8 IDIs in 1,764
seconds by ExpGA. Notably, other baselines are not included
in this comparison as they do not support text datasets.

Furthermore, we measure the bias perturbation ∆bias using
the L2-norm for generated image data. GRFT achieves a
significantly lower ∆bias (8.25) compared to the baselines,
where ADF, EIDIG, LIMI, and NeuronFair have ∆bias values
of 291.45, 291.80, 140.37, and 282.87, respectively. This is

because GRFT perturbs a smaller subset of pixels in each
search step, while baselines modify larger pixel regions in
a single step. These results underscore GRFT’s practical
advantages in handling high-dimensional image and text data,
with superior efficiency and effectiveness.

D. Future Work

While GRFT excels in fairness testing, identifying the
root causes of DNN unfairness and enhancing IDI diversity
remain open challenges. Clustering-based analysis reflects IDI
diversity but does not directly correlate with the causes of
DNN unfairness. Furthermore, the reliance on similar mutation
techniques across methods limits input diversity, highlighting
the need for future research on explanation methods and
advanced mutation strategies.

E. Threats to Validity

Limited model and datasets. In this paper, we follow com-
monly used settings to primarily evaluate the effectiveness
of GRFT on tabular data. However, as demonstrated in Sec-
tion V-C, GRFT can be extended to other domains, showcasing
its potential and generalizability to image and text data.

VI. RELATED WORK

There is a substantial body of work focusing on testing
and improving group fairness, where examples are grouped
according to a particular sensitive attribute and statistics are
calculated across groups. Notable studies include [16], [41]–
[52]. However, evaluations of group fairness and individual
fairness are fundamentally different [47]. In our paper, we
focus on individual fairness.

A. Fairness Testing

Most existing individual fairness testing work uses a two-
step approach that first perturbs random sample instances from
the input dataset to find a discriminatory instance and then
locally perturbs those instances to further generate biased test
cases. These methods can be divided into two categories:
black-box [13], [14], [20]–[22] and white-box [15], [23]–[25].

In the black-box setting, [20] define fairness and discrimi-
nation and develop THEMIS, a tool to generate efficient test
suites for measuring discrimination. To address THEMIS’s
inefficiencies caused by the random sampling process, [21]
propose AEQUITAS, which discovers IDIs through random
exploration in the global phase and perturbs instances using
three strategies in the local phase to generate more IDIs. [22]
employs LIME [53] to generate local perturbation samples
to build a decision tree and then analyzes each tree path to
generate test inputs. Similar to [22], ExpGA [14] employs
interpretable methods to collect high-quality initial seeds in
the global phase and then adopt GA to search discriminatory
sample candidates in the local phase. Recently, [13] proposes
LIMI to generate more natural individual IDIs with the help
of a generative adversarial network (GAN) However, training
GANs is inefficient, and their performance is limited by the
assumption that they accurately capture the decision boundary,
which is not always true.

In the white-box setting, ADF [23] utilizes the gradient of
the loss function to search IDIs near the decision boundary of
DNN. EIDIG [15] enhances ADF by incorporating momentum
into the global phase and improving the local phase with the
effective vicinity explorer to boost exploration effectiveness.
NeuronFair [24] and DICE [25] enhance performance by
calculating gradients only for identified biased neurons and
quantifying fairness based on protected information used in
decision-making, respectively. However, all methods rely on
gradient calculations, limiting their efficiency.

Though these methods have made progress in fairness
testing, their extensive gradient calculations, iterative searches,
and additional model training raise efficiency concerns. More-
over, they often improve performance by enhancing the local
phase, focusing on more iterations per global IDI. In contrast,
our GRFT focuses on enhancing the global phase with the
strong search capabilities of GA to quickly identify many
global IDIs and employs a simple random perturbation strategy
in the local phase to reduce time costs.

B. Fairness Repair

A series of research [13], [15], [23] integrate generated IDIs
to retrain models and improve fairness. However, they are
inefficient due to the significant time overhead caused by the
generation process. To avoid using generated discriminatory
data, [35] propose CARE, a causality-based technique for
repairing neural networks by localizing faults and using PSO
to adjust the weights of identified neurons. Similarly, [26]
adds a condition layer after each hidden layer to penalize
neurons linked to protected features and promote those tied
to non-protected features. This method modifies the model
architecture but results in a greater accuracy trade-off. Unlike
them, we improve model fairness by introducing a novel loss
function term while ensuring accuracy on the original task.

VII. CONCLUSION

This paper investigates individual discrimination in DNNs
and introduces GRFT as an effective testing method, along
with a simple yet effective repair approach for mitigating
discrimination. Extensive experiments involving six testing
methods, 261 models, five datasets, and 16 sensitive attribute
combinations demonstrate the generalizability of our approach.
Further refinement and expansion of these methods can con-
tribute to the development of fairer deep learning models and
enhance trust in AI-driven decision-making.

ACKNOWLEDGMENT

This work was partly supported by the National
Key Research and Development Program of China
(2023YFB3107100), the National Research Foundation,
Singapore, the Cyber Security Agency under its National
Cybersecurity R&D Programme (NCRP25-P04-TAICeN).
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and
do not reflect the views of National Research Foundation,
Singapore and Cyber Security Agency of Singapore.

REFERENCES

[1] Datamonsters, “10 applications of artificial neural networks
in natural language processing,” 2017. [Online]. Avail-
able: https://medium.com/@datamonsters/artificial-neural-networks-in-
natural-language-processing-bcf62aa9151a

[2] TechCrunch, “Nearly 70% of us smart speaker owners use amazon echo
devices,” 2020. [Online]. Available: https://techcrunch.com/2020/02/10/
nearly-70-of-u-s-smart-speaker-owners-use-amazon-echo-devices/

[3] X. Li, Z. Chen, J. M. Zhang, F. Sarro, Y. Zhang, and X. Liu, “Bias
behind the wheel: Fairness testing of autonomous driving systems,” ACM
Transactions on Software Engineering and Methodology, 2024.

[4] Z. Sun, Z. Chen, J. Zhang, and D. Hao, “Fairness testing of machine
translation systems,” ACM Transactions on Software Engineering and
Methodology, vol. 33, no. 6, p. 156, 2024.

[5] A. Chouldechova, “Fair prediction with disparate impact: A study of
bias in recidivism prediction instruments,” Big data, vol. 5, no. 2, pp.
153–163, 2017.

[6] BBC News. (2021) Ai at work: Staff ‘hired and fired by algorithm.
[Online]. Available: https://www.bbc.com/news/technology-56515827

[7] BBCNews. (2020) Ibm abandons “biased” facial recognition tech.
[Online]. Available: https://www.bbc.co.uk/news/technology-52978191

[8] B. Johnson and T. Menzies, “Unfairness is everywhere, so what
to do? an interview with jeanna matthews,” IEEE Softw., vol. 40,
no. 6, pp. 135–138, 2023. [Online]. Available: https://doi.org/10.1109/
MS.2023.3305722

[9] S. Biswas and H. Rajan, “Do the machine learning models on
a crowd sourced platform exhibit bias? an empirical study on
model fairness,” in ESEC/FSE ’20: 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, November 8-13, 2020, P. Devanbu,
M. B. Cohen, and T. Zimmermann, Eds. ACM, 2020, pp. 642–653.
[Online]. Available: https://doi.org/10.1145/3368089.3409704

[10] K. M. Habibullah, G. Gay, and J. Horkoff, “Non-functional requirements
for machine learning: understanding current use and challenges among
practitioners,” Requir. Eng., vol. 28, no. 2, pp. 283–316, 2023.

[11] K. M. Habibullah and J. Horkoff, “Non-functional requirements for
machine learning: Understanding current use and challenges in industry,”
in 29th IEEE International Requirements Engineering Conference, RE
2021, 2021, pp. 13–23.

[12] B. Kim, J. Wang, and C. Wang, “Fairquant: Certifying and quantifying
fairness of deep neural networks,” in Proceedings of the 47th IEEE/ACM
International Conference on Software Engineering, ICSE 2025, 2025.

[13] Y. Xiao, A. Liu, T. Li, and X. Liu, “Latent imitator: Generating natural
individual discriminatory instances for black-box fairness testing,” in
Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2023, Seattle, WA, USA, July
17-21, 2023, R. Just and G. Fraser, Eds. ACM, 2023, pp. 829–841.
[Online]. Available: https://doi.org/10.1145/3597926.3598099

[14] M. Fan, W. Wei, W. Jin, Z. Yang, and T. Liu, “Explanation-guided
fairness testing through genetic algorithm,” in 44th IEEE/ACM
44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2022, pp. 871–882.
[Online]. Available: https://doi.org/10.1145/3510003.3510137

[15] L. Zhang, Y. Zhang, and M. Zhang, “Efficient white-box fairness
testing through gradient search,” in Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 103–114. [Online]. Available:
https://doi.org/10.1145/3460319.3464820

[16] J. Chakraborty, S. Majumder, and T. Menzies, “Bias in machine
learning software: why? how? what to do?” in ESEC/FSE ’21:
29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Athens,
Greece, August 23-28, 2021, D. Spinellis, G. Gousios, M. Chechik,
and M. D. Penta, Eds. ACM, 2021, pp. 429–440. [Online]. Available:
https://doi.org/10.1145/3468264.3468537

[17] S. Biswas and H. Rajan, “Fair preprocessing: towards understand-
ing compositional fairness of data transformers in machine learning
pipeline,” in ESEC/FSE ’21: 29th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering, 2021, pp. 981–993.

[18] Z. Chen, J. M. Zhang, F. Sarro, and M. Harman, “MAAT: a novel
ensemble approach to addressing fairness and performance bugs for

machine learning software,” in Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2022, 2022, pp. 1122–
1134.

[19] M. Hort, Z. Chen, J. M. Zhang, M. Harman, and F. Sarro, “Bias
mitigation for machine learning classifiers: A comprehensive survey,”
ACM Journal on Responsible Computing, vol. 1, no. 2, pp. 1–52, 2024.

[20] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: testing software
for discrimination,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, E. Bodden, W. Schäfer, A. van
Deursen, and A. Zisman, Eds. ACM, 2017, pp. 498–510. [Online].
Available: https://doi.org/10.1145/3106237.3106277

[21] S. Udeshi, P. Arora, and S. Chattopadhyay, “Automated directed fairness
testing,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, 2018, pp. 98–108.

[22] A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Automated
test generation to detect individual discrimination in AI models,”
CoRR, vol. abs/1809.03260, 2018. [Online]. Available: http://arxiv.org/
abs/1809.03260

[23] P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang, J. S. Dong,
and T. Dai, “White-box fairness testing through adversarial sampling,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 949–960. [Online].
Available: https://doi.org/10.1145/3377811.3380331

[24] H. Zheng, Z. Chen, T. Du, X. Zhang, Y. Cheng, S. Ji, J. Wang, Y. Yu, and
J. Chen, “Neuronfair: Interpretable white-box fairness testing through
biased neuron identification,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 1519–1531.

[25] V. Monjezi, A. Trivedi, G. Tan, and S. Tizpaz-Niari, “Information-
theoretic testing and debugging of fairness defects in deep neural net-
works,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). IEEE, 2023, pp. 1571–1582.

[26] T. Li, X. Xie, J. Wang, Q. Guo, A. Liu, L. Ma, and Y. Liu, “Faire:
Repairing fairness of neural networks via neuron condition synthesis,”
ACM Transactions on Software Engineering and Methodology, vol. 33,
no. 1, pp. 1–24, 2023.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[28] M. Du, F. Yang, N. Zou, and X. Hu, “Fairness in deep learning: A
computational perspective,” IEEE Intell. Syst., vol. 36, no. 4, pp. 25–34,
2021. [Online]. Available: https://doi.org/10.1109/MIS.2020.3000681

[29] T. M. Kodinariya, P. R. Makwana et al., “Review on determining number
of cluster in k-means clustering,” International Journal, vol. 1, no. 6,
pp. 90–95, 2013.

[30] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[31] T. V. Mele et al., “COMPAS: A framework for computational research
in architecture and structures.” 2017-2021, http://compas.dev. [Online].
Available: https://doi.org/10.5281/zenodo.2594510

[32] P. Lahoti, A. Beutel, J. Chen, K. Lee, F. Prost, N. Thain,
X. Wang, and E. H. Chi, “Fairness without demographics through
adversarially reweighted learning,” in Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/
2020/hash/07fc15c9d169ee48573edd749d25945d-Abstract.html

[33] (2024) Website of this paper. [Online]. Available: https:
//sites.google.com/view/faireness-testing-grft

[34] Z. Wang, K. Qinami, I. C. Karakozis, K. Genova, P. Nair, K. Hata,
and O. Russakovsky, “Towards fairness in visual recognition: Effective
strategies for bias mitigation,” in Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, 2020, pp. 8919–8928.

[35] B. Sun, J. Sun, L. H. Pham, and T. Shi, “Causality-based neural
network repair,” in 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May
25-27, 2022. ACM, 2022, pp. 338–349. [Online]. Available:
https://doi.org/10.1145/3510003.3510080

[36] G. Tao, W. Sun, T. Han, C. Fang, and X. Zhang, “Ruler: discriminative
and iterative adversarial training for deep neural network fairness,”
in Proceedings of the 30th acm joint european software engineering
conference and symposium on the foundations of software engineering,
2022, pp. 1173–1184.

[37] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[38] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[39] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 3730–3738.

[40] (2021) Stanford sentiment treebank dataset. [Online]. Available:
http://nlpprogress.com/english/sentiment analysis.html

[41] J. Chakraborty, S. Majumder, Z. Yu, and T. Menzies, “Fairway: a way to
build fair ML software,” in ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event, USA, November 8-13, 2020,
P. Devanbu, M. B. Cohen, and T. Zimmermann, Eds. ACM, 2020, pp.
654–665. [Online]. Available: https://doi.org/10.1145/3368089.3409697

[42] G. Nguyen, S. Biswas, and H. Rajan, “Fix fairness, don’t ruin accuracy:
Performance aware fairness repair using automl,” in Proceedings of
the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2023, San Francisco, CA, USA, December 3-9, 2023, S. Chandra,
K. Blincoe, and P. Tonella, Eds. ACM, 2023, pp. 502–514. [Online].
Available: https://doi.org/10.1145/3611643.3616257

[43] U. Gohar, S. Biswas, and H. Rajan, “Towards understanding fairness
and its composition in ensemble machine learning,” in 45th IEEE/ACM
International Conference on Software Engineering, ICSE 2023,
Melbourne, Australia, May 14-20, 2023. IEEE, 2023, pp. 1533–1545.
[Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00133

[44] J. Wang, Y. Li, and C. Wang, “Synthesizing fair decision trees
via iterative constraint solving,” in Computer Aided Verification -
34th International Conference, CAV 2022, Haifa, Israel, August 7-10,
2022, Proceedings, Part II, ser. Lecture Notes in Computer Science,
S. Shoham and Y. Vizel, Eds., vol. 13372. Springer, 2022, pp. 364–385.
[Online]. Available: https://doi.org/10.1007/978-3-031-13188-2\ 18

[45] Z. Chen, X. Li, J. M. Zhang, F. Sarro, and Y. Liu, “Diversity drives
fairness: Ensemble of higher order mutants for intersectional fairness
of machine learning software,” in Proceedings of the 47th IEEE/ACM

International Conference on Software Engineering, ICSE 2025, 2025.
[46] Z. Chen, J. M. Zhang, F. Sarro, and M. Harman, “Fairness improvement

with multiple protected attributes: How far are we?” in Proceedings of
the 46th IEEE/ACM International Conference on Software Engineering,
ICSE 2024, 2024, pp. 160:1–160:13.

[47] Z. Chen, J. M. Zhang, F. Sarro, and M. Harman, “A comprehensive
empirical study of bias mitigation methods for machine learning
classifiers,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 4, pp. 106:1–
106:30, 2023. [Online]. Available: https://doi.org/10.1145/3583561

[48] X. Li, Z. Chen, J. M. Zhang, Y. Lou, T. Li, W. Sun, Y. Liu, and X. Liu,
“Benchmarking bias in large language models during role-playing,”
2024. [Online]. Available: https://arxiv.org/abs/2411.00585

[49] T. Li, X. Zhang, C. Du, T. Pang, Q. Liu, Q. Guo, C. Shen, and
Y. Liu, “Your large language model is secretly a fairness proponent
and you should prompt it like one,” 2024. [Online]. Available:
https://arxiv.org/abs/2402.12150

[50] T. Li, Y. Cao, J. Zhang, S. Zhao, Y. Huang, A. Liu, Q. Guo, and Y. Liu,
“Runner: Responsible unfair neuron repair for enhancing deep neural
network fairness,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ser. ICSE ’24. New York, NY,
USA: Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3623334

[51] T. Li, Q. Guo, A. Liu, M. Du, Z. Li, and Y. Liu, “FAIRER: Fairness as
decision rationale alignment,” in Proceedings of the 40th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and
J. Scarlett, Eds., vol. 202. PMLR, 23–29 Jul 2023, pp. 19 471–19 489.
[Online]. Available: https://proceedings.mlr.press/v202/li23h.html

[52] T. Li, Z. Li, A. Li, M. Du, A. Liu, Q. Guo, G. Meng, and Y. Liu,
“Fairness via group contribution matching,” in Proceedings of the
Thirty-Second International Joint Conference on Artificial Intelligence,
ser. IJCAI ’23, 2023. [Online]. Available: https://doi.org/10.24963/
ijcai.2023/49

[53] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, June 7-12, 2015. IEEE Computer Society, 2015, pp. 815–823.
[Online]. Available: https://doi.org/10.1109/CVPR.2015.7298682

