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Abstract—Intersectional fairness is a critical requirement for
Machine Learning (ML) software, demanding fairness across
subgroups defined by multiple protected attributes. This paper
introduces FairHOME, a novel ensemble approach using higher
order mutation of inputs to enhance intersectional fairness of
ML software during the inference phase. Inspired by social
science theories highlighting the benefits of diversity, FairHOME
generates mutants representing diverse subgroups for each input
instance, thus broadening the array of perspectives to foster
a fairer decision-making process. Unlike conventional ensemble
methods that combine predictions made by different models,
FairHOME combines predictions for the original input and its
mutants, all generated by the same ML model, to reach a final
decision. Notably, FairHOME is even applicable to deployed
ML software as it bypasses the need for training new models.
We extensively evaluate FairHOME against seven state-of-the-
art fairness improvement methods across 24 decision-making
tasks using widely adopted metrics. FairHOME consistently
outperforms existing methods across all metrics considered. On
average, it enhances intersectional fairness by 47.5%, surpassing
the currently best-performing method by 9.6 percentage points.

Index Terms—Machine learning, intersectional fairness, input
mutation, output ensemble

I. INTRODUCTION

Machine Learning (ML) software plays a critical role in
high-stakes human-related decisions, such as hiring [1], crim-
inal sentencing [2], and loan application [3]. In this context,
fairness of ML software holds increasing significance, as
biases in these systems can perpetuate inequalities and harm
historically marginalized groups [4], [5]. Unfair ML software
can lead to ethical, reputational, financial harm, and legal
consequences if it violates anti-discrimination laws [5], [6].

Indeed, fairness has long been acknowledged as a foun-
dational requirement for ML software [7]–[13], aiming at
mitigating bias and discrimination tied to protected attributes
such as sex, race, and age. From the Software Engineering
(SE) perspective, unfairness in ML software can be considered
as software ‘fairness bugs’ [14]. This has led to a growing
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body of SE studies aimed at improving ML software fairness
(also referred to as bias mitigation) [4], [15]–[21].

Software users inherently belong to multiple intersecting
identity groups defined by various protected attributes. These
intersections yield varied experiences of discrimination among
different subgroups. For instance, black women might en-
counter biases stemming from both sexism and racism. This
emphasizes the importance of ‘intersectional fairness’, which
measures fairness among subgroups formed by the combina-
tion of multiple protected attributes [22]. Notably, intersec-
tional fairness has been encoded in legal regulations [23] and
thus highlights the compelling need for software researchers
and engineers to consider multiple protected attributes simul-
taneously [22]. Compared to fairness concerning individual
protected attributes, which oversimplifies the complex realities
faced by software users, intersectional fairness is considered
a more challenging task [24].

Recent SE studies have introduced advanced bias mitigation
methods capable of dealing with multiple protected attributes
and improving intersectional fairness. Notable examples in-
clude FairSMOTE [15], which pre-processes training data to
mitigate bias across protected attributes and then trains a fairer
model; MAAT [4], which trains distinct models to optimize
fairness for each protected attribute individually and then
combines them; and FairMask [16], which trains individual
extrapolation models based on training data to modify pro-
tected attributes in inputs for fairer outcomes.

In this paper, we introduce FairHOME, a novel ensemble
approach using higher order mutation of inputs to improve
intersectional fairness of ML software during the inference
phase. In the social science domain, it is widely acknowl-
edged that increasing diversity can foster fairness in decision-
making [25]–[27]. Drawing inspiration from this, FairHOME
generates diverse mutated inputs from various subgroups for
each given input by applying higher order mutation across
multiple protected attributes, thereby enriching the decision-
making process with diverse perspectives. This approach



is particularly effective in addressing intersectional fairness,
which inherently involves numerous subgroups, thus ensuring
diversity within the generated input set. Then FairHOME
combines the predictions generated by the ML software for
the original input and its mutants to reach the final decision.
Unlike conventional ensemble methods [28], including state-
of-the-art ones in fairness research [4], [21], that combine
predictions from different models, FairHOME combines pre-
dictions generated by the same ML model. This unique char-
acteristic enables FairHOME to bypass the need for creating
new models, rendering it even applicable to already deployed
ML software.

To evaluate FairHOME, we conduct a large-scale empirical
study, which compares it with seven bias mitigation meth-
ods across 24 decision-making tasks using six intersectional
fairness metrics. Additionally, given that bias mitigation often
decreases ML performance (e.g., accuracy) [6], we compre-
hensively evaluate the fairness-performance trade-off achieved
by FairHOME using an advanced benchmarking tool [29] with
30 fairness-performance measurements.

The evaluation results demonstrate the effectiveness of
FairHOME in improving intersectional fairness, showcasing
its ability to consistently outperform all methods across each
metric considered. On average across all metrics, FairHOME
improves intersectional fairness by 47.5%, marking a 9.6 per-
centage point improvement over the currently best-performing
method. Additionally, FairHOME achieves this notable fair-
ness improvement with only minimal reductions in ML per-
formance, ranging from 0.1% to 2.7% depending on the
metric considered. Evaluation using the advanced benchmark-
ing tool [29] reveals that FairHOME surpasses all existing
methods in fairness-performance trade-off.

To summarize, this work offers the following contributions:
• Introduction of FairHOME: A novel ensemble approach

using higher order mutation of inputs to significantly en-
hance intersectional fairness in ML software.

• Large-scale empirical study: An extensive evaluation of
FairHOME against 7 state-of-the-art techniques across 24
decision-making tasks, employing 6 intersectional fairness
metrics and 30 fairness-performance measurements.

• Open resources: Public access to all our data and code [30]
to encourage replication and facilitate further research.

II. PRELIMINARIES

A. Fairness in ML Software

This paper focuses on fairness of ML classification, the most
extensively studied topic in software fairness research [14],
[31]. In this context, ML software assigns input instances with
favorable or unfavorable labels.

Central to discussions of fairness is the concept of pro-
tected attributes, which are sensitive characteristics such as
sex, race, age, religion, and disability status. The population
is divided into groups based on these protected attributes,
commonly known as privileged and unprivileged groups.
Privileged groups historically enjoy certain advantages, while

unprivileged groups face disadvantages or discrimination. In
practice, ML software frequently exhibits bias by more often
assigning favorable outcomes to members of privileged groups
and unfavorable outcomes to those in unprivileged groups [4].

This predicament has spurred researchers to advocate for the
principle of group fairness. This principle aims to ensure that
decisions made by ML software do not unfairly benefit or harm
any specific population group. To achieve this, group fairness
requires that the probability of receiving favorable labels
remains equal between privileged and unprivileged groups or
that the model’s performance remains consistent across these
groups [5]. Group fairness has garnered substantial attention
within the software fairness literature [4], [5], [15]–[18], [29],
[32], [33] due to its alignment with legal regulations [34].

Intersectional fairness is a critical facet of group fairness,
which measures fairness across subgroups defined by the si-
multaneous presence of multiple protected attributes. It is often
used interchangeably with subgroup fairness in the literature
[22], [35]. These subgroups are vulnerable to discrimination
stemming from the convergence of various unprivileged groups
within them, making intersectional fairness essential.

We adopt two intersectional fairness criteria: worst-case
intersectional fairness [22] (also called min-max intersectional
fairness [35]) and average-case intersectional fairness [36].
Worst-case intersectional fairness quantifies the maximum dis-
parity among subgroups (i.e., the difference between the sub-
groups with minimum and maximum discrimination), while
average-case intersectional fairness calculates the averaged
differences between each subgroup and the entire population.
Additionally, we consider three widely adopted group fairness
metrics [4], [5], [15], [22], [29], [37]: SPD (Statistical Parity
Difference), AOD (Average Odds Difference), and EOD (Equal
Opportunity Difference). Based on the two intersectional
fairness criteria and three group fairness metrics, we have
six intersectional fairness metrics: WC-SPD, WC-AOD, WC-
EOD (for worst-case), and AC-SPD, AC-AOD, AC-EOD (for
average-case).

We assume the presence of d protected attributes denoted as
A1, A2, ..., Ad. Each of these attributes divides the population
into various groups. We define a subgroup sgA1,A2,...,Ad

as
the collection of individuals resulting from the intersection
of members belonging to groups gA1

through gAd
. Formally,

this is expressed as sgA1,A2,...,Ad
= gA1

∩ gA2
... ∩ gAd

.
In this context, building subgroups aims to find all possi-
ble sgA1,A2,...,Ad

by considering all possible combinations
of values for the protected attributes A1, A2, . . . , Ad. For
example, consider two protected attributes: sex with groups
gsex ∈ {male, female} and race with groups grace ∈ {white,
non-white}. The subgroup set SG includes four subgroups:
SG = {white male, white female, non-white male, non-white
female}. We use Y and Ŷ to represent the actual decision
label and the predicted decision label, respectively, with 1
denoting the favorable label and 0 denoting the unfavorable
label. Building upon these concepts, we can compute the
worst-case intersectional fairness metrics as follows.



• WC-SPD calculates the maximum difference across sub-
groups in achieving favorable outcomes:

max
s∈SG

P [Ŷ = 1|sg = s] − min
s∈SG

P [Ŷ = 1|sg = s].

• WC-AOD calculates the maximum of the average difference
in false-positive and true-positive rates across subgroups.

1

2
[ max
s∈SG

(P [Ŷ = 1|sg = s, Y = 0] + P [Ŷ = 1|sg = s, Y = 1])

− min
s∈SG

(P [Ŷ = 1|sg = s, Y = 0] + P [Ŷ = 1|sg = s, Y = 1])].

• WC-EOD calculates the maximum difference across sub-
groups in true-positive rates:

max
s∈SG

P [Ŷ = 1|sg = s, Y = 1] − min
s∈SG

P [Ŷ = 1|sg = s, Y = 1].

Average-case intersectional fairness metrics calculate the
difference between each subgroup and the entire population,
and then average these differences [36]. For instance, AC-SPD
computes the favorable rate for each subgroup and the entire
population, and then averages the differences between each
subgroup’s rate and that of the population. Detailed equations
are omitted due to the page limit.

B. Related Work

Fairness improvement, also known as bias mitigation, has
garnered growing attention in the research community. From
the SE perspective, it aims to address fairness bugs and
ensure that software aligns with fairness requirements [14],
thereby emerging as a focal point of discussion in the SE
community [4]–[6], [15]–[18], [20], [21], [29], [33], [38]–[41].

Bias mitigation methods are commonly classified into three
types: pre-processing, in-processing, and post-processing [31].
Pre-processing methods mitigate bias within training data,
preventing its amplification during the training phase and pro-
moting fairness in ML models. In-processing methods employ
optimization strategies to reduce bias during model training.
Post-processing methods adjust outcomes of ML models to
make them fairer. Researchers have also been exploring the
combination of strategies from different categories. For exam-
ple, Chakraborty et al. [17] combined a pre-processing strategy
called situation testing and an in-processing technique that
concurrently optimizes fairness and ML performance.

Bias mitigation for multiple protected attributes is impor-
tant, as studies have highlighted intersectional fairness issues
in practice. For example, Buolamwini and Gebru [42] con-
ducted an empirical study of commercial gender classification
systems and found that darker-skinned females are most fre-
quently misclassified. However, recent research [4], [6], [15],
[16], [22] has pointed out that existing bias mitigation methods
primarily focus on individual protected attributes.

To alleviate this limitation, SE researchers have proposed
techniques that can handle multiple protected attributes simul-
taneously. Notable examples include FairSMOTE [15], MAAT
[4], and FairMask [16]. Additionally, there are techniques from
the ML community. For instance, Kang et al. [43] framed
intersectional fairness improvement as a mutual information

minimization problem, using a generic end-to-end algorithmic
method to address it. Wang et al. [44] conducted an empirical
study of five intersectional fairness improvement methods
from the ML community, identifying GRY [45] as the most
effective. GRY improves intersectional fairness by modeling it
as a two-player zero-sum game, with the learner as the primal
player and the auditor as the dual player.

FairHOME sets itself apart from these advanced methods
by its ability to operate without the creation of new models.
This advantage is particularly relevant for already deployed
ML software, where modifying models may not be feasible.
In comparison, FairSMOTE generates instances to balance the
distribution of training data across class labels and protected
attributes, and trains new models based on the augmented data.
MAAT creates fair models through sampling training data and
combines them with models optimized for ML performance.
Like FairHOME, it is an ensemble method, but it adheres to
the traditional ensemble paradigm [28] that combines multiple
models. FairMask modifies inputs by using training data
to train extrapolation models that adjust protected attributes
in input instances. Differently, FairHOME operates without
the need for creating extrapolation models. GRY is an in-
processing method that needs to retrain models.

Additionally, considerable research efforts have been de-
voted to the evaluation of bias mitigation methods. For in-
stance, Hort et al. [29] provided a unified perspective by
integrating fairness and ML performance, and gauging their
interplay. They introduced a benchmarking approach named
Fairea, which establishes a unified fairness-performance trade-
off baseline for comparing bias mitigation methods. Using
Fairea, Chen et al. [22] compared existing methods in trade-
off between intersectional fairness and ML performance, and
found that REW, MAAT, and FairMask can achieve the best
results. The three methods are all included as our baseline
methods. In this paper, we also employ Fairea for fairness-
performance trade-off evaluation.

III. OUR APPROACH

A. FairHOME: In a Nutshell

From the SE perspective, FairHOME follows the input
debugging paradigm [46]. This paradigm suggests that soft-
ware issues with processing inputs may not always necessitate
modifications to the software itself; instead, adjusting the
inputs can also resolve these issues.

Figure 1 illustrates the overview of FairHOME. It is inspired
by the widely recognized social science insights that increased
diversity can foster fairness in decision-making [25]–[27].
Specifically, FairHOME aims to enhance intersectional fair-
ness by diversifying the inputs used in the decision-making
process of the inference phase. This is achieved by generating
diverse mutants, which represent different subgroups, for each
input instance. FairHOME employs higher order mutation
based on multiple protected attributes to create these mutants.

It then aggregates the decisions of the ML software for the
original input and all its mutants to make the final decision.
This marks a departure from traditional ensemble learning



Fig. 1: Overview of FairHOME.

[4], [21], [28], which focuses on the ensemble of different
models to enhance prediction. Instead, FairHOME enhances
the prediction fairness through the ensemble of outputs from
the same ML model.

B. Input Generation

FairHOME employs higher order mutation to generate input
mutants from an original input x for the ML software SML.
This aims to diversify subgroup representation in the decision-
making process, thereby addressing intersectional fairness.

To ensure clarity in the subsequent description, we be-
gin by defining the necessary notations. The input for
SML comprises n attributes, collectively represented as
A = {A1, A2, ..., An}, categorized into d protected attributes
{A1, A2, ..., Ad} (denoted as P ) and n − d non-protected
attributes {Ad+1, Ad+2, ..., An} (denoted as N ). Assuming
each attribute Ai belongs to a valuation domain Ii, the overall
input domain of SML is I = I1 × I2 × ...× In.

The detailed higher order mutation process is as follows:
Defining mutation operator: A mutation operator is defined
as a transformation rule that generates a mutant from the
original instance [47]. In our approach, we define the mutation
operator µ to alter the value of each protected attribute Ai ∈ P
within its valuation domain Ii, while keeping the values of
non-protected attributes constant. This operation is grounded
in the widely adopted causal fairness principle [14], which
directly modifies protected attributes and assesses the impact
of this modification on the prediction [32].

The mutation operator µ enables the generation of diverse
mutants from a single input instance by applying it across
multiple protected attributes.
Generating input mutants: Our input generation process
is referred to as higher order mutation in SE [47], since
it allows for applying the mutation operator to an input
instance multiple times, targeting multiple protected attributes.
Specifically, our higher order mutation entails the use of µ on
protected attributes to produce any mutant x′ of x that satisfies
two key conditions:

• There exists at least one protected attribute a ∈ P for
which the value in x′ differs from that in x (i.e., ∃a ∈
P, xa ̸= x′

a).
• For each non-protected attribute q ∈ N , the value in x′

matches that in x (i.e., ∀q ∈ N, xq = x′
q).

Our objective is to exhaustively explore the input domain
I to identify all instances that satisfy these conditions. We

define the input domain for protected attributes using all
possible value combinations from the training data, ensuring
compliance with input constraints. This approach ensures
the validity of mutants and keeps the number of possible
mutants manageable, limited to combinations present in the
training data. This results in a set of mutants M representing
diverse subgroups by varying protected attributes. The number
of generated mutants is

∏d
i=1 |Ii| − 1, which represents all

possible combinations of protected attribute values, excluding
the combination present in the original input instance. For
example, with two protected attributes—sex (male, female)
and race (white, non-white)—we have four subgroups: white
male, white female, non-white male, and non-white female.
To produce a fair result for a non-white female, our approach
uses inputs for all four subgroups.

Prior research [18] has identified correlations between pro-
tected attributes and non-protected features, suggesting that
mutating non-protected features associated with protected at-
tributes could further enhance fairness. However, this approach
requires learning feature correlations. Following the ‘try-with-
simpler’ SE practice [48], we do not adopt this mutation
strategy as the default in FairHOME. Nevertheless, the effec-
tiveness of this alternative strategy, compared to FairHOME’s
default, is analyzed in Section V-D.

C. Output Ensemble

FairHOME aggregates outputs of the ML software SML for
the original input and its mutants to produce the final decision,
without analyzing output differences. Since we focus on ML
classification, for each input, SML produces a probability
vector, with each element representing the probability of
classification into a category. SML makes the final decision
for each input based on its probability vector.

We introduce three commonly used ensemble strategies [28]
to aggregate outputs: majority vote, averaging, and weighted
averaging. The details of each strategy are as follows:
Majority vote: The majority vote strategy selects the decision
that receives the most votes as the final decision. Since
intersectional fairness typically involves at least two protected
attributes, each with at least two values, there are at least three
mutants in addition to the original input, making the majority
vote strategy applicable. Let r0 represent the decision made
by SML for the original input x, and r1, r2, ..., r|M | denote
the decisions for each mutant. The strategy assigns a final
decision as unfavorable if more than 50% of the decisions
r0, r1, r2, ..., r|M | are unfavorable, and favorable otherwise.
Averaging: The averaging strategy uses the output probability
vectors of the original input and its mutants to determine the
final decision. Let p0 represent the probability of the original
input being classified as favorable, and p1, p2, ..., p|M | denote
such probabilities for each mutant. The strategy computes the
mean of p0, p1, p2, ..., p|M |. If the final probability is below
50%, the decision is unfavorable; otherwise, it is favorable.
Weighted averaging: This strategy uses probability vectors
to determine the final decision by calculating the weighted
average of the probabilities p0, p1, p2, ..., p|M |. The weight wi



for each probability pi is |pi−50%|, which reduces the impact
of predictions near the decision boundary, known to be more
prone to bias [49], [50]. Prediction probabilities close to 50%
indicate a higher risk of bias, so assigning lower weights
to these instances minimizes their impact on the ensemble
outcome, potentially enhancing fairness. The weighted average
is computed as W =

∑|M|
i=0 wi·pi∑|M|
i=0 wi

. If W is below 50%, the final
decision is unfavorable; otherwise, it is favorable.

Following the ‘try-with-simpler’ SE practice [48], we use
majority vote as the default strategy of FairHOME due to
its simplicity and reliance solely on decision information.
Nevertheless, all the strategies are evaluated in Section V-E.

IV. EVALUATION SETUP

A. Research Questions (RQs)

RQ1: Can FairHOME improve intersectional fairness
without largely compromising ML performance? This RQ
examines FairHOME’s impact on intersectional fairness and
ML performance, considering the trade-off between them [51].
RQ2: How effectively does FairHOME improve intersec-
tional fairness compared to existing methods? This RQ
compares the effectiveness of FairHOME against existing bias
mitigation methods in enhancing intersectional fairness.
RQ3: How does FairHOME balance intersectional fairness
and ML performance compared to existing methods? This
RQ compares FairHOME with other bias mitigation methods
by assessing their fairness-performance trade-off.
RQ4: How effective is FairHOME when it also mutates
features correlated with protected attributes? This RQ com-
pares the default FairHOME with its variant that also mutates
non-protected features correlated with protected attributes.
RQ5: How do different ensemble strategies affect
FairHOME? This RQ compares the common ensemble strate-
gies for FairHOME and evaluates their effectiveness.
RQ6: What is the contribution of different mutants? This
RQ compares the effectiveness of FairHOME with two ap-
proaches: one using only mutants involving a single protected
attribute and the other using only mutants involving multiple
protected attributes.
RQ7: How does FairHOME affect group fairness re-
garding single protected attributes? This RQ investigates
whether FairHOME negatively impacts group fairness for
single protected attributes.

B. Experimental Methodology

1) Step 1. Design of bias mitigation tasks: We use 24 bias
mitigation tasks for the study, achieved through a combination
of six benchmark datasets and four ML models.
Benchmark datasets: We select six real-world decision prob-
lems using datasets widely adopted in fairness research [4]–
[6], [15], [16], [22], [39], [52]: Adult [53], Compas [54],
Default [55], German [56], Mep15 [57], and Mep16 [58].

Table I presents an overview of these datasets. As high-
lighted in prior research [22], existing datasets primarily
include two protected attributes. The protected attributes for

the Adult, Default, Mep15, and Mep16 datasets are specified
by Chen et al. [22], while those for the Compas and German
datasets are specified by Zhang et al. [52].

To our knowledge, our study employs the largest number
of datasets in intersectional fairness studies. These datasets
are representative for two key reasons: (1) they span diverse
domains, such as finance, social, and medical applications,
where fairness is crucial, and (2) they cover sex, race, and age,
which are demonstrated to be the most commonly considered
protected attributes [14], [59].
ML models: We use four common types of ML models
that are demonstrated to be most widely explored in fairness
research [31]: LR (Logistic Regression), RF (Random Forest),
SVM (Support Vector Machine), and DNN (Deep Neural
Network). LR, RF, and SVM have prominent application in
fairness-critical decision problems [6], [60]; DNN, due to its
significance in modern decision-making scenarios, also garners
substantial attention from fairness researchers [6], [39], [61].
For LR, RF, and SVM, we adopt the configurations from recent
software fairness papers [4], [6], [29]; for DNN, we adopt a
network architecture extensively used for these datasets [6],
[39], [61], which features a fully-connected network having
five hidden layers with 64, 32, 16, 8, and 4 units, respectively.

For each of the six benchmark datasets, we train the four
types of ML models for bias mitigation, resulting in 24 tasks.

2) Step 2. Selection of baseline methods: We select seven
bias mitigation methods for comparison, covering both widely-
adopted and cutting-edge techniques. First, based on a recent
survey [31], we select the three most popular bias mitigation
methods: REW (Reweighting) [62], ADV (Adversarial Debi-
asing) [63], and EOP (Equalized Odds Post-processing) [64].
Second, we include three recently proposed methods in SE,
known for their effectiveness in handling multiple protected
attributes: FairSMOTE [15], MAAT [4], and FairMask [16].
Finally, we consider GRY [45], an approach identified as the
most effective in a recent empirical study [44] on intersectional
fairness in the ML community.

Our selection represents a diverse range of bias mitigation
techniques, including pre-processing, in-processing, and post-
processing methods.

A brief description of each method is provided below:
• REW [62] is a pre-processing method that assigns different

weights to training data for each (group, label) combination,
thereby ensuring fairness.

• ADV [63] is an in-processing method that employs adver-
sarial techniques to minimize the influence of protected
attributes in predictions, while concurrently maximizing
prediction accuracy during model training.

• EOP [64] is a post-processing method that uses a linear
program to determine probabilities for altering output labels
in order to optimize equalized odds.

• FairSMOTE [15] identifies the largest subgroup in training
data, and generates samples for other subgroups to achieve
balanced sample counts and equitable favorable rates among
subgroups. It also excludes ambiguous training data through
situation testing.



TABLE I: Benchmark datasets.

Name Size Protected attributes Favorable label Description
Adult [53] 48,843 sex, race income > 50k Predicting whether an individual’s annual income surpasses $50K
Compas [54] 7,214 sex, race, age no recidivism Predicting criminal defendant recidivism
Default [55] 30,000 sex, age default Predicting whether a customer will default on payment
German [56] 1,000 sex, age good credit Classifying an individual as a good or bad credit risk
Mep15 [57] 15,830 sex, race utilizer Predicting healthcare utilization using survey data from 2015
Mep16 [58] 15,675 sex, race utilizer Predicting healthcare utilization using survey data from 2016

• MAAT [4] aims to improve fairness-performance trade-
off of ML software. To achieve this, it develops fairness-
optimized models for individual protected attributes through
training data sampling, and then combines their outputs with
a performance-optimized model.

• FairMask [16] uses training data to learn individual extrap-
olation models that predict each protected attribute using
other features. Then it applies these extrapolation models to
reassign protected attributes in input data.

• GRY [45] formulates intersectional fairness improvement as
a two-player zero-sum game between the learner (primal
player) and the auditor (dual player).

3) Step 3. Analysis of FairHOME’s effect: This step ad-
dresses RQ1. We evaluate the effect on intersectional fairness
using six metrics described in Section II-A: WC-SPD, WC-
AOD, WC-EOD, AC-SPD, AC-AOD, and AC-EOD. For each
metric, lower values indicate a higher degree of fairness.

Fairness metrics alone can sometimes indicate fairness even
if a model is cumulatively biased across all subgroups. To ad-
dress this, we complement our evaluation with comprehensive
ML performance metrics. If a model exhibits cumulative bias
(e.g., consistently low performance across all subgroups), its
overall performance will be low. Additionally, bias mitigation
often comes at the cost of ML performance [4]. Therefore,
it is crucial to also consider the impact on ML performance
when evaluating FairHOME. We use five commonly used ML
performance metrics: accuracy, precision, recall, F1-score,
and MCC (Matthews Correlation Coefficient). For each metric,
higher values correspond to better ML performance.

A brief description of these ML performance metrics is
provided as follows. Accuracy indicates the overall correctness
of an ML model’s predictions. Precision measures the model’s
accuracy in predicting a specific target class. Recall measures
the model’s ability to correctly identify all instances of a
given target class. F1-score represents the harmonic mean of
precision and recall. For precision, recall, and F1-score, we
follow previous work [4], [6], [22] to employ the macro-
average value across favorable and unfavorable classes to
comprehensively account for both. This involves computing
the metric for each class and then averaging the results.
MCC is chosen due to its suitability for imbalanced datasets,
which are common in benchmark datasets used for fairness
research [4], [6], [65]. This choice addresses the concern that
accuracy, the most widely used metric in fairness research [6],
might not adequately reflect performance in imbalanced class
distributions [6], [22].

4) Step 4. Comparison of intersectional fairness: This step
addresses RQ2. We compare the effectiveness of FairHOME
and existing methods in enhancing intersectional fairness.
First, we compute the enhancements achieved by each method
over the original models and compare these enhancements.

Additionally, we conduct an in-depth comparison of the
fairness metric values obtained by FairHOME and existing
methods through a win-tie-loss analysis [15], [18]. Specifi-
cally, for each existing method, we compare the fairness metric
values obtained by FairHOME and it across the 144 task-
fairness metric combinations. Following prior research [4], [6],
[22], we employ the Mann-Whitney U-test [66] to assess the
statistical significance of differences in fairness metric values
between two methods. The null hypothesis is that there is
no difference in fairness metric value distributions between
FairHOME and the existing method, while the alternative
hypothesis posits a significant difference. In scenarios where
FairHOME and the existing method exhibit fairness results
with statistically significant differences (as indicated by a two-
tailed p-value < 0.05 from the Mann-Whitney U-test [4],
[6], [22]), if FairHOME yields lower fairness metric values
(indicating higher fairness), we label it as a ‘Win’; if the ex-
isting method produces lower fairness metric values, we label
FairHOME as a ‘Loss.’ Conversely, for scenarios where the
two methods do not show statistically significant differences,
we classify the comparison outcome as a ‘Tie.’

5) Step 5. Comparison of fairness-performance trade-off:
This step addresses RQ3. Bias mitigation often leads to re-
duced ML performance [4]. If we assess fairness improvement
and ML performance loss separately, it becomes uncertain
whether enhanced fairness results from a mere sacrifice in
performance [29]. Moreover, comparing bias mitigation meth-
ods while considering these two factors separately can be
challenging. To address this problem, Hort et al. [29] proposed
the use of a unified fairness-performance trade-off baseline,
created through their Fairea approach, as a benchmark for
comparing different bias mitigation methods.

To construct the trade-off baseline, Fairea [29] generates
a sequence of mutated models by gradually substituting an
increasing portion of the original model’s predictions with the
majority class prediction from the dataset. This process en-
hances fairness by uniformly reducing predictive performance
across different subgroups. Fairea expects that any reasonable
bias mitigation method should outperform these naive mutated
models. Therefore, it provides the trade-off attained by these
models as the unified baseline for the research community to
evaluate bias mitigation methods.



The trade-off baseline categorizes bias mitigation methods
into five levels of trade-off effectiveness [29]. A method
is classified as win-win trade-off if it enhances both ML
performance and fairness compared to the original model.
Conversely, if a method decreases both, it is categorized as
lose-lose trade-off. In cases where a method enhances ML
performance but decreases fairness, it is considered inverted
trade-off. Additionally, there are two other levels of trade-
off where methods decrease ML performance but enhance
fairness. Specifically, if a method achieves a superior trade-
off compared to the baseline, it is classified as good trade-off;
otherwise, it is categorized as poor trade-off. Among all five
trade-off types, win-win and good trade-offs indicate that the
method surpasses the trade-off baseline constructed by Fairea.

The trade-off analysis covers a total of 30 fairness-
performance measurements, since we consider six intersec-
tional fairness metrics and five ML performance metrics. We
use Fairea to construct the trade-off baseline for each pairing
of bias mitigation task and fairness-performance measurement.
We employ these trade-off baselines to comprehensively eval-
uate the trade-off effectiveness of FairHOME and existing bias
mitigation methods.

6) Step 6. Evaluation of mutation strategies: This step
addresses RQ4. Prior research [18] has identified correlations
between protected attributes and non-protected features, in-
dicating that mutating non-protected features associated with
protected attributes could further help improve fairness. Thus,
we introduce FairHOME1, a variant of FairHOME, for com-
parison. Unlike FairHOME, which mutates only protected
attributes, FairHOME1 extends mutations to correlated non-
protected features. Following prior work [18], we use linear
regression models to learn these correlations, training models
for each non-protected feature using protected attributes as
predictors. These models determine the adjustments for non-
protected features when protected attributes are mutated.

7) Step 7. Evaluation of ensemble strategies: This step
addresses RQ5. We compare the three ensemble strategies
provided in Section III-C in terms of intersectional fairness
and fairness-performance trade-off effectiveness.

8) Step 8. Analysis of mutant contribution: This step ad-
dresses RQ6. We compare the intersectional fairness and
fairness-performance trade-off effectiveness of using only mu-
tants involving a single protected attribute and using only
mutants involving multiple protected attributes.

9) Step 9. Analysis of group fairness: This step addresses
RQ7. We evaluate the effect of FairHOME on group fairness
for individual protected attributes. For instance, with the Adult
dataset, we assess group fairness regarding sex and race
separately. We use SPD, AOD, and EOD as metrics to measure
group fairness for each attribute. The Mann-Whitney U-test is
also used in this step to ensure statistical significance.

To ensure the reliability of our results, all the experiments
in steps 3 to 9 are repeated 20 times.

V. RESULTS

A. RQ1: Effect of FairHOME

RQ1 investigates the dual effect of FairHOME on inter-
sectional fairness and ML performance. We apply FairHOME
across 24 tasks, comprising six datasets and four ML models.
Given that our experiments are repeated 20 times, we compare
the mean metric values over these iterations for both the
original models and those applied FairHOME.

Table II shows the results. We observe that FairHOME
enhances intersectional fairness, indicated by lower fairness
metric values compared to the original models, in 139 out of
144 task-fairness metric combinations, accounting for 96.5%
of scenarios.

Regarding ML performance, we observe a decrease caused
by FairHOME, which can be attributed to the well-recognized
fairness-performance trade-off [4]. However, this decrease
in ML performance is significantly outweighed by the sub-
stantial improvement in intersectional fairness achieved by
FairHOME. For clarity, we calculate the mean intersectional
fairness and ML performance metric values across the 24 tasks
for both the original models and FairHOME. Subsequently,
we compute the absolute and relative changes induced by
FairHOME, as depicted in Table III.

Table III reveals that FairHOME enhances intersectional
fairness by 40.7% to 55.3% (relative changes) across different
fairness metrics. In contrast, ML performance experiences a
slight decrease ranging from 0.1% to 2.7% (relative changes)
across various ML performance metrics.

Finding 1: FairHOME largely enhances intersectional
fairness at a minimal cost to ML performance. Specifically,
it improves intersectional fairness by 40.7% to 55.3%
across different fairness metrics, while only reducing ML
performance by 0.1% to 2.7%, depending on the ML
performance metric considered.

B. RQ2: Comparison of Intersectional Fairness

RQ2 evaluates the intersectional fairness achieved by
FairHOME compared to existing bias mitigation methods. Due
to the page limit, statistical results are presented here, omitting
detailed fairness metric values for each method and task, which
are accessible in our repository [30].

For each method, we calculate the mean absolute and
relative improvements in intersectional fairness across 24 tasks
compared to the original models. Results in Table IV show
that FairHOME achieves the most substantial enhancement in
intersectional fairness, as indicated by the largest decrease in
fairness metric values, across all evaluated metrics. Specifi-
cally, for WC-SPD, WC-AOD, WC-EOD, AC-SPD, AC-AOD,
and AC-EOD, FairHOME enhances fairness by 40.7%, 47.2%,
47.8%, 42.2%, 51.8%, and 55.3%, respectively. On average
across all metrics, FairHOME improves intersectional fairness
by 47.5%. In contrast, among existing methods, FairMask
achieves the highest improvement in intersectional fairness,



TABLE II: (RQ1) Comparative analysis of fairness and ML performance between the original models and FairHOME. Scenarios
where FairHOME enhances intersectional fairness, indicated by lower fairness metric values, are shaded in grey. FairHOME
improves intersectional fairness in 139 out of 144 task-fairness metric combinations, accounting for 96.5% of scenarios.

Dataset LR RF
WS WA WE AS AA AE Acc P R F1 MCC WS WA WE AS AA AE Acc P R F1 MCC

Adult Original 0.196 0.203 0.322 0.086 0.097 0.157 0.821 0.776 0.683 0.709 0.450 0.213 0.175 0.267 0.089 0.079 0.125 0.839 0.795 0.732 0.754 0.522
FairHOME 0.101 0.038 0.068 0.041 0.015 0.024 0.812 0.772 0.657 0.682 0.413 0.126 0.044 0.074 0.051 0.016 0.026 0.832 0.792 0.708 0.734 0.493

Compas Original 0.507 0.478 0.365 0.187 0.163 0.137 0.674 0.672 0.665 0.666 0.337 0.397 0.368 0.304 0.135 0.120 0.096 0.645 0.641 0.635 0.636 0.276
FairHOME 0.271 0.255 0.173 0.096 0.085 0.056 0.658 0.676 0.635 0.626 0.308 0.235 0.213 0.175 0.079 0.063 0.053 0.637 0.649 0.614 0.603 0.261

Default Original 0.074 0.069 0.103 0.029 0.027 0.039 0.808 0.766 0.599 0.614 0.324 0.083 0.064 0.095 0.034 0.025 0.035 0.813 0.739 0.654 0.677 0.384
FairHOME 0.059 0.055 0.087 0.025 0.020 0.028 0.811 0.766 0.610 0.628 0.342 0.084 0.066 0.096 0.033 0.024 0.034 0.812 0.734 0.659 0.681 0.386

German Original 0.273 0.226 0.232 0.104 0.083 0.088 0.749 0.703 0.669 0.678 0.370 0.201 0.162 0.141 0.070 0.058 0.047 0.758 0.723 0.658 0.670 0.374
FairHOME 0.150 0.142 0.134 0.051 0.047 0.044 0.745 0.698 0.668 0.676 0.364 0.116 0.109 0.097 0.043 0.038 0.033 0.758 0.728 0.653 0.665 0.373

Mep15 Original 0.095 0.104 0.168 0.031 0.033 0.054 0.861 0.775 0.663 0.695 0.423 0.077 0.069 0.120 0.024 0.022 0.038 0.860 0.769 0.671 0.702 0.429
FairHOME 0.059 0.050 0.086 0.021 0.016 0.028 0.859 0.775 0.653 0.686 0.410 0.064 0.052 0.097 0.021 0.016 0.030 0.861 0.769 0.674 0.704 0.432

Mep16 Original 0.100 0.108 0.172 0.033 0.037 0.061 0.855 0.762 0.641 0.671 0.384 0.066 0.036 0.057 0.021 0.013 0.020 0.855 0.762 0.642 0.672 0.385
FairHOME 0.042 0.031 0.061 0.014 0.010 0.021 0.854 0.767 0.627 0.657 0.368 0.047 0.030 0.064 0.015 0.010 0.022 0.855 0.763 0.642 0.672 0.386

Dataset SVM DNN
WS WA WE AS AA AE Acc P R F1 MCC WS WA WE AS AA AE Acc P R F1 MCC

Adult Original 0.159 0.138 0.217 0.068 0.063 0.100 0.821 0.788 0.671 0.699 0.444 0.210 0.202 0.316 0.089 0.093 0.149 0.832 0.793 0.709 0.734 0.494
FairHOME 0.095 0.034 0.061 0.037 0.012 0.020 0.814 0.784 0.652 0.677 0.415 0.111 0.039 0.072 0.044 0.014 0.025 0.821 0.783 0.684 0.708 0.454

Compas Original 0.497 0.466 0.353 0.181 0.157 0.130 0.675 0.673 0.665 0.666 0.338 0.495 0.462 0.365 0.180 0.158 0.129 0.673 0.671 0.663 0.663 0.334
FairHOME 0.287 0.261 0.185 0.099 0.087 0.059 0.661 0.675 0.639 0.632 0.312 0.267 0.256 0.184 0.098 0.085 0.059 0.657 0.674 0.635 0.625 0.306

Default Original 0.047 0.046 0.077 0.018 0.017 0.027 0.801 0.769 0.573 0.575 0.279 0.093 0.088 0.134 0.040 0.034 0.047 0.818 0.755 0.656 0.680 0.398
FairHOME 0.040 0.040 0.073 0.016 0.014 0.024 0.803 0.769 0.580 0.587 0.294 0.087 0.079 0.121 0.037 0.030 0.043 0.816 0.733 0.656 0.675 0.385

German Original 0.274 0.232 0.226 0.104 0.084 0.089 0.746 0.699 0.668 0.677 0.366 0.289 0.243 0.242 0.107 0.088 0.096 0.731 0.678 0.651 0.657 0.327
FairHOME 0.163 0.150 0.165 0.056 0.049 0.052 0.747 0.700 0.672 0.680 0.371 0.172 0.160 0.160 0.061 0.055 0.055 0.740 0.691 0.665 0.670 0.354

Mep15 Original 0.074 0.069 0.112 0.025 0.022 0.036 0.860 0.776 0.656 0.688 0.415 0.092 0.101 0.166 0.030 0.034 0.058 0.859 0.756 0.660 0.686 0.406
FairHOME 0.053 0.043 0.074 0.019 0.014 0.024 0.859 0.777 0.651 0.683 0.408 0.057 0.048 0.084 0.020 0.015 0.027 0.857 0.735 0.654 0.676 0.386

Mep16 Original 0.075 0.061 0.096 0.025 0.022 0.036 0.854 0.764 0.632 0.662 0.373 0.094 0.091 0.143 0.033 0.035 0.056 0.853 0.724 0.642 0.662 0.361
FairHOME 0.041 0.027 0.051 0.014 0.009 0.019 0.853 0.765 0.622 0.652 0.360 0.047 0.030 0.061 0.015 0.010 0.021 0.853 0.743 0.637 0.661 0.366

* WS, WA, WE, AS, AA, AE, Acc, P, R, and F1 denote WC-SPD, WC-AOD, WC-EOD, AC-SPD, AC-AOD, AC-EOD, accuracy, precision, recall, and F1-score, respectively.

TABLE III: (RQ1) Mean intersectional fairness and ML per-
formance metric values achieved by the original models and
FairHOME across 24 tasks. FairHOME enhances intersec-
tional fairness (indicated by decreased fairness metric values)
by 40.7% to 55.3% across various metrics, while it minimally
impacts ML performance, which decreases by only 0.1% to
2.7%, depending on the metric analyzed.

Original FairHOME Absolute
change

Relative
change

WC-SPD 0.195 0.116 -0.079 -40.7%
WC-AOD 0.178 0.094 -0.084 -47.2%
WC-EOD 0.200 0.104 -0.095 -47.8%
AC-SPD 0.073 0.042 -0.031 -42.2%
AC-AOD 0.065 0.031 -0.034 -51.8%
AC-EOD 0.077 0.034 -0.043 -55.3%
Accuracy 0.794 0.791 -0.003 -0.4%
Precision 0.739 0.738 -0.000 -0.1%
Recall 0.657 0.648 -0.009 -1.3%
F1-score 0.675 0.664 -0.011 -1.6%
MCC 0.383 0.373 -0.010 -2.7%

with an enhancement of 37.9% on average across fairness
metrics, 9.6 percentage points lower than FairHOME.

We further conduct a detailed comparison of fairness metric
values obtained by FairHOME and existing methods using
the win-tie-loss analysis outlined in Section IV-B4. Table V
shows the results, organizing the win/tie/loss outcomes based
on the metrics and also providing an overall summary of the
comparison results. From the last row, we find that FairHOME
outperforms all considered existing methods in terms of sce-
nario wins. This indicates that FairHOME achieves more wins
than losses when compared with any of the methods across the
six intersectional fairness metrics. For example, FairHOME
surpasses FairMask in 65 scenarios, while FairMask does not

outperform FairHOME in any scenario. Furthermore, when ex-
amining each metric individually, we observe that FairHOME
consistently outperforms all considered existing methods.

Finding 2: FairHOME consistently outperforms existing
bias mitigation methods in enhancing intersectional fair-
ness across all evaluated metrics. On average across all
metrics, FairHOME improves intersectional fairness by
47.5%, which is 9.6 percentage points higher than that
of the currently best-performing method.

C. RQ3: Comparison of Fairness-Performance Trade-off

RQ3 employs Fairea [29], a state-of-the-art benchmarking
tool designed to evaluate fairness-performance trade-off, to
compare the trade-off effectiveness of FairHOME with ex-
isting bias mitigation methods. Each method is applied to 24
tasks with 30 fairness-performance measurements, and each
experiment is repeated 20 times. As a result, there are a total
of 24× 30× 20 = 14, 400 mitigation cases for each method.
Using Fairea, we classify the effectiveness of each method
on each case into various effectiveness levels described in
Section IV-B5, and subsequently, obtain the effectiveness level
distributions for each method.

Figure 2 illustrates the effectiveness level distribu-
tions. Overall, FairHOME demonstrates the best fairness-
performance trade-off among all the methods. Specifically,
FairHOME outperforms the trade-off baseline constructed by
Fairea (i.e., achieving win-win or good trade-off) in 87.7%
of cases. In contrast, existing methods achieve this in only



TABLE IV: (RQ2) Mean absolute and relative improvements in intersectional fairness (i.e., decreased fairness metric values)
across 24 tasks. We find that FairHOME consistently outperforms existing bias mitigation methods in enhancing intersectional
fairness across all evaluated metrics.

Method WC-SPD WC-AOD WC-EOD AC-SPD AC-AOD AC-EOD
Abs. Rela. Abs. Rela. Abs. Rela. Abs. Rela. Abs. Rela. Abs. Rela.

REW -0.025 -13.0% -0.030 -16.7% -0.029 -14.4% -0.011 -14.7% -0.014 -21.5% -0.017 -22.0%
ADV 0.020 10.2% 0.052 29.4% 0.060 29.9% 0.008 10.8% 0.018 27.6% 0.014 18.1%
EOP -0.042 -21.6% -0.038 -21.5% -0.037 -18.5% -0.017 -22.8% -0.016 -24.8% -0.021 -27.0%
FairSMOTE -0.024 -12.0% -0.032 -18.0% -0.038 -19.0% -0.013 -17.4% -0.015 -23.6% -0.022 -28.0%
MAAT -0.058 -29.7% -0.054 -30.1% -0.061 -30.6% -0.023 -31.4% -0.022 -33.6% -0.027 -35.1%
FairMask -0.055 -28.3% -0.070 -39.3% -0.073 -36.6% -0.023 -32.1% -0.029 -45.3% -0.035 -45.7%
GRY -0.069 -35.4% -0.062 -34.8% -0.048 -23.9% -0.026 -36.4% -0.023 -34.6% -0.019 -24.1%
FairHOME -0.079 -40.7% -0.084 -47.2% -0.095 -47.8% -0.031 -42.2% -0.034 -51.8% -0.043 -55.3%

TABLE V: (RQ2) Comparative analysis of intersectional fair-
ness between FairHOME and existing bias mitigation meth-
ods across 24 tasks and six fairness metrics. The numbers
of FairHOME’s win-tie-loss scenarios are shown. For each
metric, FairHOME consistently outperforms all considered
existing methods in terms of scenario wins.

Metric REW ADV EOP FairSMOTE MAAT FairMask GRY
WC-SPD 20/2/2 15/8/1 18/5/1 15/7/2 12/9/3 15/9/0 13/5/6
WC-AOD 14/9/1 24/0/0 17/7/0 18/3/3 13/8/3 10/14/0 10/9/5
WC-EOD 14/9/1 24/0/0 17/7/0 11/12/1 14/7/3 7/17/0 14/9/1
AC-SPD 19/2/3 16/5/3 16/8/0 15/6/3 11/10/3 16/8/0 14/6/4
AC-AOD 14/8/2 24/0/0 18/6/0 17/4/3 13/8/3 7/17/0 10/12/2
AC-EOD 14/9/1 24/0/0 18/6/0 12/11/1 12/9/3 10/14/0 13/10/1
Overall 95/39/10 127/13/4 104/39/1 88/43/13 75/51/18 65/79/0 74/51/19

Fig. 2: (RQ3) Effectiveness level distributions of FairHOME
and existing methods in fairness-performance trade-off. Over-
all, FairHOME achieves the best trade-off, with 87.7% of
mitigation cases falling in win-win or good trade-off.

34.4% to 81.0% of cases. Furthermore, FairHOME exhibits
the fewest mitigation cases falling into the lose-lose trade-off,
accounting for 3.8% of mitigation cases. In contrast, existing
methods suffer from lose-lose trade-off in 6.4% to 29.2% of
cases.

Finding 3: According to a state-of-the-art benchmark-
ing tool with 30 fairness-performance measurements,
FairHOME outperforms existing bias mitigation methods
in fairness-performance trade-off.

D. RQ4: Evaluation of Mutation Strategies

RQ4 evaluates the impact of mutating not only protected
attributes but also features correlated with them within the
framework of our approach. We refer to this as FairHOME1.

First, we evaluate the mean intersectional fairness im-
provements achieved by FairHOME and FairHOME1 across
24 tasks. Table VI presents the results. While FairHOME1
demonstrates improved intersectional fairness through lower
WC/AC-SPD values compared to FairHOME, it also results in
higher WC/AC-AOD and WC/AC-EOD values. This suggests
that FairHOME1 could exacerbate differences in error rates
across subgroups (indicated by increased WC/AC-AOD and
WC/AC-EOD), likely due to unintended over-adjustments or
noise introduced during the mutation of features correlated
with protected attributes.

Second, we compare the effectiveness of the fairness-
performance trade-off between FairHOME and FairHOME1.
For ease of illustration, we follow previous work [4], [22]
to measure trade-off effectiveness based on the proportion
of mitigation cases where each method surpasses the trade-
off baseline constructed by Fairea (i.e., falling in win-win or
good trade-off). Overall, FairHOME surpasses this baseline
in 87.7% of cases, while FairHOME1 does so in 80.4%,
showcasing FairHOME’s superior trade-off between intersec-
tional fairness and performance. This outcome aligns with
expectations, as FairHOME1 not only exhibits higher WC/AC-
AOD and WC/AC-EOD values, but also tends to introduce
additional noise that adversely affects ML performance.

Considering the drawbacks of FairHOME1, as evidenced
by the results, and its requirement for learning feature corre-
lations, we do not use it as the default strategy of FairHOME.

Finding 4: Extending mutations to both protected at-
tributes and their correlated features leads to a poorer
fairness-performance trade-off and decreased intersectional
fairness across WC/AC-AOD and WC/AC-EOD.

E. RQ5: Evaluation of Ensemble Strategies

RQ5 evaluates three commonly used ensemble strategies
within the framework of our approach: majority vote (the
default FairHOME), averaging (FairHOME2), and weighted
averaging (FairHOME3).



TABLE VI: (RQ4) Mean absolute and relative intersectional fairness improvements achieved by FairHOME and FairHOME1
across 24 tasks. FairHOME1 achieves lower WC/AC-SPD, but higher WC/AC-AOD and WC/AC-EOD than FairHOME.

Method WC-SPD WC-AOD WC-EOD AC-SPD AC-AOD AC-EOD
Abs. Rela. Abs. Rela. Abs. Rela. Abs. Rela. Abs. Rela. Abs. Rela.

FairHOME -0.079 -40.7% -0.084 -47.2% -0.095 -47.8% -0.031 -42.2% -0.034 -51.8% -0.043 -55.3%
FairHOME1 -0.120 -61.3% -0.081 -45.8% -0.082 -41.2% -0.048 -66.1% -0.034 -51.6% -0.037 -48.0%

TABLE VII: (RQ5) Mean absolute and relative intersectional fairness improvements achieved by FairHOME, FairHOME2,
and FairHOME3 across 24 tasks. Overall, they achieve similar intersectional fairness improvements.

Method WC-SPD WC-AOD WC-EOD AC-SPD AC-AOD AC-EOD
Abs. Rela. Abs. Rela. Abs. Rela. Abs. Rela. Abs. Rela. Abs. Rela.

FairHOME -0.079 -40.7% -0.084 -47.2% -0.095 -47.8% -0.031 -42.2% -0.034 -51.8% -0.043 -55.3%
FairHOME2 -0.078 -40.1% -0.083 -46.8% -0.091 -45.5% -0.031 -42.2% -0.034 -51.5% -0.041 -53.7%
FairHOME3 -0.081 -41.3% -0.085 -47.7% -0.092 -46.0% -0.031 -43.2% -0.034 -52.2% -0.042 -54.2%

First, we evaluate the intersectional fairness achieved by the
three methods. Table VII illustrates their mean enhancements
across 24 tasks. We find that they achieve similar fairness
improvements. Moreover, when compared with the fairness
improvements of state-of-the-art methods (as listed in Table
IV), all three ensemble strategies exhibit superior results.

Second, we evaluate the fairness-performance trade-off ef-
fectiveness of the three strategies. We measure this using the
proportion of mitigation cases where each method surpasses
the trade-off baseline constructed by Fairea (i.e., win-win or
good trade-off). We find that FairHOME, FairHOME2, and
FairHOME3 outperform the baseline in 87.7%, 86.8%, and
86.6% of cases, respectively, with a negligible 1.1% differ-
ence. Compared to state-of-the-art methods, which range from
34.4% to 81.0% (as shown in Figure 2), all three strategies
surpass existing methods in fairness-performance trade-off.

In summary, the three ensemble strategies yield comparable
results. Given that the majority vote requires only decision
information and is simpler, we adhere to the ‘try-with-simpler’
SE practice [48] to adopt it as the default ensemble strategy.

Finding 5: Our approach consistently outperforms exist-
ing methods in both intersectional fairness and fairness-
performance trade-off under different ensemble strategies:
majority vote, averaging, and weighted averaging.

F. RQ6: Contribution of Different Mutants

RQ6 compares the effectiveness of three approaches:
using only mutants that mutate a single protected at-
tribute (FairHOME4), only mutants that mutate multiple pro-
tected attributes (FairHOME5), and a combination of both
(FairHOME). We use the Compas dataset for this RQ, as
it includes three protected attributes. For datasets with only
two protected attributes, we can generate only one mutant
involving mutating multiple attributes, making majority voting
impractical for FairHOME5 with only two outputs.

Table VIII shows the improvements achieved by each
model across four tasks on the Compas dataset. FairHOME5
shows greater intersectional fairness improvements compared
to FairHOME4. When comparing FairHOME5 to FairHOME,

FairHOME5 achieves an average relative improvement of
45.7% across six metrics, while FairHOME achieves 47.3%.
Therefore, FairHOME performs the best overall. Additionally,
we assess the fairness-performance trade-off effectiveness of
the three strategies by examining the proportion of cases where
each method surpasses the trade-off baseline set by Fairea (i.e.,
win-win or good trade-off scenarios). The results show that
FairHOME, FairHOME4, and FairHOME5 exceed the base-
line in 99.9%, 96.5%, and 98.3% of cases, respectively. This
further indicates that using only mutants involving multiple
protected attributes outperforms using only mutants involving
a single attribute, with the best results achieved by combining
both types (i.e., FairHOME).

Finding 6: Using mutants involving multiple protected
attributes enhances intersectional fairness more than us-
ing only single attribute mutations, with the best results
achieved by combining both types (i.e., FairHOME).

G. RQ7: Effect on Group Fairness

RQ7 assesses the impact of FairHOME on group fairness
regarding single protected attributes while enhancing inter-
sectional fairness. We evaluate 156 scenarios, combining 13
single-attribute tasks from Table I (e.g., Adult-sex), 4 models,
and 3 group fairness metrics (i.e., SPD, AOD, and EOD).
According to the Mann-Whitney U-test, FairHOME signifi-
cantly improves group fairness regarding single attributes in
120 scenarios and decreases it in 3. In comparison, FairMask,
the best baseline approach identified in RQ2 (Table V) and
RQ3 (Figure 2), significantly improves such fairness in 107
scenarios and decreases it in 4.

FairHOME improves group fairness for single attributes
while enhancing intersectional fairness through its compre-
hensive approach to bias mitigation. By generating mutants
representing all possible subgroups, it effectively addresses bi-
ases in both single and intersectional attributes. Consequently,
FairHOME’s thorough consideration of both single and com-
bined attribute effects leads to simultaneous improvements in
group fairness and intersectional fairness.



TABLE VIII: (RQ6) Mean absolute and relative intersectional fairness improvements achieved by FairHOME, FairHOME4,
and FairHOME5 across four tasks on the Compas dataset. Overall, FairHOME performs the best.

Method WC-SPD WC-AOD WC-EOD AC-SPD AC-AOD AC-EOD
Abs. Rela. Abs. Rela. Abs. Rela. Abs. Rela. Abs. Rela. Abs. Rela.

FairHOME -0.209 -44.1% -0.197 -44.4% -0.168 -48.4% -0.078 -45.6% -0.069 -46.4% -0.066 -53.6%
FairHOME4 -0.116 -24.4% -0.115 -25.9% -0.113 -32.5% -0.050 -29.2% -0.047 -31.6% -0.044 -36.0%
FairHOME5 -0.209 -44.2% -0.185 -41.8% -0.149 -42.9% -0.080 -46.9% -0.070 -46.6% -0.063 -51.7%

Finding 7: In addition to improving intersectional fairness,
FairHOME significantly enhances group fairness for single
protected attributes in 120 out of 156 scenarios.

VI. DISCUSSION

A. Advantages of FairHOME

Effective. The main goal of FairHOME is to improve inter-
sectional fairness. Our results in RQ2 indicate that FairHOME
outperforms state-of-the-art methods, resulting in notable en-
hancements in intersectional fairness.
Balanced. It is important for bias mitigation methods to strike
a balance between fairness and ML performance. Our results
in RQ3 showcase that FairHOME outperforms state-of-the-art
methods by offering a superior trade-off between intersectional
fairness and ML performance.
Non-disruptive. FairHOME operates solely on inputs during
the inference phase, ensuring seamless implementation without
disruption to existing training data processing or necessitating
model changes. Even for deployed ML software, applying
FairHOME requires minimal development or deployment ef-
forts, as engineers can easily modify software inputs.
Lightweight access to training data. Unlike state-of-the-art
methods like FairSMOTE, MAAT, and FairMask, which re-
quire access to the entire training dataset, FairHOME accesses
only the protected attributes to acquire their possible values,
reducing the risk of inadvertently exposing private information
within the training data.
No need for training new models. In an era where sustainable
and green SE practices are increasingly emphasized in both re-
search and industry [67], FairHOME stands out by eliminating
the necessity of training new models.

Moreover, we compare the time cost of different methods.
The experiments are executed on Ubuntu 16.04 LTS with
128GB RAM, a 2.3 GHz Intel Xeon E5-2653 v3 Dual CPU,
and two NVidia Tesla M40 GPUs. FairHOME’s mutation takes
an average of 6.52 seconds across all tasks. In comparison,
existing methods that we consider take between 11.48 and
565.20 seconds.

B. Threats to Validity

Construct validity. The measurement of fairness and ML per-
formance poses a potential threat to the construct validity. To
address this concern, we use six intersectional fairness metrics
extensively adopted in the literature, alongside five standard
ML performance metrics. Additionally, we conduct trade-off
analysis using a set of 30 fairness-performance measurements,
the most extensive in the fairness literature.

Internal validity. To ensure the accuracy of our results, we
carefully replicate existing bias mitigation methods for com-
parative analysis. To mitigate the impact of randomness on our
results, we conduct 20 repetitions for each experiment. Due to
the page limit, we often present average-level statistical results,
which may obscure variations and outliers while omitting
detailed values for all scenarios. The comprehensive results
are available in our repository [30].
External validity. To address potential concerns regarding ex-
ternal validity, we use 24 bias mitigation tasks for evaluation.
These tasks cover six well-studied decision problems and four
types of ML models in the fairness literature. When selecting
existing methods for comparison, we consider both widely
used methods and recent methods. Our selection encompasses
pre-processing, in-processing, and post-processing methods.

VII. CONCLUSION

This paper introduces FairHOME, a novel ensemble ap-
proach using higher order mutation to improve intersec-
tional fairness of ML software during the inference phase.
FairHOME mutates protected attributes within an input in-
stance to generate diverse inputs from various subgroups.
These mutants are then combined with the original input
to make the final decision. An extensive evaluation across
24 widely adopted decision tasks demonstrates the power
of FairHOME in surpassing state-of-the-art bias mitigation
methods, thereby propelling intersectional fairness to a new
height. Moreover, FairHOME achieves the best trade-off be-
tween intersectional fairness and ML performance.

VIII. DATA AVAILABILITY

We have provided a replication package [30], including all
the datasets, code, and intermediate results of our work.
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