
MAAT: A Novel Ensemble Approach to Addressing Fairness and
Performance Bugs for Machine Learning Software

Zhenpeng Chen
zp.chen@ucl.ac.uk

University College London
London, United Kingdom

Jie M. Zhang
jie.zhang@kcl.ac.uk

King’s College London
London, United Kingdom

Federica Sarro
f.sarro@ucl.ac.uk

University College London
London, United Kingdom

Mark Harman
mark.harman@ucl.ac.uk

University College London
London, United Kingdom

ABSTRACT

Machine Learning (ML) software can lead to unfair and unethical

decisions, making software fairness bugs an increasingly significant

concern for software engineers. However, addressing fairness bugs

often comes at the cost of introducing more ML performance (e.g.,

accuracy) bugs. In this paper, we propose MAAT, a novel ensemble

approach to improving fairness-performance trade-off for ML soft-

ware. Conventional ensemble methods combine different models

with identical learning objectives. MAAT, instead, combines models

optimized for different objectives: fairness andML performance. We

conduct an extensive evaluation of MAAT with 5 state-of-the-art

methods, 9 software decision tasks, and 15 fairness-performance

measurements. The results show that MAAT significantly outper-

forms the state-of-the-art. In particular, MAAT beats the trade-off

baseline constructed by a recent benchmarking tool in 92.2% of the

overall cases evaluated, 12.2 percentage points more than the best

technique currently available. Moreover, the superiority of MAAT

over the state-of-the-art holds on all the tasks and measurements

that we study. We have made publicly available the code and data

of this work to allow for future replication and extension.

CCS CONCEPTS

· Software and its engineering→ Software creation and man-

agement; · Computing methodologies→Machine learning.

KEYWORDS

Software fairness, bias mitigation, fairness-performance trade-off,

ensemble learning, machine learning software

ACM Reference Format:

Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and Mark Harman. 2022.

MAAT: A Novel Ensemble Approach to Addressing Fairness and Perfor-

mance Bugs for Machine Learning Software. In Proceedings of the 30th

ACM Joint European Software Engineering Conference and Symposium on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549093

the Foundations of Software Engineering (ESEC/FSE ’22), November 14ś18,

2022, Singapore, Singapore. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3540250.3549093

1 INTRODUCTION

Software systems have been widely adopted to make decisions in

social-critical, human-related tasks, including credit assessment [1],

disease detection [55], criminal justice [4], and hiring [31]. The

wide adoption of such decision-making software raises concerns

about software fairness bugs (i.e., unfair software decisions) [27].

These bugs have been frequently reported, related to protected

attributes such as race [5, 9] and sex [7, 17]. They may particularly

disadvantageminorities and protected groups, resulting in unethical

and unacceptable consequences.

The issue in fairness has been studied in both Software Engineer-

ing (SE) [40] andMachine Learning (ML) [62] research communities

since 2008. From the SE perspective, fairness is a non-functional

software property, as such can be the subject of testing to find

fairness bugs [79]. In recent years, the surging ML software (i.e.,

software that relies on ML to tackle decision problems), increases

the prevalence of software fairness bugs [58, 67]. Such prevalence at-

tracts increasing attention from the SE community, and researchers

have called for actions by the SE research to tackle fairness bugs

[27]. As a result, the SE literature has witnessed a large number

of recent results on addressing fairness bugs (i.e., software bias1

mitigation) [25, 26, 28, 29, 46, 47, 78].

Although bias mitigation methods aim to address fairness bugs,

many theoretical and empirical studies [23, 34, 36, 47, 73] have

revealed that the reduction of fairness bugs can come at the cost of

introducing more performance (e.g., accuracy) bugs into ML soft-

ware, causing decrease in ML performance. Therefore, fairness and

ML performance can be conflicting goals in software development.

Software engineers are often in a dilemma between the functional

property (i.e., ML performance) and the non-functional property

(i.e., fairness), known as łfairness-performance trade-off ž.

We presentMAAT, a fairness-performance ensemble approach,

for improving ML fairness-performance trade-off. Conventional

ensemble methods combine different ML models with identical

learning objectives (e.g., accuracy). In this paper, we propose a

novel ensemble method that combines ML models with differ-

ent learning objectives (i.e., fairness and performance) to optimize

1We treat łbiasž and łunfairnessž as synonyms, referring to the opposite of łfairnessž.

1122

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3540250.3549093
https://doi.org/10.1145/3540250.3549093
https://doi.org/10.1145/3540250.3549093

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Zhenpeng Chen, Jie M. Zhang, Federica Sarro, Mark Harman

the trade-off between them. Specifically, MAAT learns individual

models with fairness and ML performance as optimization goals

separately, and combines the learned knowledge to make specific

decisions. To get optimized fairness, we also design a data debugging

technique to mitigate selection bias and label bias in the training

data of ML software, both of which are demonstrated to be major

causes of software unfairness [28, 73].

We conduct an extensive evaluation of MAAT on nine widely-

adopted software decision tasks, which cover social, financial, and

medical application domains, as well as scenarios with single and

multiple protected attributes. We compare MAAT with five state-of-

the-art bias mitigation methods from the ML and SE communities,

using 15 types of fairness-performance measurements (i.e., combi-

nations of three fairness metrics and five ML performance metrics).

We observe that MAAT is more effective in improving fairness-

performance trade-off than existingmethods. According to the state-

of-the-art benchmarking tool [47], MAAT surpasses the trade-off

baseline constructed by the tool in 92.2% of the studied cases, while

existing methods achieve it in between 33.3% and 80.0% of the cases.

When considering multiple protected attributes at the same time,

MAAT beats the trade-off baseline in 96.5% of the cases evaluated,

46.3 percentage points more than the state-of-the-art. Furthermore,

MAAT is widely applicable, as it outperforms existing methods on

all the software decision tasks and fairness-performance measure-

ments that we consider.

In summary, this paper makes the following contributions:

• We propose MAAT, a novel fairness-performance ensemble ap-

proach, to improve fairness-performance trade-off for ML soft-

ware.

• We conduct a large-scale study of MAAT and 5 existing bias

mitigation methods on 9 software decision tasks with 15 fairness-

performance measurements. The results show that MAAT signif-

icantly outperforms the state-of-the-art.

• We make available the scripts and data used in our study [18] to

the research community for other researchers to adopt MAAT or

replicate and extend this work.

The rest of this paper is structured as follows. Section 2 intro-

duces the preliminaries about software fairness. Section 3 presents

the MAAT approach. Section 4 describes the evaluation settings

and research questions. Section 5 reports and analyzes the results.

Section 6 discusses the advantages and implications of MAAT as

well as the threats to validity, followed by concluding remarks in

Section 7.

2 PRELIMINARIES

We start by introducing the background and related work about

software fairness.

2.1 Background

Classification tasks are the most widely-adopted research subjects

in the software fairness literature [25, 26, 28, 29, 47, 78]. For such

tasks, ML software can be considered a function that maps fea-

ture vectors to class labels. Among the features, some (such as sex

and race; termed protected attributes) need to be protected against

unfairness. Based on the value of a protected attribute, a popula-

tion is partitioned into the privileged and unprivileged groups. It is

recognized that ML software tends to produce the favorable class

label for the members in the privileged group [58], thus making the

unprivileged group at disadvantage. For example, the recidivism

assessment software that US courts used has been shown to be par-

ticularly likely to falsely flag black defendants as future criminals

compared to white defendants [5].

Building responsible software with group fairness has been an

important ethical duty for software engineers. It requires that the

protected attributes do not affect the decision outcomes and thus

ML software treats the privileged and unprivileged groups equally.

Group fairness has been advocated in legal regulations such as the

four-fifths rule in US law [73], and widely studied in software bias

mitigation research [58]. In this paper, we focus on classification

tasks and group fairness.

2.2 Related Work

Fairness has been an important non-functional property that soft-

ware engineers need to meet in software development practice.

Therefore, major software companies have started to put signif-

icant efforts into software fairness. For instance, Meta (formerly

Facebook) developed the Fairness Flow tool to detect bias in ML

software [11]; Microsoft established the FATE group [8] to promote

software fairness, and published the ethical principles of artificial

intelligence [15], stating that ML software must be fair in real-life

applications.

Meanwhile, fairness has been a hot research topic in the SE

community. In particular, at ESEC/FSE 2018, researchers [27] set out

a vision on how SE research can help reduce fairness bugs, fostering

a series of SE efforts in software fairness. Next, we introduce related

work about fairness bug detection and resolution.

Detecting fairness bugs (fairness testing): Chen et al. [33]

provided a comprehensive survey of existing research on fairness

testing. Galhotra et al. [43] proposed Themis to generate test suites

for detecting causal discrimination in ML software. Udeshi et al.

[69] leveraged the inherent robustness property in ML models for

scalable fairness test generation. Angell et al. [20] presented an auto-

mated test suite generator to measure causal relationships between

sensitive inputs and program behaviour. Aggarwal et al. [19] com-

bined symbolic execution and local explainability for fairness test

input generation. Zhang et al. [81] used gradient computation and

clustering to generate discriminatory instances. Chakraborty et al.

[30] used trustworthy explanation for uncovering underlying fair-

ness bugs. Zhang et al. [80] generated diverse discriminatory seeds

and individual discriminatory instances around these seeds through

gradient search. Asyrofi et al. [21] generated bias-uncovering test

cases by text mutation for sentiment analysis software.

Addressing fairness bugs (biasmitigation): Some researchers

provided implications for bias mitigation through empirical stud-

ies. For example, Zhang and Harman [78] investigated potential

influencing factors of software fairness and found that enlarging

the feature set was a possible way to improve fairness. Valentim

et al. [70] and Biswas and Rajan [26] explored the impact of differ-

ent pre-processing techniques on fairness and derived insights for

choosing appropriate techniques to improve software fairness.

1123

MAAT: A Novel Ensemble Approach to Addressing Fairness and Performance Bugs for Machine Learning Software ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Additionally, researchers proposed numerous bias mitigation

methods to address fairness bugs, including pre-processing, in-

processing, and post-processing methods [45, 58]. Pre-processing

methods processed training data to reduce data bias; in-processing

methods mitigated bias by optimizing training algorithms; post-

processing methods modified prediction outcomes of ML software

to improve fairness. Recently, IBM has launched a toolkit named

AIF360 [14] to integrate popular pre-processing, in-processing, and

post-processing methods, such as Reweighing [49], Adversarial

Debiasing [77], and Reject Option Classification [51].

Furthermore, researchers proposed ensemble techniques that

combined different bias mitigation methods/models [24, 28, 29, 48,

53] to address fairness bugs. These techniques often combinedmeth-

ods/models with the identical objective (i.e., fairness) to achieve bet-

ter fairness than any of the individuals. For example, Chakraborty

et al. [29] combined a pre-processing method (i.e., situation testing)

and an in-processing method (i.e., multi-objective optimization),

and demonstrated that the ensemble performed better than each

of the individuals; similarly, their follow-up work [28] combined

two pre-processing bias mitigation techniques, i.e., situation testing

and data distribution balancing. Different from them, we propose

an ensemble approach that combines models with different objec-

tives (i.e., fairness and ML performance) to deal with the trade-off

between them.

With the emergence of various bias mitigation methods, some

work focused on empirical evaluation of them. For example, Biswas

and Rajan [25] applied seven bias mitigation methods on real-world

ML models collected from a crowd-sourced platform. However,

existing work often measured the changes caused by bias mitiga-

tion methods in fairness and ML performance separately. In this

way, it was unclear whether the improved fairness was simply

the consequence of ML performance loss. To tackle this problem,

Hort et al. [47] proposed a benchmarking tool named Fairea, which

provided a unified baseline to evaluate and compare the fairness-

performance trade-off of different bias mitigation methods. In this

paper, we adopt Fairea to compare our approach and existing bias

mitigation methods. We use łtrade-off baselinež to refer to the

baseline that Fairea provides, which is expected to be surpassed by

any reasonable bias mitigation methods.

3 THE MAAT APPROACH

In this section, we first introduce the workflow of MAAT, then

present a detailed description of its key components.

3.1 MAAT: In a Nutshell

MAAT is a fairness-performance ensemble approach for improving

the fairness-performance trade-off in ML software development.

Inspired by the ensemble theory [56, 66] that ensembles tend to

yield better results when there is a diversity among the involved

models, MAAT makes use of ML models with different objectives

(i.e., fairness and performance), and combines the behaviours of

them to make the final decisions.

Figure 1 presents the overview of MAAT. First, we train two

individual models, named the Fairness Model and the Perfor-

mance Model. The fairness model is optimized for fairness; the

Figure 1: Overview of MAAT.

performance model is optimized for ML performance (e.g., accu-

racy). Each model maps the input feature vector to a probability

vector, indicating the probability that the input belongs to each

class label. We then combine the output probability vectors of the

fairness model and the performance model to produce the final

predictions.

MAAT is a general framework for tackling fairness-performance

trade-off for ML software. Researchers and practitioners can design

the fairness model, the performance model, and the combination

strategy according to their applications. In the following, we intro-

duce a default configuration of MAAT, with a fairness model that

we propose using data debugging.

3.2 Fairness Model

We propose a training data debugging approach for obtaining the

fairness model.

ML software is developed following the data-driven program-

ming paradigm, and the training data determines its decision logic

to a large extent [79]. As a result, bias in the training data is con-

sidered a root cause of ML software bias [28]. For example, in the

Adult dataset [6], which is commonly used for predicting income of

individuals, 31% of men are labeled with łhigh incomež and 11% of

women, a difference of almost three times. Therefore, ML software

developed on this dataset tends to favor men.

Data debugging is an emerging technique, which aims to locate

and modify the data that causes program bugs. For example, Wu et

al. [74] proposed a data debugging approach, which allows users

to complain about queries’ output of database integrating ML in-

ference and returns the smallest set of training data that can be

removed to fix the database bugs; Kirschner et al. [54] proposed an

approach to maximizing the subset of input that can be processed

by the program, thus debugging as much input data as possible.

Different from these work, we propose a data debugging approach

for addressing fairness bugs, i.e., improving software fairness.

Specifically, we debug the training data by encoding the łWe’re

All Equalž (WAE) worldview [41, 76] into it. The WAE worldview

holds the belief that there is no statistical association between

the outcome decision and the protected attribute, and has been

widely advocated in the literature [58] and law [76]. To encode the

worldview, we first divide the training data into four subgroups

based on the values of the outcome label (Favorable or Unfavorable)

and the protected attribute (Privileged or Unprivileged), and use 𝑃𝐹 ,

𝑃𝑈 ,𝑈𝐹 , and𝑈𝑈 to denote the number of samples in the Privileged

& Favorable, Privileged & Unfavorable, Unprivileged & Favorable,

and Unprivileged & Unfavorable subgroups. Then, we need to make

the favorable rates of privileged and unprivileged groups equal, i.e.,

1124

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Zhenpeng Chen, Jie M. Zhang, Federica Sarro, Mark Harman

𝑃𝐹
𝑃𝐹+𝑃𝑈 =

𝑈𝐹
𝑈 𝐹+𝑈𝑈 , to satisfy the WAE criteria. However, in fact, the

two rates in current training data are often unequal, or even very

different (as shown in the aforementioned Adult dataset).

We design a debugging strategy according to the recognized

major factors of training data bias. Existing work [28, 73] attributes

training data bias to two factors: selection bias, which occurs when

sampling real-world data as the training data in a way that hap-

pens to introduce an unexpected correlation between the protected

attribute and the outcome label, and label bias, which occurs when

the process that produces the labels is influenced by factors that

are not germane to the determination of labels. To mitigate the

selection bias, we aim to undersample the training data to remove

the unexpected correlation, making 𝑃𝐹
𝑃𝐹+𝑃𝑈 =

𝑈𝐹
𝑈 𝐹+𝑈𝑈 . Since many

research results and real-world cases have shown that ML software

tends to falsely produce the favorable label for the privileged and

the unfavorable label for the unprivileged [58], label bias mainly

exists in the Privileged & Favorable and Unprivileged & Unfavor-

able subgroups. Therefore, we perform undersampling by reducing

data samples in the two subgroups to alleviate the label bias as

well as the selection bias. Meanwhile, we keep the ratio of privi-

leged and unprivileged individuals during the sampling process, as

we expect that the final training data still shares the same privi-

leged/unprivileged ratio as the real-world. We use 𝑎 and 𝑏 to denote

the number of samples that we need to remove from the Privi-

leged & Favorable and Unprivileged & Unfavorable subgroups, and

formulate the aforementioned constraints as follows:




𝑃𝐹−𝑎
𝑃𝐹−𝑎+𝑃𝑈 =

𝑈𝐹
𝑈 𝐹+𝑈𝑈−𝑏

,

𝑃𝐹+𝑃𝑈
𝑈𝐹+𝑈𝑈 =

𝑃𝐹−𝑎+𝑃𝑈
𝑈𝐹+𝑈𝑈−𝑏

,

𝑎 ≥ 0, 𝑏 ≥ 0.

(1)

Based on the constraints, we calculate the numbers 𝑎 and𝑏. Then,

we randomly remove 𝑎 samples from the Privileged & Favorable

subgroup and 𝑏 samples from the Unprivileged & Unfavorable

subgroup. Finally, based on the remaining training data, we train

the fairness model to predict favorable or unfavorable outcome.

In Section 5.3, we also use the models obtained by applying ex-

isting bias mitigation methods as the fairness model, to investigate

how different fairness models affect MAAT.

3.3 Performance Model

By default, the training process of ML models uses ML performance

as the optimization goal. Therefore, we use the models obtained

by traditional ML algorithms on the original training data, as the

performance model.

In Section 5.3, we employ the models trained using different ML

algorithms as the performance model, to investigate how different

performance models affect MAAT.

3.4 Combination

The fairness model and the performance model produce their re-

spective probability vectors based on identical inputs. Our default

combination strategy is to average the produced probabilities of

the two models. Let us consider a binary classification task with

unfavorable and favorable labels (i.e., 0 and 1), and denote the two

probability vectors obtained by the fairness model and the per-

formance model as [𝑝0𝑓 , 𝑝1𝑓] and [𝑝0𝑝 , 𝑝1𝑝], where 𝑝0𝑓 and 𝑝0𝑝
indicate the probabilities that the input belongs to the class 0, 𝑝1𝑓
and 𝑝1𝑝 the class 1. Then, we average the two vectors to obtain

the final probability vector [
𝑝0𝑓 +𝑝0𝑝

2
,
𝑝1𝑓 +𝑝1𝑝

2
]. If

𝑝0𝑓 +𝑝0𝑝
2

is greater

than
𝑝1𝑓 +𝑝1𝑝

2
, we predict the input as the class 0, otherwise the class

1. Averaging is a common strategy in ensemble learning [83], and

we use it as the default combination strategy of MAAT.

In Section 5.4, we also explore other combination strategies to

investigate how different strategies affect MAAT.

3.5 For Multiple Protected Attributes

Software systems may have multiple protected attributes that need

to be considered at the same time. For such multi-attribute tasks,

it is difficult for software engineers to improve fairness for each

protected attribute simultaneously. For example, existing ML soft-

ware, which has been removed gender bias [50], is demonstrated

to exhibit severe racial bias [43].

MAAT, as a general framework, can be easily adopted for multi-

attribute tasks. Specifically, we can train an individual fairness

model for each protected attribute according to the steps in Sec-

tion 3.2. Each fairness model predicts the same target (favorable or

unfavorable). Then, given the input data, the performance model

and each fairness model produce a probability vector, respectively.

We average these vectors to obtain the final probability vector and

then make the decision based on it.

In Section 5.5, we evaluate MAAT in multi-attribute decision

tasks to demonstrate its effectiveness in dealing with multiple pro-

tected attributes simultaneously.

4 EVALUATION

In this section, we describe the evaluation design and propose our

research questions.

4.1 Benchmark Datasets

We consider five representative benchmark datasets with different

protected attributes (as shown in Table 1). The five datasets cover

financial, social, and medical application domains. They have been

the most widely-adopted datasets in the fairness research [26, 28,

29, 47, 58, 78] and integrated in the IBM AIF360 toolkit [22]. The

number of datasets that we use aligns with the fairness literature,

as previous work [47] points out that 90% of the fairness research

uses no more than three datasets. Next, we introduce each dataset

briefly.

• Adult [6, 39] dataset is used to predict whether individuals have

annual income over $50K based on their demographic and finan-

cial information.

• Compas [4] dataset is used to predict whether defendants will

be re-offended within two years based on their demographic

information and criminal histories.

• German [1, 39] dataset is used to predict credit risk levels of

people based on their demographic and credit information.

• Bank [2, 39] dataset is used to predict whether clients will sub-

scribe a term deposit based on their demographic, financial, and

social information.

1125

MAAT: A Novel Ensemble Approach to Addressing Fairness and Performance Bugs for Machine Learning Software ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Table 1: Benchmark datasets.

Name Protected attribute(s) #Features Favorable label Majority label Size

Adult Sex, Race 14 1 (income > 50K) 0 (75.2%) 45,222

Compas Sex, Race 10 0 (no recidivism) 0 (54.5%) 6,167

German Sex 20 1 (good credit) 1 (70.0%) 1,000

Bank Age 20 1 (subscriber) 0 (87.3%) 30,488

Mep Race 41 1 (utilizer) 0 (82.8%) 15,830

• Mep [3] dataset is used to predict health care needs of individuals

based on how Americans pay for medical care, health insurance,

and out-of-pocket spending.

We covert the five datasets to nine benchmark tasks. First, we

consider one protected attribute at a time, thus having seven uni-

attribute tasks (e.g., Adult-Sex and Adult-Race). Second, we consider

more than one protected attribute at the same time, thus having

two multi-attribute tasks (i.e., Adult and Compas).

4.2 Existing Methods

We use five existing bias mitigation methods for comparison. On the

one hand, we consider three state-of-the-art methods proposed in

the ML community: Reweighing (REW) [49], Adversarial Debiasing

(ADV) [77], and Reject Option Classification (ROC) [51]. They have

been integrated into the IBMAIF360 toolkit [22] andwidely adopted

in previous SE studies [25, 29, 47]. On the other hand, we employ

two state-of-the-art methods recently proposed in SE venues: Fair-

way [29] at ESEC/FSE 2020 and Fair-SMOTE [28] at ESEC/FSE

2021. The five methods cover pre-processing, in-processing, post-

processing, and ensemble bias mitigation methods. Next, we intro-

duce each method briefly.

• REW [49] is a pre-processing method that calculates weights for

training samples in each (group, label) combination.

• ADV [77] is an in-processing method that uses adversarial tech-

niques to reduce evidence of the protected attribute in predictions

while simultaneously maximizing ML performance.

• ROC [51] is a post-processing method that targets predictions

with high uncertainty and tends to assign favorable outcomes to

the unprivileged and unfavorable outcomes to the privileged.

• Fairway [29] combines pre- and in-processing techniques. First,

it removes ambiguous data points from training data via situa-

tion testing. Second, it employs multi-objective optimization to

improve fairness while maximizing ML performance.

• Fair-SMOTE [28] combines two pre-processing strategies. First,

it generates new data points to make the numbers of training

data in different subgroups equal. Second, it removes ambiguous

data points from training data like Fairway.

4.3 Metrics and Measurements

We evaluate MAAT and existing methods in terms of 15 fairness-

performance measurements, i.e., combinations of three fairness

metrics and five ML performance metrics. In this section, we first

introduce the fairness and ML performance metrics, and then de-

scribe how to measure the fairness-performance trade-off.

4.3.1 Fairness metrics. To measure software bias, we use group

fairness metrics that are widely adopted in the literature [25, 26, 28,

29, 47, 78]. Let 𝐴 be a protected attribute, with 1 as the privileged

group and 0 the unprivileged group; let 𝑌 be the original class label

and 𝑌 the predicted label, with 1 as the favorable class and 0 the

unfavorable class; let 𝑃 denote the probability.

• SPD (Statistical Parity Difference) measures the difference in

probabilities of favorable outcomes obtained by privileged and

unprivileged groups:

𝑆𝑃𝐷 = 𝑃 [𝑌 = 1|𝐴 = 0] − 𝑃 [𝑌 = 1|𝐴 = 1] . (2)

• AOD (Average Odds Difference) measures the average of the

false-positive rate difference and the true-positive rate difference

between privileged and unprivileged groups:

𝐴𝑂𝐷 =

1

2
(|𝑃 [𝑌 = 1|𝐴 = 0, 𝑌 = 0] − 𝑃 [𝑌 = 1|𝐴 = 1, 𝑌 = 0] |

+ |𝑃 [𝑌 = 1|𝐴 = 0, 𝑌 = 1] − 𝑃 [𝑌 = 1|𝐴 = 1, 𝑌 = 1] |) .

(3)

• EOD (Equal Opportunity Difference) measures the true-positive

rate difference between privileged and unprivileged groups:

𝐸𝑂𝐷 = 𝑃 [𝑌 = 1|𝐴 = 0, 𝑌 = 1] − 𝑃 [𝑌 = 1|𝐴 = 1, 𝑌 = 1] . (4)

There is another widely-adopted metric called Disparate Im-

pact (DI). Like SPD, DI compares the probabilities of favorable out-

comes in privileged and unprivileged groups. Specifically, DI com-

putes the ratio of the two probabilities, while SPD computes their

difference. Between SPD and DI, we follow previous work [26, 47]

to use only SPD.

For all the fairness metrics, we use their absolute values. In this

way, these metrics suggest the greatest fairness when they equal to

0, and larger values indicate more bias.

4.3.2 Performance metrics. To measure ML performance, we use

traditional classification metrics, including precision, recall, F1-

score, as well as accuracy.

For a given class, precision is the proportion of samples predicted

as this class that actually belong to it; recall is the proportion of

samples belonging to this class that are predicted as it; F1-score

is the harmonic mean of precision and recall. Following previous

work in SE [32, 60, 61], we report the macro-average values for

precision, recall, and F1-score to enable quick comparison of the

overall performance over favorable and unfavorable classes. Specifi-

cally, we first calculate precision, recall, and F1-score for each class,

and then average the results of the two classes.

Accuracy is the most widely-adopted metric in the fairness liter-

ature [25, 26, 28, 47, 49, 78], which measures how often a method

makes the correct prediction. However, it is often criticized as not

being suitable for the imbalanced class distribution, because it is

1126

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Zhenpeng Chen, Jie M. Zhang, Federica Sarro, Mark Harman

easy for an ML model to obtain a high accuracy just by predicting

all samples as the majority class in such a distribution. Consider-

ing that some benchmark datasets (e.g., the Bank dataset) have an

imbalanced class distribution, we use another metric calledMCC

(Matthews Correlation Coefficient), to mitigate the threat of accu-

racy. MCC has been demonstrated to be suitable for dealing with im-

balanced scenarios [35] and widely adopted in SE research [64, 75].

It is calculated as:

𝑀𝐶𝐶 =

𝑇𝑃 ×𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√︁
(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁)

, (5)

where TP, TN, FP, and FN denote the numbers of true positives,

true negatives, false positives, and false negatives, respectively.

For all the five metrics, larger values indicate better ML perfor-

mance. The value of MCC is between -1 and 1, where 1 indicates a

perfect prediction, 0 no better than random prediction, and -1 total

disagreement with observation; the values of other four metrics are

between 0 and 1. By default, we use performance to refer to all the

five metrics, and report the overall results for them.

4.3.3 Fairness-performance trade-off measurements. To compare

the fairness-performance trade-off of bias mitigation methods, we

adopt Fairea [47], a benchmarking tool proposed at ESEC/FSE 2021,

which can classify the trade-off effectiveness of these methods into

different levels. Specifically, it works as follows:

(1) Creation of trade-off baseline: Fairea constructs a trade-off

baseline using the performance and bias (measured by the afore-

mentioned metrics) of the original model and a series of pseudo

models generated by randomly mutating model predictions (by

replacing them with the majority class of data). Fairea considers

different mutation degrees (i.e., the fraction of chosen predictions;

10%, 20%, ..., 100%) to obtain a series of pseudo models. The core

insight of Fairea is that when it mutates the original model into a

random guessing model gradually, the fairness will be improved

as the predictive performance is equally worse in privileged and

unprivileged groups. As any reasonable bias mitigation methods

are expected to surpass these naive mutated models, Fairea uses

them as the trade-off baseline.

(2) Division of effectiveness levels: The baseline classifies bias

mitigation methods into five levels of trade-off effectiveness. A bias

mitigation method falls in win-win trade-off if it improves both ML

performance and fairness compared to the original model. On the

contrary, if a method reduces both, it belongs to lose-lose trade-off.

If a method improves ML performance but reduces fairness, it falls

in inverted trade-off. There are another two levels of trade-off where

methods reduce ML performance but improve fairness. Specifically,

if a method achieves a better trade-off than the baseline, it belongs

to good trade-off ; otherwise, it falls in poor trade-off.

In the original paper [47], Fairea is applied to only SPD-accuracy

and AOD-accuracy measurements. In this work, we extend our eval-

uation to 15 fairness-performance measurements, i.e., combinations

of three fairness metrics and five ML performance metrics.

4.4 Experimental Settings

We describe the experimental settings in details to ensure the re-

producibility of this work.

Implementation of datasets. As the five benchmark datasets have

been integrated in the IBMAIF360, we use them by directly invoking

off-the-shelf APIs provided by this toolkit. In addition, we follow

previous work [28, 29, 47] to normalize all the feature values to be

between 0 and 1.

Implementation of bias mitigation. For each benchmark task, we

train the original models using three ML algorithms that are widely

adopted in the fairness literature: Logistic Regression (LR) [25, 28,

29, 47, 78], Support Vector Machine (SVM) [25, 28, 47], and Random

Forest (RF) [25, 28, 78]. Following previous work [28, 47, 78], we use

the default configuration provided by the scikit-learn library [16]

to implement each ML algorithm. We apply MAAT and existing

bias mitigation methods to the original models, respectively. We

apply REW, ADV, and ROC based on the IBM AIF360 [14]; we

apply Fairway and Fair-SMOTE based on the code released by their

authors [10, 12]. The experiments are repeated 50 times. Each time,

we shuffle the dataset and randomly split it into 70% training data

and 30% test data.

Implementation of Fairea. We adopt Fairea using the code re-

leased by its authors [13]. We create the trade-off baseline for each

(benchmark task, ML algorithm, fairness-performance measurement)

combination. Specifically, we train the original model 50 times;

each time, based on the original model, we repeat the mutation

procedure 50 times for each mutation degree. Finally, we construct

the baseline using the mean result of the multiple runs, as suggested

by Fairea [47].

Experimental environment. The experiments are implemented

with Python 3.7.11 and TensorFlow 2.6.0, and executed on a Ubuntu

16.04 LTS with 128GB RAM, 2.3 GHz Intel Xeon E5-2653 v3 Dual

CPU and two NVidia Tesla M40 GPUs.

4.5 Research Questions

We evaluate MAAT via answering the following research questions.

• RQ1 (Trade-off effectiveness):What fairness-performance trade-

off does MAAT achieve? This RQ compares MAAT with existing

bias mitigation methods by analyzing which trade-off effective-

ness levels they belong to overall according to the benchmarking

tool Fairea [47].

• RQ2 (Applicability): How well does MAAT apply to different

ML algorithms, decision tasks, and fairness-performance measure-

ments? In addition to the overall effectiveness, we further analyze

the effectiveness of MAAT on different ML algorithms, decision

tasks, and measurements to evaluate its applicability.

• RQ3 (Influence of fairness and performance models): How

do different fairness models and performance models affect MAAT?

RQ1 and RQ2 evaluate MAAT with the default fairness model

and performance model. In this RQ, we adopt different fairness

models and performance models to investigate the impacts of

the two key components on MAAT.

• RQ4 (Influence of combination strategies): How do different

combination strategies affect MAAT? We use averaging, a common

ensemble strategy, as the default combination strategy of MAAT.

In this RQ, we investigate other combination strategies to provide

implications for further improvement of MAAT.

• RQ5 (Multiple protected attributes): Is MAAT effective when

dealing with multiple protected attributes at the same time? In

1127

MAAT: A Novel Ensemble Approach to Addressing Fairness and Performance Bugs for Machine Learning Software ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Figure 2: (RQ1) Effectiveness level distributions ofMAAT and

existing methods in uni-attribute benchmark tasks. Overall,

MAAT achieves the best trade-off, with 92.2% of the mitiga-

tion cases falling in good or win-win trade-off.

RQs1∼4, we consider one protected attribute at a time for ease

of comparison with previous work [25, 26, 29, 47, 78], because

little previous work supports multiple attributes [28]. However,

real-world software systems may need to consider multiple pro-

tected attributes at the same time. This RQ investigates whether

MAAT provides an effective solution to such common but often

overlooked application scenarios (i.e., multi-attribute tasks).

5 RESULTS

In this section, we answer our RQs based on experimental results.

5.1 RQ1: Trade-off Effectiveness

This RQ evaluates the effectiveness of MAAT and existing meth-

ods in seven uni-attribute benchmark tasks. In each task, each

method is applied with three ML algorithms 50 times. We treat each

single run as an individual mitigation case. As a result, we have

6×7×3×50=6,300 cases in total. We answer RQ1 based on them.

First, we compare MAAT and existing methods in terms of the ef-

fectiveness levels classified by Fairea. Figure 2 shows the results. We

observe that MAAT achieves good or win-win trade-off (i.e., beat-

ing the trade-off baseline constructed by Fairea) in the most cases,

accounting for 92.2%. In contrast, the corresponding proportions of

REW, ADV, ROC, Fairway, and Fair-SMOTE are 80.0%, 33.3%, 66.7%,

69.8%, and 33.3%, respectively. Moreover, MAAT achieves poor or

lose-lose trade-off in much fewer cases (only 5.4%) than existing

methods. For example, Fair-SMOTE suffers from poor or lose-lose

trade-off in 40.6% of the cases, about seven times more than MAAT.

Then, we dive deeper to investigate the reason behind the ef-

fectiveness of MAAT, by analyzing its impact on fairness and ML

performance, respectively. To this end, for each (task, ML algorithm,

fairness/performance metric) combination scenario, we compare

Table 2: (RQ1) Proportions of scenarios where each method

significantly improves fairness and decreases performance.

MAAT significantly improves fairness in 96.8% of the scenar-

ios, without decreasing ML performance too much.

REW ADV ROC Fairway Fair-SMOTE MAAT
Fairness ↑ 87.3% 33.3% 66.7% 69.8% 33.3% 96.8%

Performance ↓ 42.9% 51.4% 76.2% 61.9% 48.6% 44.8%

the metric values of the 50 original models and the 50 models af-

ter applying MAAT. We use the non-parametric Mann Whitney

U-test [57] (which suits our purpose well as it does not assume

normality) to test whether the fairness/performance is significantly

improved/decreased. The fairness/performance change is consid-

ered statistically significant, only if the 𝑝-value of the computed

statistic is lower than 0.05. We also compare the original models

with the models applied existing bias mitigation methods. For each

method, we calculate the proportions of scenarios where it signifi-

cantly improves fairness and decreases performance, respectively.

Table 2 presents the results. We observe that MAAT significantly

improves fairness in 96.8% of the scenarios, while existing methods

are in between 33.3% and 87.3%. Moreover, MAAT significantly de-

creases ML performance in 44.8% of the scenarios, only 1.9% more

than the current best alternative (42.9%). In summary, the effective-

ness of MAAT in fairness-performance trade-off is because that

compared to existing methods, MAAT significantly improves fair-

ness in much more scenarios without decreasing ML performance

too much.

Ans. to RQ1: MAAT surpasses the trade-off baseline in 92.2%

of the overall cases evaluated, 12.2 percentage points more than

the best technique currently available. This is because MAAT

can significantly improve fairness in 96.8% of the scenarios,

without decreasing ML performance too much.

5.2 RQ2: Applicability

To evaluate the applicability of MAAT, we further compare MAAT

with existing methods on different ML algorithms, decision tasks,

and fairness-performance measurements. For ease of illustration,

we use the proportion of mitigation cases that surpass the trade-

off baseline constructed by Fairea (i.e., falling in good or win-win

trade-off) as the effectiveness indicator.

Figures 3(a), (b), and (c) show the results organized by different

ML algorithms, decision tasks, and measurements, respectively. We

observe that MAAT surpasses the trade-off baseline in a larger

proportion of cases than existing methods on all the ML algorithms,

tasks, and measurements that we consider.

In addition, compared to existing methods, MAAT shows wide

effectiveness. From Figure 3, we observe that existingmethods show

unstable effectiveness across different decision tasks. For example,

in the Compas-Sex task, REW and Fair-SMOTE beat the trade-off

baseline in 95.3% and 99.6% of the cases respectively, while in the

Adult-Sex task, the proportion obtained by the two methods is only

56.2% and 49.0%. In contrast, MAAT beats the trade-off baseline in

99.9% and 95.3% of the cases in Compas-Sex and Adult-Sex tasks,

with a difference of only 4.6%. MAAT also works well for small

1128

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Zhenpeng Chen, Jie M. Zhang, Federica Sarro, Mark Harman

b.pdf

(a) Proportions of cases beating the baseline for different ML algorithms (b) Proportions of cases beating the baseline for different tasks

(c) Proportions of cases beating the baseline for different fairness-performance measurements

0%

20%

40%

60%

80%

100%

LR SVM RF

REW

ADV

ROC

Fairway

Fair-SMOTE

MAAT

0%

20%

40%

60%

80%

100%

Adult-Sex Adult-Race Compas-Sex Compas-Race German-Sex Bank-Age Mep-Race

REW

ADV

ROC

Fairway

Fair-SMOTE

MAAT

0%

20%

40%

60%

80%

100%

SPD-Accuracy SPD-Precision SPD-Recall SPD-F1 SPD-MCC AOD-Accuracy AOD-Precision AOD-Recall AOD-F1 AOD-MCC EOD-Accuracy EOD-Precision EOD-Recall EOD-F1 EOD-MCC

REW

ADV

ROC

Fairway

Fair-SMOTE

MAAT

Figure 3: (RQ2) Proportion of mitigation cases that beat the trade-off baseline, organized by different models (a), benchmark

tasks (b), and fairness-performance measurements (c). MAAT surpasses the trade-off baseline in a larger proportion of cases

than existing methods on all the ML algorithms, tasks, and measurements that we consider.

datasets, although it employs a undersampling strategy. For the

smallest task that we consider (i.e., the German-Sex task), only

34 samples (a = 24, b = 10) out of the 1,000 samples are removed

by MAAT, because the data bias in the original training data is

relatively minor. Since MAAT mitigates bias while retaining the

majority of the data, it beats the trade-off baseline in 73.2% of the

cases in the German-Sex task, surpassing existing methods.

Ans. to RQ2: The superiority of MAAT over the state-of-the-

art holds on all the ML algorithms, decision tasks, and fairness-

performance measurements that we study.

5.3 RQ3: Influence of Fairness and Performance
Models

This RQ explores the impact of different fairness models and per-

formance models on the effectiveness of MAAT.

5.3.1 Fairness models. Existing bias mitigation methods (described

in Section 4.2) have been demonstrated to be able to improve fair-

ness [25, 28, 29]. In this section, we use them to obtain the fairness

model and compare with our training data debugging technique.

MAAT requires the fairness model to produce the probability vector,

but the IBM AIF360 toolkit does not provide this API for ADV and

ROC. Therefore, here, we employ REW, Fairway, and Fair-SMOTE

for experiments. As a result, we have three variant methods, de-

noted as M-REW, M-Faiway, and M-Fair-SMOTE, which differ from

MAAT only in the fairness model. We compare them with their

original versions and the default setting of MAAT. To ease the com-

parison, we use the proportion of cases that surpass the trade-off

baseline as the effectiveness indicator.

Table 3 presents the results. Compared to their original versions,

M-REW,M-Faiway, andM-Fair-SMOTE achieve 4.0%, 4.1%, and 2.2%

more cases beating the trade-off baseline respectively, indicating

the potential of MAAT in improving the trade-off effectiveness

of existing bias mitigation methods. Then we compare the three

Table 3: (RQ3) Proportions of cases beating the trade-off base-

line, achieved by existing bias mitigationmethods, their com-

binations with MAAT, and the default setting of MAAT. The

results show that the ensemble approach of MAAT can im-

prove the trade-off for each method, but the default setting

of MAAT still performs the best.

REW Fairway
Fair-

SMOTE

M-

REW

M-

Fairway

M-Fair-

SMOTE
MAAT

80.0% 61.7% 41.7% 84.0% 65.8% 44.0% 92.2%

variants with the default setting of MAAT.We find that our training

data debugging technique is more effective in fairness-performance

trade-off than existing methods under the framework of MAAT,

although it is simpler than them. It achieves 8.2%more cases beating

the trade-off baseline than the best variant (i.e., 92.2% vs. 84.0%). It

is not the first time in SE research to observe that simple techniques

produce better results [42, 63, 82]. It is important to stress that

the point is not to deprecate the existing advanced techniques.

We would like to demonstrate that, for MAAT, the training data

debugging technique proposed by us is more effective.

5.3.2 Performance models. To investigate the impact of the perfor-

mance model on MAAT, we use different ML algorithms to obtain

different performance models, while keeping the fairness model

unchangeable. Specifically, we take the fairness model trained us-

ing the LR algorithm as the example, and change the performance

model with the models trained using LR, SVM, RF, and two other

very popular ML algorithms, i.e., Naive Bayes (NB) and Decision

Tree (DT). Each variant ofMAAT is evaluated on seven uni-attribute

tasks 50 times. We calculate the average of ML performance of each

performance model and the trade-off effectiveness (indicated as

the proportion of cases beating the baseline) of the corresponding

variant of MAAT over the 50 runs.

1129

MAAT: A Novel Ensemble Approach to Addressing Fairness and Performance Bugs for Machine Learning Software ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

20%

30%

40%

50%

60%

70%

80%

90%

100%

LR SVM RF NB DT

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

LR SVM RF NB DT

(a) Accuracy of different

performance models

(b) Proportions of cases beating the trade-off

baseline, for different variants of MAAT

Figure 4: (RQ3) Impact of the performance model on MAAT.

MAAT tends to have better effectiveness with more accurate

performance models.

Figure 4 shows the results. Due to space limit, we show only the

accuracy of these performance models in Figure 4(a).2 We observe

that the performance models trained using the NB and DT algo-

rithms exhibit poor ML performance compared to LR, RF, and SVM;

correspondingly, the variants of MAAT that use the two perfor-

mance models yield lower proportions (35.3% and 54.6%) of cases

surpassing the trade-off baseline than the others (96.1%, 96.6%, and

97.0%). It indicates that MAAT tends to have better effectiveness

with more accurate performance models.

Ans. to RQ3: Our training data debugging technique is more

effective than existing bias mitigation methods in improving

fairness-performance trade-off under the framework of MAAT.

In addition, MAAT tends to have better effectiveness with more

accurate performance models.

5.4 RQ4: Influence of Combination Strategies

This RQ investigates the impact of different combination strate-

gies on the effectiveness of MAAT. To this end, we employ 11

strategies, i.e., 0-1, 0.1-0.9, ..., 0.9-0.1, and 1-0, which combine the

output probability vectors of the performance model ([𝑝0𝑝 , 𝑝1𝑝])

and the fairness model ([𝑝0𝑓 , 𝑝1𝑓]) in different proportions. For

example, the 0.1-0.9 strategy calculates the final probability vector

as 0.1 ∗ [𝑝0𝑝 , 𝑝1𝑝] + 0.9 ∗ [𝑝0𝑓 , 𝑝1𝑓]. We use the proportion of cases

surpassing the trade-off baseline as the effectiveness indicator.

Figure 5 presents the result for each strategy in each benchmark

task and over all tasks. From Figure 5(a), we observe that different

benchmark tasks have different optimal strategies. For example, for

the Adult-Sex task, 0.8-0.2 is the optimal strategy, with 99.7% of

mitigation cases beating the baseline; for the Adult-Race task, 0.6-

0.4 is the optimal, with 95.9% of cases beating the baseline. Overall,

the averaging strategy (i.e., 0.5-0.5) that we use as the default setting

shows the best effectiveness, as shown in Figure 5(b).

We then compare the 0.5-0.5 strategy (i.e., MAAT) with the 0-1

strategy (i.e., the fairness model). We find that the fairness model

itself improves fairness in 81.0% of the cases studied (96.8% for

2The figure for all the performance metrics can be found in our repository [18].

MAAT) and decreases performance in 65.7% of the cases (44.8% for

MAAT). As a result, the fairness model is not as effective as MAAT,

beating the trade-off baseline in only 79.0% of the cases (92.2% for

MAAT). This finding supports the need for the ensemble approach.

The results provide the following implications for the adoption

of MAAT in real-world applications: (1) The ensemble strategy in

MAAT can be configured to balance the improvements between

fairness and performance via adjusting the combination strategy.

In fact, this is one advantage of our novel fairness-performance

ensemble approach. Indeed, in practice software engineers may

have different requirements regarding fairness and performance.

They could try different strategies, and compare the effectiveness

of these strategies on validation data to find the optimal one for

them. Although the simple linear combination that we use can

outperform existing methods, we still encourage future work to

try more advanced strategies to further improve MAAT. (2) For the

applications that do not have enough validation data for strategy

selection, the default averaging strategy is a safe option.

Ans. to RQ4: Different bias mitigation tasks have different

optimal combination strategies. Overall, the averaging strategy

that we adopt by default achieves the best effectiveness.

5.5 RQ5: Multiple Protected Attributes

The first four RQs explore bias mitigation with a single protected

attribute, which is the focus of the current fairness literature [25, 26,

29, 47, 78]. Nevertheless, bias mitigation with multiple protected

attributes is a demanding task. Therefore, this RQ explores the

effectiveness of MAAT with multiple protected attributes, and com-

pares it with Fair-SMOTE [28]. According to Chakraborty et al. [28],

Fair-SMOTE is the only approach that reduces bias for multiple

protected attributes at the same time.

We compare MAAT and Fair-SMOTE in twomulti-attribute tasks

(i.e., Adult and Compas). For MAAT, we train a fairness model for

each protected attribute, and then combine the fairness models with

the performance model; for Fair-SMOTE, we balance the training

data with respect to the class and each protected attribute by data

generation, as suggested by its authors [28]. In each task, each

method is implemented with LR, SVM, and RF 50 times. As a result,

we have 2×2×3×50=600 mitigation cases in total. We answer RQ5

based on these cases.

We compare MAAT and Fair-SMOTE in terms of the trade-off

effectiveness levels classified by Fairea. Figure 6 shows the results

for each protected attribute in each task. On the one hand, MAAT

achieves good or win-win trade-off (i.e., beating the trade-off base-

line constructed by Fairea) in a larger proportion of the studied

cases (MAAT: 96.5% vs. Fair-SMOTE: 50.2%). The gap between the

two methods is particularly obvious in some tasks. For example, in

the Adult task, MAAT beats the baseline for race in 93.9% of the

cases, while Fair-SMOTE achieves it in only 1.7%. On the other hand,

MAAT achieves poor or lose-lose trade-off in fewer cases. Specifi-

cally, the proportion of cases falling in poor or lose-lose trade-off

achieved by MAAT ranges from 0.4% to 4.4%, while Fair-SMOTE is

from 7.7% to 69.6%.

1130

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Zhenpeng Chen, Jie M. Zhang, Federica Sarro, Mark Harman

(b) Overall proportions of cases beating the baseline,

for different combination strategies

(a) Proportions of cases beating the baseline, for different

combination strategies on each benchmark task

Figure 5: (RQ4) Impact of combination strategies on MAAT. Although different benchmark tasks have different optimal

strategies, the averaging strategy (i.e., 0.5-0.5 in the figure) achieves the best effectiveness overall.

49.8%

0.0%

68.6%

3.2%
6.0%

0.0%

3.9% 1.9%

7.9%

0.4%

1.0%

1.2%

7.8%
0.8%

2.8%
1.5%

18.8%

0.0%

28.8%

1.7%

1.7%

0.2%

2.1%
3.0%

12.8%

72.8%

1.0%

68.8%

77.1%

70.9%

84.3%

68.4%

10.6%

26.8%

0.7%

25.1%

7.3%

28.0%

6.9%

25.3%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fair-SMOTE MAAT Fair-SMOTE MAAT Fair-SMOTE MAAT Fair-SMOTE MAAT

Adult-Sex Adult-Sex Adult-Race Adult-Race Compas-

Sex

Compas-

Sex

Compas-

Race

Compas-

Race

Win-win

Good

Inverted

Poor

Lose-lose

Figure 6: (RQ5) Effectiveness level distributions of MAAT

and Fair-SMOTE in multi-attribute tasks. On average, MAAT

achieves good or win-win trade-off in a much larger pro-

portion of the mitigation cases than Fair-SMOTE (96.5% vs.

50.2%).

Ans. to RQ5:When there is more than one protected attribute,

MAAT still outperforms the state-of-the-art. Specifically, it

beats the trade-off baseline in 96.5% of the studied cases, 45.2

percentage points more than the state-of-the-art.

6 DISCUSSION

In this section, we discuss the advantages of MAAT and the threats

to the validity of our results.

6.1 Why MAAT?

Uncompromising. MAAT improves fairness significantly in 96.8%

of the scenarios studied, while not compromising ML performance

much. In other words, it is more effective in fairness-performance

trade-off than existing methods. The conclusion is supported by

an extensive evaluation on 15 fairness-performance measurements

and 9 decision tasks, which increases our confidence on the claim.

Widely applicable.MAAT can be easily adopted for differentML al-

gorithms, because it just debugs the training data to find and remove

bias, and does not rely on the internal logic of ML algorithms. In

contrast, there have been many techniques that tackle the fairness-

performance trade-off problem using optimization techniques dur-

ing the training process [52, 77]. These techniques need to design

different optimization strategies to align with the internal logic of

different ML algorithms, and thus are algorithm-specific. In addi-

tion, in Section 5.2, we show the wide effectiveness of MAAT across

different ML algorithms, decision tasks, and fairness-performance

measurements.

Versatile. The core idea of MAAT is task-independent, although

we evaluate it only in common classification tasks like previous

work [25, 26, 28, 29, 47, 78]. MAAT combines the performance

model and the fairness model obtained based on our training data

debugging technique. This idea can be directly applied to regression

tasks and even deep learning tasks (e.g., face recognition and text

classification), to have a broad impact on a variety of real-world

software systems.

Fast.MAAT is much faster, compared to the state-of-the-art ensem-

ble bias mitigation methods (i.e., Fairway and Fair-SMOTE). We use

the LR algorithm as the example. Table 4 shows the execution time

of the 50 runs of MAAT and the state-of-the-art methods with LR

for different benchmark tasks. On average, MAAT is 72 times faster

than Fairway and 195 times faster than Fair-SMOTE. It is reasonable

since Fairway needs much more time for multi-objective optimiza-

tion, while Fair-SMOTE spends a lot of time on data generation. In

contrast, MAAT is simple, fast, yet effective.

Overall, MAAT explores a new ensemble way to combine models

with different objectives (i.e., fairness and performance) to deal with

the trade-off between them, and an extensive evaluation demon-

strates the effectiveness of this new ensemble way. Our successful

practice of MAAT may also shed light on other trade-off prob-

lems in software development. For example, existing work [68]

demonstrated that the improvement of robustness, an important

1131

MAAT: A Novel Ensemble Approach to Addressing Fairness and Performance Bugs for Machine Learning Software ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Table 4: Execution time (in seconds) of Fairway, Fair-SMOTE,

and MAAT, for the LR algorithm. MAAT needs much less

execution time than Fairway and Fair-SMOTE.

Task Fairway Fair-SMOTE MAAT

Adult-Sex 5,946 8,553 77

Adult-Race 6,169 16,337 79

Compas-Sex 1,428 2,139 20

Compas-Race 1,594 1,641 20

German-Sex 91 126 5

Bank-Age 3,192 20,413 47

Mep-Race 1,760 5,219 31

non-functional property that has attracted enormous software test-

ing efforts [38, 44, 72], often leads to a reduction of ML performance,

thusmaking them conflicting software objectives. To achieve a good

trade-off between robustness and ML performance, researchers can

borrow the insight of MAAT to design robustness-performance

ensemble learning, which combines models that use robustness and

ML performance as respective optimization objectives.

6.2 Threats to Validity

Selection of tasks. The choice of benchmark tasks may be a threat

to validity of our results. To mitigate this threat, we use nine bench-

mark tasks that have been widely adopted in the fairness literature

[26, 28, 29, 47, 58, 78] and integrated in the well-known AIF360

toolkit, covering financial, social, and medical application domains.

The use of widely-studied tasks guarantees a fair comparison with

the state-of-the-art.

Selection of existing methods. For a paper that proposes a new
bias mitigation approach, it is sufficient and common to demon-

strate an improvement over the state-of-the-art. To this end, we use

representative bias mitigation methods from the ML and SE com-

munities, covering pre-processing, in-processing, post-processing,

and ensemble methods. These methods have been demonstrated to

be state-of-the-art in addressing fairness bugs [25, 28, 29].

Selection of ML algorithms. Although MAAT can apply to both

classic ML algorithms and Deep Learning (DL) algorithms, we use

classic ML algorithms in the evaluation for four reasons: (1) The

most widely-adopted datasets for fairness research (listed in Table

1) are tabular data, while DL is more suitable for complex unstruc-

tured data, e.g., text and images [65]. (2) These widely-adopted

datasets are relatively small in size (e.g., German dataset has 1,000

samples), where DL may easily overfit due to its nature of complex-

ity. (3) Decision-making scenarios that demand fairness often also

require explainability, while low explainability is a big disadvantage

of DL. (4) State-of-the-art group fairness work [25, 26, 28, 29, 47, 78]

also uses classic ML algorithms. In the future, one could replicate

our work with more ML algorithms.

Selection of evaluation criteria. The measurements that we use

may also be a threat. To alleviate this threat, we use 15 fairness-

performance measurements, the most in the literature to date. In

the future, with more fairness metrics being proposed, one could

replicate this work with more evaluation criteria.

Implementation of existing methods. To mitigate the threat in

implementation of existing methods, we shared our code with the

authors of Fairway [29] and Fair-SMOTE [28]. Their first author

checked and confirmed the soundness of our source code.

Access to protected attributes. Studying group fairness requires

access to the protected attributes of interest, but in practice, this

information might be unavailable due to the recent released reg-

ulations such as GDPR (General Data Protection Regulation) [71].

GDPR requires users’ consent for collecting and using their per-

sonal information. However, over 90% of users consent to legal

terms and service conditions without reading them [59]. Moreover,

GDPR applies to only Europe. Consequently, protected attributes

are still prevalent in the training data that many companies collect.

In addition, simulation has been commonly used in companies [37]

to generate data, which may contain protected attributes. These can

explain why almost all the recent fairness papers [19, 20, 25, 26, 28ś

30, 43, 47, 69, 78, 80] are still working on fairness issues based on

protected attributes.

7 CONCLUSION

This paper presents MAAT, a widely applicable, versatile, and fast

fairness-performance ensemble approach, which improves fairness-

performance trade-off for ML software. MAAT first trains individ-

ual models optimized for fairness and ML performance, and then

synthesizes their outcomes to make the final decision. An exten-

sive evaluation demonstrates that MAAT outperforms existing bias

mitigation methods from the ML and SE communities. Moreover,

the superiority of MAAT over the state-of-the-art holds on all the

software decision tasks, ML algorithms, and fairness-performance

measurements that we study. Furthermore, the successful practice

of MAAT opens up to further opportunities for software engineers

dealing with other conflicting objectives in software development.

ACKNOWLEDGMENTS

Zhenpeng Chen, Federica Sarro, and Mark Harman are supported

by the ERC Advanced Grant under the grant number 741278 (EPIC:

Evolutionary Program Improvement Collaborators). Jie M. Zhang is

partially supported by the UKRI Trustworthy Autonomous Systems

Node in Verifiability, with Grant Award Reference EP/V026801/2.

REFERENCES
[1] 1994. The German Credit dataset. https://archive.ics.uci.edu/ml/datasets/Statlog+

%28German+Credit+Data%29. Retrieved on November 25, 2021.
[2] 2014. The Bank dataset. https://archive.ics.uci.edu/ml/datasets/Bank+Marketing.

Retrieved on November 25, 2021.
[3] 2015. The Mep dataset. https://meps.ahrq.gov/mepsweb/data_stats/download_

data_files_detail.jsp?cboPufNumber=HC-181. Retrieved on November 25, 2021.
[4] 2016. The Compas dataset. https://github.com/propublica/compas-analysis.

Retrieved on November 25, 2021.
[5] 2016. Machine bias. https://www.propublica.org/article/machine-bias-risk-

assessments-in-criminal-sentencing. Retrieved on November 25, 2021.
[6] 2017. The Adult Census Income dataset. https://archive.ics.uci.edu/ml/datasets/

adult. Retrieved on November 25, 2021.
[7] 2017. Semantics derived automatically from language corpora contain human-

like biases. https://www.science.org/doi/10.1126/science.aal4230. Retrieved on
November 25, 2021.

[8] 2018. FATE: Fairness, Accountability, Transparency, and Ethics in AI. https:
//www.microsoft.com/en-us/research/theme/fate/. Retrieved November 25, 2021.

[9] 2018. Study finds gender and skin-type bias in commercial artificial-intelligence
systems. https://news.mit.edu/2018/study-finds-gender-skin-type-bias-artificial-
intelligence-systems-0212. Retrieved on November 25, 2021.

[10] 2020. The GitHub repository of Fairway. https://github.com/joymallyac/Fairway.
Retrieved on November 25, 2021.

1132

https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-181
https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-181
https://github.com/propublica/compas-analysis
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://www.science.org/doi/10.1126/science.aal4230
https://www.microsoft.com/en-us/research/theme/fate/
https://www.microsoft.com/en-us/research/theme/fate/
https://news.mit.edu/2018/study-finds-gender-skin-type-bias-artificial-intelligence-systems-0212
https://news.mit.edu/2018/study-finds-gender-skin-type-bias-artificial-intelligence-systems-0212
https://github.com/joymallyac/Fairway

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Zhenpeng Chen, Jie M. Zhang, Federica Sarro, Mark Harman

[11] 2021. Facebook says it has a tool to detect bias in its artificial intelli-
gence. https://qz.com/1268520/facebook-says-it-has-a-tool-to-detect-bias-in-
its-artificial-intelligence/. Retrieved November 25, 2021.

[12] 2021. The GitHub repository of Fair-SMOTE. https://github.com/joymallyac/Fair-
SMOTE/tree/master/Fair-SMOTE. Retrieved on November 25, 2021.

[13] 2021. The GitHub repository of Fairea. https://github.com/maxhort/Fairea.
Retrieved on November 25, 2021.

[14] 2021. IBM AI Fairness 360. https://aif360.mybluemix.net. Retrieved on November
25, 2021.

[15] 2021. Microsoft AI principles. https://www.microsoft.com/en-us/ai/responsible-
ai?activetab=pivot1%3aprimaryr6. Retrieved November 25, 2021.

[16] 2021. Scikit-learn. https://scikit-learn.org. Retrieved on November 25, 2021.
[17] 2021. When good algorithms go sexist: Why and how to advance AI gender

equity. https://ssir.org/articles/entry/when_good_algorithms_go_sexist_why_
and_how_to_advance_ai_gender_equity. Retrieved on November 25, 2021.

[18] 2022. Replication package. https://github.com/chenzhenpeng18/FSE22-MAAT.
[19] Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha.

2019. Black box fairness testing of machine learning models. In Proceedings of the
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2019. 625ś635.

[20] Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2018. Themis:
Automatically testing software for discrimination. In Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2018. 871ś875.

[21] Muhammad Hilmi Asyrofi, Zhou Yang, Imam Nur Bani Yusuf, Hong Jin Kang,
Ferdian Thung, and David Lo. 2021. BiasFinder: Metamorphic test generation
to uncover bias for sentiment analysis systems. IEEE Transactions on Software
Engineering (2021).

[22] Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie
Houde, Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta,
Aleksandra Mojsilovic, Seema Nagar, Karthikeyan Natesan Ramamurthy, John T.
Richards, Diptikalyan Saha, Prasanna Sattigeri, Moninder Singh, Kush R. Varsh-
ney, and Yunfeng Zhang. 2019. AI fairness 360: An extensible toolkit for detecting
and mitigating algorithmic bias. IBM Journal of Research and Development 63,
4/5 (2019), 4:1ś4:15.

[23] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth.
2021. Fairness in criminal justice risk assessments: The state of the art. Sociological
Methods & Research 50, 1 (2021), 3ś44.

[24] Dheeraj Bhaskaruni, Hui Hu, and Chao Lan. 2019. Improving prediction fairness
via model ensemble. In Proceedings of the 31st IEEE International Conference on
Tools with Artificial Intelligence, ICTAI 2019. 1810ś1814.

[25] Sumon Biswas and Hridesh Rajan. 2020. Do the machine learning models on
a crowd sourced platform exhibit bias? An empirical study on model fairness.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2020. 642ś653.

[26] Sumon Biswas and Hridesh Rajan. 2021. Fair preprocessing: Towards understand-
ing compositional fairness of data transformers in machine learning pipeline. In
Proceedings of the 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2021. 981ś993.

[27] Yuriy Brun and Alexandra Meliou. 2018. Software fairness. In Proceedings of
the 2018 ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2018. 754ś759.

[28] Joymallya Chakraborty, Suvodeep Majumder, and Tim Menzies. 2021. Bias in
machine learning software: Why? How? What to do?. In Proceedings of the 29th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2021. 429ś440.

[29] Joymallya Chakraborty, Suvodeep Majumder, Zhe Yu, and Tim Menzies. 2020.
Fairway: A way to build fair ML software. In Proceedings of the 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020. 654ś665.

[30] Joymallya Chakraborty, Kewen Peng, and Tim Menzies. 2020. Making fair ML
software using trustworthy explanation. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2020. 1229ś
1233.

[31] Jason Chan and Jing Wang. 2018. Hiring preferences in online labor markets:
Evidence of a female hiring bias. Management Science 64, 7 (2018), 2973ś2994.

[32] Zhenpeng Chen, Yanbin Cao, Huihan Yao, Xuan Lu, Xin Peng, Hong Mei, and Xu-
anzhe Liu. 2021. Emoji-powered sentiment and emotion detection from software
developers’ communication data. ACM Transactions on Software Engineering and
Methodology 30, 2 (2021), 18:1ś18:48.

[33] Zhenpeng Chen, Jie M. Zhang, Max Hort, Federica Sarro, and Mark Harman.
2022. Fairness testing: A comprehensive survey and analysis of trends. CoRR
abs/2207.10223 (2022).

[34] Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and Mark Harman. 2022. A
comprehensive empirical study of bias mitigation methods for software fairness.
CoRR abs/2207.03277 (2022).

[35] Davide Chicco and Giuseppe Jurman. 2020. The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC genomics 21, 1 (2020), 1ś13.

[36] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. 2017.
Algorithmic decision making and the cost of fairness. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2017. 797ś806.

[37] William de Paula Ferreira, Fabiano Armellini, and Luis Antonio de Santa-Eulalia.
2020. Simulation in industry 4.0: A state-of-the-art review. Computers & Industrial
Engineering 149 (2020), 106868.

[38] Xiaoning Du, Yi Li, Xiaofei Xie, Lei Ma, Yang Liu, and Jianjun Zhao. 2020. Marble:
Model-based robustness analysis of stateful Deep learning systems. In Proceedings
of the 35th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2020. 423ś435.

[39] Dheeru Dua and Casey Graff. 2019. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml. University of California, Irvine, School of Information
and Computer Sciences.

[40] Anthony Finkelstein, Mark Harman, S. Afshin Mansouri, Jian Ren, and Yuanyuan
Zhang. 2008. łFairness analysisž in requirements assignments. In Proceedings of
the 16th IEEE International Requirements Engineering Conference, RE 2008. 115ś
124.

[41] Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. 2021.
The (im)possibility of fairness: Different value systems require different mecha-
nisms for fair decision making. Commun. ACM 64, 4 (2021), 136ś143.

[42] Wei Fu and Tim Menzies. 2017. Easy over hard: A case study on deep learning.
In Proceedings of the 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017. 49ś60.

[43] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness testing:
Testing software for discrimination. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017. 498ś510.

[44] Xiang Gao, Ripon K. Saha, Mukul R. Prasad, and Abhik Roychoudhury. 2020. Fuzz
testing based data augmentation to improve robustness of deep neural networks.
In Proceedings of the 42nd International Conference on Software Engineering, ICSE
2020. 1147ś1158.

[45] Max Hort, Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and Mark Harman.
2022. Bias mitigation for machine learning classifiers: A comprehensive survey.
CoRR abs/2207.07068 (2022).

[46] Max Hort and Federica Sarro. 2021. Did you do your homework? Raising aware-
ness on software fairness and discrimination. In Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2021.

[47] Max Hort, Jie M. Zhang, Federica Sarro, and Mark Harman. 2021. Fairea: A
model behaviour mutation approach to benchmarking bias mitigation methods.
In Proceedings of the 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Athens, ESEC/FSE
2021. 994ś1006.

[48] Vasileios Iosifidis, Besnik Fetahu, and Eirini Ntoutsi. 2019. FAE: A fairness-aware
ensemble framework. In Proceedings of the 2019 IEEE International Conference on
Big Data, IEEE BigData 2019. 1375ś1380.

[49] Faisal Kamiran and Toon Calders. 2011. Data preprocessing techniques for
classification without discrimination. Knowledge and Information Systems 33, 1
(2011), 1ś33.

[50] Faisal Kamiran, Toon Calders, and Mykola Pechenizkiy. 2010. Discrimination
aware decision tree learning. In Proceedings of the 10th IEEE International Confer-
ence on Data Mining, ICDM 2010. 869ś874.

[51] Faisal Kamiran, Asim Karim, and Xiangliang Zhang. 2012. Decision theory for
discrimination-aware classification. In Proceedings of the 12th IEEE International
Conference on Data Mining, ICDM 2012. 924ś929.

[52] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. 2012.
Fairness-aware classifier with prejudice remover regularizer. In Proceedings of the
European Conference on Machine Learning and Knowledge Discovery in Databases,
ECML/PKDD 2012. 35ś50.

[53] Patrik Joslin Kenfack, Adil Mehmood Khan, S.M. Ahsan Kazmi, Rasheed Hussain,
Alma Oracevic, and AsadMasood Khattak. 2021. Impact of model ensemble on the
fairness of classifiers in machine learning. In Proceedings of the 2021 International
Conference on Applied Artificial Intelligence, ICAPAI 2021. 1ś6.

[54] Lukas Kirschner, Ezekiel O. Soremekun, and Andreas Zeller. 2020. Debugging
inputs. In Proceedings of the 42nd International Conference on Software Engineering,
ICSE 2020. 75ś86.

[55] Chayakrit Krittanawong, Hafeez Ul Hassan Virk, Sripal Bangalore, Zhen Wang,
KippW Johnson, Rachel Pinotti, HongJu Zhang, Scott Kaplin, Bharat Narasimhan,
Takeshi Kitai, et al. 2020. Machine learning prediction in cardiovascular diseases:
a meta-analysis. Nature Scientific reports 10, 1 (2020), 1ś11.

[56] Ludmila I Kuncheva and Christopher J Whitaker. 2003. Measures of diversity in
classifier ensembles and their relationship with the ensemble accuracy. Machine
Learning 51, 2 (2003), 181ś207.

[57] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The Annals of
Mathematical Statistics (1947), 50ś60.

1133

https://qz.com/1268520/facebook-says-it-has-a-tool-to-detect-bias-in-its-artificial-intelligence/
https://qz.com/1268520/facebook-says-it-has-a-tool-to-detect-bias-in-its-artificial-intelligence/
https://github.com/joymallyac/Fair-SMOTE/tree/master/Fair-SMOTE
https://github.com/joymallyac/Fair-SMOTE/tree/master/Fair-SMOTE
https://github.com/maxhort/Fairea
https://aif360.mybluemix.net
https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1%3aprimaryr6
https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1%3aprimaryr6
https://scikit-learn.org
https://ssir.org/articles/entry/when_good_algorithms_go_sexist_why_and_how_to_advance_ai_gender_equity
https://ssir.org/articles/entry/when_good_algorithms_go_sexist_why_and_how_to_advance_ai_gender_equity
https://github.com/chenzhenpeng18/FSE22-MAAT
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

MAAT: A Novel Ensemble Approach to Addressing Fairness and Performance Bugs for Machine Learning Software ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

[58] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. 2021. A survey on bias and fairness in machine learning. Comput.
Surveys 54, 6 (2021), 115:1ś115:35.

[59] Jayashree Mohan, Melissa Wasserman, and Vijay Chidambaram. 2019. Analyz-
ing GDPR compliance through the lens of privacy policy. In Proceedings of the
Heterogeneous Data Management, Polystores, and Analytics for Healthcare - VLDB
2019 Workshops. 82ś95.

[60] Nicole Novielli, Fabio Calefato, Davide Dongiovanni, Daniela Girardi, and Filippo
Lanubile. 2020. Can we use SE-specific sentiment analysis tools in a cross-
platform setting?. In Proceedings of the 17th International Conference on Mining
Software Repositories, MSR 2020. 158ś168.

[61] Nicole Novielli, Daniela Girardi, and Filippo Lanubile. 2018. A benchmark study
on sentiment analysis for software engineering research. In Proceedings of the
15th International Conference on Mining Software Repositories, MSR 2018. 364ś375.

[62] Dino Pedreshi, Salvatore Ruggieri, and Franco Turini. 2008. Discrimination-aware
data mining. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2008. 560ś568.

[63] Chanathip Pornprasit and Chakkrit Tantithamthavorn. 2021. JITLine: A simpler,
better, faster, finer-grained just-in-time defect prediction. In Proceedings of the
18th IEEE/ACM International Conference on Mining Software Repositories, MSR
2021. 369ś379.

[64] Daniel Rodríguez, Israel Herraiz, Rachel Harrison, José Javier Dolado, and José C.
Riquelme. 2014. Preliminary comparison of techniques for dealing with imbalance
in software defect prediction. In Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, EASE 2014. 43:1ś43:10.

[65] Ravid Shwartz-Ziv and Amitai Armon. 2022. Tabular data: Deep learning is not
all you need. Information Fusion 81 (2022), 84ś90.

[66] Peter Sollich and Anders Krogh. 1995. Learning with ensembles: How overfitting
can be useful. Advances in Neural Information Processing Systems 8 (1995).

[67] Zeyu Sun, Jie M. Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020.
Automatic testing and improvement of machine translation. In Proceedings of the
42nd International Conference on Software Engineering, ICSE 2020. 974ś985.

[68] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. 2019. Robustness may be at odds with accuracy. In Proceedings
of the 7th International Conference on Learning Representations, ICLR 2019.

[69] Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. 2018. Automated
directed fairness testing. In Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering, ASE 2018. 98ś108.

[70] Inês Valentim, Nuno Lourenço, and Nuno Antunes. 2019. The impact of data
preparation on the fairness of software systems. In Proceedings of the 30th IEEE

International Symposium on Software Reliability Engineering, ISSRE 2019. 391ś401.
[71] Paul Voigt and Axel Von dem Bussche. 2017. The EU general data protection

regulation (GDPR). A Practical Guide, 1st Ed., Cham: Springer International
Publishing 10, 3152676 (2017), 10ś5555.

[72] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun,
and Peng Cheng. 2021. RobOT: Robustness-oriented testing for deep learning
systems. In Proceedings of the 43rd IEEE/ACM International Conference on Software
Engineering, ICSE 2021. 300ś311.

[73] Michael L. Wick, Swetasudha Panda, and Jean-Baptiste Tristan. 2019. Unlocking
fairness: A trade-off revisited. In Proceedings of the Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019. 8780ś8789.

[74] Weiyuan Wu, Lampros Flokas, Eugene Wu, and Jiannan Wang. 2020. Complaint-
driven training data debugging for query 2.0. In Proceedings of the 2020 Interna-
tional Conference on Management of Data, SIGMOD 2020. 1317ś1334.

[75] Jingxiu Yao and Martin J. Shepperd. 2020. Assessing software defection predic-
tion performance: Why using the Matthews correlation coefficient matters. In
Proceedings of Evaluation and Assessment in Software Engineering, EASE 2020.
120ś129.

[76] Samuel Yeom and Michael Carl Tschantz. 2021. Avoiding disparity amplification
under different worldviews. In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency,FAccT 2021. 273ś283.

[77] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. 2018. Mitigating un-
wanted biases with adversarial learning. In Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, AIES 2018. 335ś340.

[78] Jie M. Zhang and Mark Harman. 2021. Ignorance and prejudice in software
fairness. In Proceedings of the 43rd IEEE/ACM International Conference on Software
Engineering, ICSE 2021. 1436ś1447.

[79] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2019. Machine learning testing:
Survey, landscapes, and horizons. IEEE Transactions on Software Engineering
(2019).

[80] Lingfeng Zhang, Yueling Zhang, and Min Zhang. 2021. Efficient white-box
fairness testing through gradient search. In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2021. 103ś114.

[81] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang,
Jin Song Dong, and Ting Dai. 2020. White-box fairness testing through adver-
sarial sampling. In Proceedings of the 42nd International Conference on Software
Engineering, ICSE 2020. 949ś960.

[82] Pingyi Zhou, Jin Liu, Xiao Liu, Zijiang Yang, and John C. Grundy. 2019. Is deep
learning better than traditional approaches in tag recommendation for software
information sites? Information and Software Technology 109 (2019), 1ś13.

[83] Zhi-Hua Zhou. 2021. Ensemble learning. InMachine learning. Springer, 181ś210.

1134

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Background
	2.2 Related Work

	3 The MAAT Approach
	3.1 MAAT: In a Nutshell
	3.2 Fairness Model
	3.3 Performance Model
	3.4 Combination
	3.5 For Multiple Protected Attributes

	4 Evaluation
	4.1 Benchmark Datasets
	4.2 Existing Methods
	4.3 Metrics and Measurements
	4.4 Experimental Settings
	4.5 Research Questions

	5 Results
	5.1 RQ1: Trade-off Effectiveness
	5.2 RQ2: Applicability
	5.3 RQ3: Influence of Fairness and Performance Models
	5.4 RQ4: Influence of Combination Strategies
	5.5 RQ5: Multiple Protected Attributes

	6 Discussion
	6.1 Why MAAT?
	6.2 Threats to Validity

	7 Conclusion
	Acknowledgments
	References

