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Abstract Serverless computing is an emerging cloud computing paradigm for de-
veloping applications at the function level, known as serverless functions. Due to
the highly dynamic execution environment, multiple identical runs of the same
serverless function can yield different performance, specifically in terms of end-to-
end response latency. However, surprisingly, our analysis of serverless computing-
related papers published in top-tier conferences highlights that the research com-
munity lacks awareness of the performance variance problem, with only 38.38%
of these papers employing multiple runs for quantifying it. To further investigate,
we analyze the performance of 72 serverless functions collected from these papers.
Our findings reveal that the performance of these serverless functions can differ
by up to 338.76% (44.28% on average) across different runs. Moreover, 61.11%
of these functions produce unreliable performance results, with a low number of
repetitions commonly employed in the serverless computing literature. Our study
highlights a lack of awareness in the serverless computing community regarding
the well-known performance variance problem in software engineering. The empir-
ical results illustrate the substantial magnitude of this variance, emphasizing that
ignoring the variance can affect research reproducibility and result reliability.
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1 Introduction

Serverless computing is a rapidly growing cloud computing paradigm. It relieves
software developers from the complexities and potential errors of cloud infrastruc-
ture management and has been widely adopted in various software applications,
such as video processing [36], machine learning [46], and big data analytics [61].
Predictions indicate that by 2025, serverless computing will be adopted by around
50% of global enterprises [1]. Its market size is also expected to skyrocket from $3
billion in 2017 to $22 billion by 2025 [2].

By allowing software developers to focus on application logic, serverless com-
puting empowers them to develop software applications as event-driven, state-
less functions, commonly referred to as serverless functions. Leading cloud service
providers have introduced dedicated serverless platforms to facilitate the execution
of serverless functions, including AWS Lambda [3] and Google Cloud Functions [4].

The growing presence of serverless computing in software domains has cap-
tured the attention of the Software Engineering (SE) field [81]. The SE commu-
nity has studied a broad range of topics about serverless computing, including
its development characteristics [34], programming frameworks [26], application
migration [69], economic impact [21], testing/debugging [54], and performance op-
timization [57]. Notably, performance has emerged as the most widely studied
topic within the serverless computing literature [81]. Ensuring accurate and reli-
able serverless computing performance is critical for research reproducibility and
result reliability.

In the SE community, it is well recognized that multiple identical runs of
the same application can exhibit varying performance [65,67,80,42,40]. Serverless
computing-based applications should not be an exception to the performance vari-
ance phenomenon. Multiple identical runs of the same serverless function can yield
different performance, specifically in end-to-end response latency. Several factors
can contribute to this performance variance: 1) Highly dynamic cloud underlying
infrastructure. Serverless platforms operate in a cloud environment susceptible to
multi-tenancy and networking challenges [62,58]. Moreover, due to opaque instance
scheduling and unpredictable invocations of serverless platforms [63,37,64], the ex-
ecution environment of serverless functions may be highly variable and dynamic.
2) High-density deployment of lightweight functions. Serverless functions generally
have small memory requirements and are hosted in small instances, leading to
high-density deployments [72,74]. This deployment environment increases the risk
of disruptions [88,63].

To date, however, serverless computing research seems to have overlooked the
well-known issue of performance variance. To address this gap, in this paper, we
present an empirical study that sheds light on this oversight with solid scientific
evidence. Additionally, we provide a comprehensive characterization of the magni-
tude of performance variance in serverless computing, emphasizing the significant
consequences of disregarding this crucial aspect.

To this end, we collect and analyze 99 research papers related to serverless
computing performance from 77 top-tier academic conferences. Our findings re-
veal that only 38.38% of these research papers employ multiple runs to quantify
the variance in serverless function performance. This shows that the current server-
less computing literature lacks awareness for the well-known performance variance
problems in SE.
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Furthermore, we extract 72 serverless functions from these research papers
and measure their end-to-end response latencies across multiple runs to assess the
extent of performance variance. Our analysis demonstrates that serverless function
performance can vary significantly, with a maximum variance of 338.76% (44.28%
on average) observed among different runs.

Finally, we assess the reliability of serverless function performance obtained at
commonly used numbers of repetitions within the serverless computing literature.
Our investigation uncovers that under these conditions, 98.61% of the serverless
functions require at least 50 executions to achieve reliability. This emphasizes
the need for significantly more repetitions in measuring the serverless function
performance, surpassing conventional practices in the existing literature.

Our findings offer practical implications for different stakeholders in the re-
search community. 1) Researchers should thoroughly assess serverless function
performance variance, detailing their measurement approach, including repetitions
and reasoning, to ensure research reproducibility and result reliability. Further-
more, a potential research space needs to be explored to develop novel performance
testing techniques specialized for serverless computing, enhancing the accuracy and
reliability of performance assessments. 2) Software developers can customize
strategies to mitigate the severe performance variance in serverless computing-
based applications, ensuring consistent user experiences. 3) Cloud providers
offering serverless computing environments can provide consistent quality of ser-
vice when delivering the services in a serverless computing manner to meet the
demands of customers who seek stable performance.

In summary, this paper makes the following contributions:

– An empirical study highlighting the lack of awareness within the serverless com-
puting community regarding the well-known performance variance problem in
software engineering.

– A measurement study that illustrates the substantial magnitude of performance
variance in serverless computing, underscoring the significant consequences of
neglecting this critical aspect.

– A replication package [5] including the paper’s data and scripts, serving as a
benchmark dataset for future research on performance in serverless computing.

2 Background

We start by introducing the background knowledge of serverless computing and
performance of serverless functions.

2.1 Serverless computing

Serverless computing is a popular cloud computing paradigm, which allows soft-
ware developers to focus on their application logic without having to manage com-
plex cloud underlying tasks. Function-as-a-Service (FaaS) is the most prominent
implementation of serverless computing [22,76,82,30,47]. Thus, in this study, we
focus on FaaS. In the FaaS fashion, software developers implement applications as
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Fig. 1 The process of developing, deploying, and executing serverless functions by software
developers.

a series of event-driven and stateless dedicated functions, called serverless func-
tions. They deploy and execute serverless functions on serverless platforms, such
as AWS Lambda [3] and Google Cloud Functions [4].

Fig. 1 illustrates the process of developing, deploying, and executing server-
less functions. 1○ First, software developers implement serverless functions using
programming interfaces as event-driven and stateless functions [81]. These func-
tions are generally written in high-level programming languages, e.g., Python and
JavaScript [6,7,35]. 2○ Meanwhile, software developers can define the rules to
bind their serverless functions and the related events, such as HTTP requests
and data changes of cloud storage. 3○ Then, serverless functions and required
dependent libraries are packaged together and deployed to serverless platforms.
In this stage, software developers can specify the required configurations, includ-
ing language runtime, memory size, and function timeout time [81]. 4○ When the
serverless functions are triggered by pre-defined events, the serverless platforms
can automatically launch or reuse the required function instances (e.g., VMs or
containers) with restricted resources (e.g., CPU and memory) to serve these re-
quests. This frees software developers from complex server management and makes
their requests benefit from seamless resource elasticity. 5○ After the requests are
completed, software developers pay for the number of requests and the actually
allocated or consumed resources [56,81].

2.2 Performance of serverless functions

In this study, we focus on evaluating the performance of serverless functions by
examining the end-to-end response latency (abbreviated as e2eTime). The end-
to-end response latency is a widely adopted metric in the serverless computing
literature [84,71,56,57,83]. It is defined as the duration as when a request is sent
from a client until its completion. This metric is considered the primary metric
for assessing serverless function performance, and serverless computing research
actively proposes optimization techniques targeting this metric [78,58,88]. Addi-
tionally, practitioners commonly use end-to-end response latency as a reflection of
user experience satisfaction [34,83,82].

Generally, the response latency of a serverless function is divided into cold-start
response latency and warm-start response latency. (1) When a serverless platform
launches new function instances to handle requests, the serverless function en-
counters cold-start invocations. This kind of invocation involves the preparation
process of function instances. Thus, this latency is referred to as the cold-start
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Fig. 2 An overview of our methodology.

response latency. (2) On subsequent invocations of the same serverless function
within a short keep-alive time, the serverless platform can reuse the previously
launched function instances. This leads to warm-start invocations for the server-
less function and produces warm-start response latency. In the absence of requests,
the serverless platform automatically turns the launched function instances into
an idle state and releases the corresponding resources. Generally, warm-start re-
sponse latency tends to be smaller than the cold-start response latency for the
same serverless function due to the absence of the preparation process of function
instances during warm starts.

3 Methodology

To understand the variance of serverless function performance, we first identify
relevant research papers and collect serverless functions from them. Based on them,
we answer three research questions (RQs) related to the variance of serverless
function performance. In Fig. 2, we show an overview of our methodology.

3.1 Research questions

RQ1 (Current literature): To what extent has the current literature addressed
the variance of serverless function performance? This RQ investigates whether and
how researchers consider the performance variance of serverless functions when
studying serverless computing, given that performance variance has been a well-
known issue in SE.

RQ2 (Variance measurement): How variable is the performance of serverless
functions? Despite the well-known performance variance issue, the magnitude of
this variance in serverless computing remains unclear. If the variance is substantial,
researchers and developers cannot disregard it during the development of serverless
computing-based applications. This RQ aims to fill this knowledge gap and provide
actionable insights for stakeholders.

RQ3 (Reliability and repetitions): How reliable are the serverless function
performance results obtained from different repetitions? This RQ aims to explore
the reliability of serverless function performance across multiple repetitions, high-
lighting the importance of repetition settings on the reliability of performance
results. Additionally, it seeks to provide guidance on determining the appropriate
number of repetitions needed to achieve more reliable performance measurements.
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Fig. 3 Number of serverless computing-related papers in top-tier conferences per year.
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Fig. 4 Distribution of 110 serverless computing-related papers per computer science area.

3.2 Collection of relevant papers

To address RQ1, we collect research papers related to serverless computing. Since
studies on serverless computing have been published in academic venues across
various research communities [81], we gather research papers from all 77 confer-
ences listed in the Computer Science Rankings (CSRankings) [8]. CSRankings pro-
vides a curated list of top-tier conferences from various areas of computer science,
including Software Engineering (e.g., ICSE, FSE, ASE, and ISSTA), Operating
Systems (e.g., OSDI, SOSP, EuroSys, FAST, and ATC), and Computer Networks
(e.g., SIGCOMM and NSDI). These conferences are recognized not only for their
academic reputation but also for their influence in the respective research com-
munities. We focus on papers published in these high-tier conferences because
they reflect state-of-the-art research and provide a comprehensive view of the lat-
est findings in serverless computing across diverse areas. We do not use search
engines (e.g., Google Scholar) and citation-based thresholds to collect impactful
papers related to serverless computing. This is because defining a consistent and
objective citation threshold is challenging, as citation counts can be influenced by
factors such as publication date, research topic popularity, and self-citation. More-
over, there is no universally accepted standard for what constitutes “impactful”
based on citations. We do not evaluate the quality of papers based on their authors
or assume that work published in other venues is of lower quality, as such judg-
ments could introduce bias. Instead, we adopt a venue-based selection criterion,
relying on CSRankings to identify high-quality, peer-reviewed research from top-
tier conferences across various areas of computer science. This approach minimizes
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subjectivity and ensures consistency. However, we acknowledge that including pa-
pers from other venues (such as journals and other conferences) in our study would
provide a more comprehensive view of the research landscape. In future work, we
plan to expand our study to include more research papers to further enhance the
scope of our research.

The process for collecting research papers is as follows. First, we collect all tech-
nical papers (excluding short papers, tutorials, posters, workshop papers, industry
track papers, etc.) published in the 77 conferences between 2014 (the year server-
less computing was popularized [82,81,47]) and the date we collect the papers
(April 10, 2024). Then, the first two authors independently review the research
papers to select those related to serverless computing. A paper is considered rel-
evant if, upon manual inspection of its title, abstract, and full text, the authors
determine that it discusses or addresses specific problems in the field of serverless
computing. If the authors disagree on the relevance of a paper, an arbitrator, who
has ten years of cloud computing experience, is involved in discussing to reach an
agreement. To measure the inter-rater agreement level of the authors during the in-
dependent labeling, we use Cohen’s Kappa (κ) [29], which is the most widely-used
agreement evaluation metric in SE [77,82,81]. The value of κ is 0.952, indicating
an almost perfect agreement and a reliable labeling procedure [52]. Finally, we
obtain 110 research papers related to serverless computing. The number of related
papers per year is shown in Fig. 3. We observe an overall increasing trend, with the
number of relevant papers rising from 1 in 2017 to 33 in 2023. This implies that
serverless computing is gaining increasing attention from the research community,
demonstrating the timeliness and urgency of our study. The number of server-
less computing-related papers collected from various areas of computer science is
illustrated in Fig. 4. The three leading areas are Operating Systems, Computer
Architecture, and High-Performance Computing, which collectively account for
40, 23, and 15 papers, respectively. Furthermore, the first two authors jointly fil-
ter papers that do not report the performance results of serverless functions. As
a result, 99 out of the 110 research papers are retained for our final performance
analysis. This is consistent with findings reported by previous work [81,55,71] that
most serverless computing papers are related to serverless function performance.
Specifically, the distribution is as follows: 5 papers in 2019 are reduced to 4 papers,
15 papers in 2020 are reduced to 14, 19 papers in 2021 are reduced to 15, 29 papers
in 2022 are reduced to 26, and 33 papers in 2023 are reduced to 31. Details of the
selected papers (including conference name, year, and paper title) are provided in
our repository [5].

3.3 Collection and analysis of serverless functions

To answer RQ2 and RQ3, we extract serverless functions used in the 99 research
papers. We follow previous work [57] to focus on serverless functions developed us-
ing the most widely adopted serverless platforms (i.e., AWS Lambda and Google
Cloud Functions) and programming languages (i.e., Python and JavaScript). More-
over, we select serverless functions that are open-sourced and have the correspond-
ing guidance documentation to assist with the execution. According to these crite-
ria, the first two authors jointly extract and finally collect 72 serverless functions
covering a wide range of tasks, such as Web request handling, video processing, sci-
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entific computing, machine learning, and natural language processing. Most of the
collected serverless functions are included in commonly used benchmarks in server-
less computing research [86,49,59] and industry [9], such as FunctionBench [49],
ServerlessBench [86], AWS Sample [10], SeBS [30], and FaaSDom [59]. Among
these serverless functions, 67 serverless functions are executed on AWS Lambda,
while 5 serverless functions are executed on Google Cloud Functions. It can be
because the advent of AWS Lambda was the main reason for the popularity of
serverless computing [81,47,82]. Moreover, 59 serverless functions are written in
Python, while 13 serverless functions are written in JavaScript. Such a distribu-
tion can be attributed to the increasing number of tasks that use popular Python
third-party libraries [81]. We denote the 72 serverless functions as Func1, Func2,
..., and Func72. The number mapping information about serverless functions is
provided in our repository [5].

We then analyze the performance of the 72 serverless functions. We execute
them with the input, configurations, and serverless platform used in their original
papers. If no specific input is given in the original paper, we construct an input
that matches the task execution according to the functionality of the serverless
function. If no specific configurations are given, serverless functions are executed
using the default configurations of serverless platforms, as developers typically
rely on default configurations. At the time of our study, the default memory size
of AWS Lambda is 128 MB [11], and its function timeout time is 3 seconds [12]. For
Google Cloud Functions, the default memory size and function timeout time are
256 MB [13] and 60 seconds [14], respectively. We execute serverless functions to
detect the sufficiency of their memory size or function timeout time. If the memory
size or timeout is found to be insufficient during execution, the serverless platform
reports errors and indicates the actual memory used or that the timeout is nearing
its limit. In such cases, we continue to execute the functions by gradually increasing
the memory size or function timeout until successful execution is achieved. To
minimize the potential impact of the network variability on our measurements, we
adopt the following strategies: (i) We use the same experimental machine in the
same geographical area to send requests to the corresponding serverless platform
and receive responses. (ii) We deploy our measured serverless functions to the
same service region across different serverless platforms, such as “us-west-1” of
AWS Lambda and “us-west1” of Google Cloud Functions.

To explore performance results across different times of the day and capture
the comprehensive performance characteristics of serverless functions, we obtain
response latencies of serverless functions for 50 trials. Meanwhile, to explore differ-
ent performance types (especially “cold-start performance”) of serverless functions,
we employ a different strategy of multiple interleaved trials, meaning that functions
from different platforms and languages are executed in an interleaved manner, with
each trial being separated by a fixed interval (e.g., half an hour). This strategy
also mitigates the issue of functions being executed too closely in time and makes
all performance results span at least one full day to capture variability across dif-
ferent times of the day. In each trial, we execute each tested serverless function
twice using the same input and configuration to obtain the cold-start response
latency and warm-start response latency, respectively. We set the fixed interval
between each trial to half an hour, because we find that the resources used for
execution can be released to ensure that the start of the next trial is still a cold
start. This also reduces potential residual effects on subsequent trials. In addition,
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in each trial, the second execution of each function starts five seconds after the
completion of the first execution, because we find that this duration can ensure
the successful warm start of each serverless function. Finally, we obtain 72 × (50
+ 50) = 7,200 data points (3,600 for cold start and 3,600 for warm start) about
the end-to-end response latency of serverless functions. The execution results are
produced between April 17, 2024 and May 10, 2024.

4 RQ1: Current Literature

RQ1 investigates whether and how the performance variance of serverless func-
tions has been considered in the serverless computing literature, as this affects the
reproducibility of conclusions drawn in research. To this end, we follow the stan-
dard criteria established by previous work [77] to analyze our selected 99 research
papers related to serverless computing. Specifically, Uta et al. [77] defined standard
criteria to determine if a study’s conclusions are reproducible under performance
variability, including checking whether:

– (1) Mean or median performance values are reported;
– (2) Confidence (e.g., confidence intervals) or variability (e.g., standard deviation,

coefficient of variance, or percentiles) is reported;
– (3) The number of times an experiment was repeated is reported.

Such information can assist us in further understanding the reliability of the
provided evidence and the study’s conclusions. The first two authors separately
read the full text of each paper to find out if it reports the aforementioned in-
formation. Moreover, if a paper reports the experiment repetition, i.e., criterion
(3), we also record the specific number of repetitions used in the paper. A paper
may involve multiple pieces of information, which may result in the percentage
of the total number of papers exceeding 100% when the information is counted.
The inter-rater agreement values of labeling, measured by Cohen’s Kappa (κ) [29],
are 0.927, 0.914, and 0.893 for each type of information, respectively, indicating
perfect agreement and a reliable labeling process [52]. During the labeling process,
encountered conflicts are discussed to reach an agreement by the first two authors
and the third arbitrator.

Results: We observe that researchers lack awareness of the performance vari-
ance of serverless functions and often do not adequately describe related exper-
imental settings, despite the fact that performance variance has become a well-
known problem in SE. Specifically, Table. 1 shows the results of our literature
analysis. We observe that 62.63% (62 out of 99) of the papers report means or me-
dians; only 37.37% (37 out of 99) report statistical variation data (e.g., percentiles
and confidence intervals); and only 38.38% (38 out of 99) use multiple runs when
conducting serverless computing-related experiments or performance analyses. In
other words, over 60% of the research papers do not report how many times they
repeated the experiments. This omission suggests that either no repetitions were
performed or a specific number of repetitions was used but not disclosed. This lack
of information affects the reproducibility of the results. We examine the details on
reporting experiment repetitions in 99 final papers from various areas of computer
science, shown in Table 2. The values are formatted as a/b, where a represents
the number of papers that use experiment repetitions in each specific area and b
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Table 1 (RQ1) The details about experiment reporting for the studied 99 research papers.

Reporting Mean
or Median

Reporting Statistical
Variation Data

Reporting the
Number of Repetitions

#Papers 62.63% 37.37% 38.38%

Table 2 (RQ1) Details about experiment repetitions reported in 99 final research papers from
various areas of computer science, formatted as a/b. a represents the number of papers that
use experiment repetitions in each specific area and b is the total number of papers in this
area.
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Fig. 5 (RQ1) Distribution of the number of repetitions used in the research papers that report
experiment repetitions.

is the total number of papers in this area. We observe that The Web&Information
Retrieval has the largest representation with 36 papers, of which 15 papers report
experiment repetitions. The areas of Computer Architecture (15 total papers) and
High-Performance Computing (22 total papers) also show notable representation,
with 7 and 6 papers, respectively, reporting experiment repetitions. Other areas,
such as Machine Learning (2/3), Computer Networks (3/8), and Databases (1/7),
have smaller numbers of papers reporting repetitions. Certain areas, e.g., Program-
ming Languages, have minimal representation, with only 1 paper, which does not
report repetitions (0/1). In summary, the reporting of experiment repetitions varies
across the areas of computer science.

We further analyze the papers that report experiment repetitions. Fig. 5 shows
the number of repetitions used in these papers. Note that a paper can employ mul-
tiple numbers of repetitions, so the sum of the proportions in the figure may exceed
100%. There are 13 kinds of numbers of repetitions in the serverless computing
literature. We find that 81.58% of these papers use no more than 50 repetitions.
The top 3 frequently used repetitions are 10, 50, and 1,000, which account for
26.32%, 15.79%, and 13.16% of these papers, respectively.

Surprisingly, we find that none of these papers justify or explain the reason
for the selection of the repetition number. In fact, the selection of this number is
of high significance. If the number of repetitions is too low (e.g., 10 repetitions),
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the reliability of the obtained performance of serverless functions may not be
guaranteed (as explained in Section 6), and it could lead to wrong or ambiguous
conclusions. If the number of repetitions is too large (e.g., 1,000 repetitions), it may
cause a huge runtime overhead, e.g., long experimentation time and high costs.
In serverless computing, researchers need to pay for the number of requests and
the actually allocated or consumed resources of serverless functions [56,81]. In this
situation, a large repetition number can produce a huge cost. Thus, a too-small
or too-large number of repetitions may be inappropriate in serverless computing-
related experiments. A careful selection of the number of repetitions is needed in
these experiments.

Finding 1: The current serverless computing literature lacks awareness of
the well-known performance variance problem in software engineering. Specif-
ically, only 38.38% of the relevant papers use multiple runs to quantify the
performance variance of serverless functions. 81.58% of the papers that report
experiment repetitions use no more than 50 repetitions. Additionally, none of
the papers provide any relevant description to justify the reason for the number
of repetitions that they choose.

5 RQ2: Variance Measurement

RQ2 explores the magnitude of the performance variance of serverless functions. To
this end, we analyze response latencies of 72 serverless functions over multiple runs
from two aspects: coefficient of variance (CV) and boxplot, which are commonly
used in performance variance analysis [60,39,88,77,65]. Specifically, CV, known
as the dispersion coefficient, is a statistical indicator that measures the degree of
data variability. It represents the ratio of the standard deviation to the mean.
Compared to standard deviation, CV provides a normalized, relative measure of
dispersion and allows for comparison between data distributions with different
units or means. A big value of CV means a large degree of performance variance.
The boxplot can provide a visual representation of the dispersion degree for the
performance results generated by each serverless function over multiple repetitions.

We use response latencies of each function over 50 repetitions to explore the
magnitude of the variance. We chose 50 repetitions because this number is not
less than the settings in over 80% of existing papers reporting repeated runs and
is actually an upper value among them. We adopt this upper value to assume
that most papers offer improved performance compared to the original setup. We
investigate whether these assumed improved performance results suffer from a
large magnitude of performance variance.

Results: (1) CV: We analyze CV values calculated from response latencies
generated by each serverless function under cold start and warm start. Fig. 6
shows these results, where cold-start CV values are ordered in ascending order.

First, we observe that response latencies of serverless functions have different
degrees of variance under cold and warm starts. Specifically, cold-start CV values
range from 1.23% to 31.18%, while warm-start CV values range from 0.86% to
42.81%, differing by as much as 49 times and thus showing a wide range of variance.
On average, the cold-start CV value is 6.07%, while the warm-start CV value is



12 Jinfeng Wen et al.

0

20

40

C
V

 v
al

ue
s (

%
) Cold_e2eTime

Warm_e2eTime

All tested serverless functions

Fig. 6 (RQ2) CV values for cold-start response latency are ordered in ascending order. CV
values for warm-start response latency are placed according to serverless functions that have
been sorted by the cold-start CV values.

8.39%. The median of cold-start CV values is 5.06%, while that of warm-start CV
values is 6.47%. These results indicate that functions executed in cold and warm
starts produce different degrees of variance in the end-to-end response latency.

However, providing only CV values is not a straightforward way to under-
stand how the performance of serverless functions actually fluctuates. Thus, we
give examples of the raw performance results of the serverless function. Fig. 7
shows the performance data (50 data points) from cold starts for two serverless
functions, Func22 and Func2. Multiple runs of the same function produced fluc-
tuating response latencies, with no regular patterns of change. We also check the
data from other serverless functions, but no consistent change patterns are found.
The changes remain irregular, as seen in the data points in Fig. 7. The CV values
of Func22 and Func2 are 2.04% and 5.88%, respectively. The difference between
the maximum and minimum values of Func22 achieves 6758.63 milliseconds (ap-
proximately 7 seconds), and that of Func2 is 7244.32 milliseconds (also about 7
seconds). Generally, serverless functions execute short-lived and milliseconds-level
tasks [74,50]. Thus, the second-level difference size is severe for serverless functions.
Moreover, from the right violin plot of Fig. 7, the distributions of data points of
performance for different serverless functions are drastically different, being clus-
tered in different positions. The data points of Func22 are distributed near the
middle of its violin plot, while those of Func2 are distributed towards the bottom.
Overall, we observe a significant variance in serverless function performance from
two examples, where CV values are 2.04% and 5.88%, respectively. Therefore, we
infer that other serverless functions with larger CV values than those shown in the
examples will produce more significant fluctuations in performance.

We check the top 5 serverless functions with high CV values. For cold or warm
starts, four serverless functions are executed on AWS Lambda and one on Google
Cloud Functions. This observation demonstrates that serverless functions with
high CV values are not limited to a single serverless platform. The programming
languages used in these functions include Python and JavaScript, which are not
limited to a single programming language.

We further analyze the serverless functions with high CV values, e.g., Func30
with warm-start CV value of 42.81%. The maximum and minimum values of re-
sponse latencies of Func30 differ by 338.76%, where the maximum value reaches
4.39 times its minimum value. The possible reason is that Func30 needs to connect
the cloud storage (e.g., AWS S3 [15]) to transfer the file to the function instance
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Fig. 7 (RQ2) Example of the generated serverless function performance. The left part shows
50 data points obtained in cold starts for Func22 and Func2. The right part is the violin plot,
whose thickness is proportional to the probability density of the data.

Table 3 (RQ2) A comparison of the performance variability across serverless platforms and
languages by calculating the latency difference of the maximum and minimum values of the
serverless function.

AWS Lambda
Google Cloud
Functions

Python JavaScript

Mean 40.06% 72.02% 39.49% 54.92%
Median 29.24% 47.39% 29.24% 31.70%

AWS Lambda
+ Python

Google Cloud
Functions+Python

AWS Lambda
+JavaScript

Google Cloud
Functions+JavaScript

Mean 39.30% 44.85% 44.36% 90.14%
Median 28.76% 47.39% 31.70% 46.20%

through the network. However, the functionality of serverless functions that rely
on platform library code to establish connections and transfer files with cloud
services may lack robust design. Moreover, the network may be unstable. These
likely result in unpredictable performance fluctuations. We check all serverless
functions, and the corresponding maximum and minimum values of the response
latency differ by a mean of 42.28% and a median of 29.67%.

To further investigate the impact of platforms and languages, we compare the
latency differences between platforms and languages, as shown in Table 3. Plat-
form Comparison: We compare the variability between Google Cloud Functions
and AWS Lambda. For the mean, AWS Lambda shows a latency difference of
40.06%, whereas Google Cloud Functions shows 72.02%. In terms of median re-
sults, AWS Lambda has a latency difference of 29.24%, while Google Cloud Func-
tions has 47.39%. This indicates that Google Cloud Functions experiences a more
significant performance variability than AWS Lambda. Language Comparison:
We compare Python and JavaScript. On average, Python-based functions exhibit
a latency difference of 39.49%, while JavaScript functions show 54.92%. For the
median, Python has a 29.24% difference, while JavaScript has 31.70%. This sug-
gests that JavaScript has a higher performance variability than Python. Platform
and Language Interaction: We explore the interaction between platforms and
languages. Python-based serverless functions executed on AWS Lambda have a la-
tency difference of 39.30%, whereas those on Google Cloud Functions show 44.85%.
From the results, serverless functions written in JavaScript and executed on Google
Cloud Functions exhibit the highest variability in both maximum and minimum
latencies.
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Table 4 (RQ2) A comparison of performance variance of serverless functions in the context
of their exhibited characteristics by calculating the latency difference of the maximum and
minimum values.

CPU-Memory Task I/O Task Network Task
Functions Func5, Func6, Func7 Func10, Func11, Func33 Func14, Func37, Func38
Mean 38.94% 27.06% 34.45%
Median 34.68% 21.77% 36.60%

We further investigate how performance variance relates to the characteristics
of the tasks by providing representative examples. We categorize some functions
into three common types: CPU-memory-intensive tasks, I/O-intensive tasks, and
network-intensive tasks. To explore this, we select three serverless functions from
each category: for CPU-memory-intensive tasks, we examine Func5, Func6, and
Func7; for I/O-intensive tasks, Func10, Func11, and Func33; and for network-
intensive tasks, Func14, Func37, and Func38. The latency differences between
these task types are summarized in Table 4. Specifically, CPU-memory and network-
intensive tasks show a latency difference of more than 30%, while I/O-intensive
tasks exhibit a difference exceeding 20%. Similar trends are observed when con-
sidering median latency values. The results reveal different latency differences
influenced by task characteristics, which serve as a preliminary exploration of the
impact of task characteristics on performance variance.

Then, we observe that the variance of serverless function performance is more
severe under warm starts than under cold starts. Specifically, the warm-start CV
values for 65.28% (47/72) of the serverless functions are greater than those of the
corresponding cold starts. We also calculate the number of the functions whose
CV values are greater than 10%, which generally indicates a large degree of vari-
ance [60,88,77]. In cold starts, there are 8.33% (6/72) functions, while warm starts
have 29.17% (21/72). This implies that warm-start response latency has a more
severe variance than cold-start response latency. One possible reason is that ex-
ecuting tasks in the reused function instances (i.e., warm starts) may be more
susceptible to resource contention and underlying policies in serverless platforms.
Another possible reason is that warm-start response latency tends to be smaller
than cold-start response latency. The similar latency difference sizes may create
the illusion of higher (lower) CV values when observed at smaller (larger) values.

(2) Boxplot: We use boxplots to visually show the distributions of response
latencies of serverless functions. Before presenting the boxplots, we analyze the
average latency of each serverless function. In cold starts, 36.11% (26/72) of func-
tions have an average latency of under 2 seconds, 65.28% (47/72) have an average
latency of under 5 seconds, and 83.33% (60/72) are under 10 seconds. In warm
starts, 36.11% (26/72) have an average latency of under 1 second, 76.39% (47/72)
are under 5 seconds, and 83.33% (60/72) are under 10 seconds. This highlights that
most functions exhibit latencies in relatively small durations (e.g., milliseconds),
in contrast to the minute- or hour-level latencies of traditional cloud applications.
Since serverless functions have different levels of latency granularity, we apply the
commonly used min-max normalization method [16] to normalize each set of re-
sponse latencies generated by the serverless function to the 0 to 1 interval. Fig. 8
and Fig. 9 respectively show the normalized boxplot about the response latency
of 72 serverless functions under cold start and warm start. The bottom of the box
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Fig. 8 (RQ2) The normalized boxplot for the cold-start response latencies of 72 serverless
functions.
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Fig. 9 (RQ2) The normalized boxplot for the warm-start response latencies of 72 serverless
functions.

represents the value at the 25th percentile, while its top is the 75th percentile. The
line in the box is the median, i.e., 50th percentile. Dots outside of the whiskers are
outliers. We observe that most response latencies (i.e., from the 25th percentile to
the 75th percentile) of the serverless functions do not fall near the middle, i.e., 0.5
of the 0 to 1 interval. This occurs under both cold starts and warm starts. More-
over, the range sizes of most response latencies are inconsistent, indicating that
there may not be a fixed distribution pattern for serverless function performance.

To further determine if the data distribution of serverless function performance
is concentrated or skewed, we check whether the median of response latencies falls
within an error interval. This interval represents the 1% error above or below the
middle value calculated from the maximum and minimum values. If the median is
in this error interval, the data distribution for serverless function performance is
determined to be concentrated, and otherwise, it is skewed. The results show that
distributions of response latencies of more than 93% of the serverless functions
are skewed both under cold starts and warm starts. We also try to determine the
direction in which most response latencies of the serverless function are biased
to the boxplot. We calculate the sum of distances of all response latencies of
each serverless function from its maximum and minimum values, respectively. The
results show that most response latencies of over 93% (cold starts: 69/72; warm
starts: 67/72) of the serverless functions are skewed towards the corresponding
minimum values, and another side of boxplots has a long tail. This can be observed
visually in Fig. 8 and Fig. 9, where most boxplots are in the middle and lower part
of the 0 to 1 interval.
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Fig. 10 (RQ3) The CDF of ρ values obtained from W tests (normality checks), which are
applied to the response latencies of each serverless function.

Finding 2: The performance of serverless functions exhibits significant vari-
ance that cannot be ignored. Across multiple executions, the performance of
serverless functions can vary by as much as 338.76%, with an average variance
of 42.28%, indicating a large magnitude of the variance. Moreover, serverless
function performance has different degrees of variance under cold and warm
starts. The coefficient of variance values for serverless function performance un-
der cold starts are from 1.23% to 31.18%, while those of warm starts are 0.86%
to 42.81%. These values differ by as much as 49 times, showing a wide range
of variance. Additionally, for 65.28% of the serverless functions, the response
latency variance during warm starts is more pronounced than that observed
during cold starts.

6 RQ3: Reliability and Repetitions

In RQ3, we investigate the reliability of serverless function performance obtained at
different repetitions. First, we use the response latencies of the serverless function
at 50 repetitions as standard result of serverless function performance, since most
of the collected papers that report repetitions use no more than 50 times, as
summarized in Section 4. Then, we compare the serverless function performance
obtained at low repetitions that are used in the collected papers and shown in
Fig. 5, e.g., 3, 4, 5, 6, 10, and 20.

To facilitate performance analysis, we need to adopt appropriate statistical
methods, either parametric or non-parametric, depending on the distribution of
the performance results. For data that follows a normal distribution, parametric
methods are suitable; for non-normal distributions, non-parametric methods are
required. Thus, we first check whether serverless function performance follows a
normal distribution. We adopt the Shapiro-Wilk test [73] (abbreviated as W test),
which is considered the most powerful normality test in most situations [17]. In
the W test, its null hypothesis is that the performance results come from the pop-
ulation with the normal distribution. When running the W test, we can obtain a
ρ value. At a ρ value greater than 0.05, we can accept the null hypothesis to indi-
cate that serverless function performance follows a normal distribution; otherwise,
we reject the null hypothesis and describe the serverless function performance as
following a non-normal distribution. We apply normality checks to the response
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latencies of 50 runs of each serverless function. Fig. 10 shows the CDF about all ρ
values obtained from W tests. We observe that most ρ values are less than 0.05,
i.e., rejecting the null hypothesis and presenting strong evidence for non-normality.
Specifically, the response latencies of 88.89% (64/72) and 91.67% (66/72) of the
functions follow a non-normal distribution in cold starts and warm starts, respec-
tively. In this situation, non-parametric analysis methods, which do not assume
normality, are more appropriate for the performance analysis of serverless func-
tions, and they can also work for the normal distribution [60]. Thus, we use the
most common metrics of interest in non-parametric analysis, e.g., median, tail
percentile, and their confidence intervals [60,77], to compare performance.

We calculate the median performance and tail performance (e.g., 90th per-
centile) of the serverless function at different low repetitions. Meanwhile, we cal-
culate the corresponding 95% confidence interval for the median and confidence in-
terval for the 90th percentile at 50 repetitions, as adopted by the previous work [77].
The 95% confidence interval for the median or confidence interval for the 90th per-
centile represents the range in which we could find the true median or 90th per-
centile with 95% probability if we could perform infinite repetitions. Thus, when
a median or 90th percentile obtained at the low repetition lies outside the 95%
confidence interval for the median or confidence interval for the 90th percentile
obtained at the high repetition, it indicates that there is a 95% probability that
this median or 90th percentile is inaccurate. The calculations of the confidence
interval for the median and confidence interval for the 90th percentile can refer to
the work [53,60].

Result: We observe that the serverless functions produce inaccurate median
performance and tail performance under low repetitions. Specifically, Fig. 11 shows
the percentage of the serverless functions in the case where the obtained median
performance or 90th percentile performance is inaccurate under different low rep-
etitions. When the number of repetitions is 3, for 56.94% (41/72) of the server-
less functions in cold starts, the obtained median falls outside of the confidence
intervals obtained at 50 repetitions, i.e., the obtained median performance is in-
accurate, while warm starts have 59.72% (43/72) of the serverless functions. For
the 90th percentile, 56.94% (41/72) of the serverless functions have inaccurate tail
performance at 3 repetitions (warm start: 61.11% (44/72)). This indicates that
experiments with low repetitions have a high risk of reporting unreliable perfor-
mance results of serverless functions. We also observe that increasing the number
of repetitions can make the percentage of inaccurate results decrease. However,
at the 10-repetition most frequently used by the surveyed papers, 29.17% (21/72)
of the serverless functions still show inaccurate median performance, and 40.28%
(29/72) of serverless functions show inaccurate tail performance in cold starts.
These results imply that serverless function performance is unreliable under low
repetitions commonly used in most research papers, underscoring the significant
consequences of neglecting the performance variance of serverless functions.

We try to find regularities in how to determine the appropriate repetitions for
serverless functions to obtain reliable performance. We first observe the changes
in top and bottom bounds for the confidence interval obtained at different repeti-
tions. As an example, Fig. 12 shows the changes in the bounds of the confidence
intervals for the median, with regard to Func2. We do not plot the confidence
intervals for the median at smaller repetitions, e.g., 3, 4, 5, and 6 in Fig. 11,
because these repetitions are also insufficient to calculate them [52,53]. Instead,
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Fig. 11 (RQ3) The percentage of serverless functions, whose medians and 90th percentiles at
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Fig. 12 (RQ3) Changes in the top and bottom bounds of the confidence interval for the
median at different repetitions. An example is about Func2.

we compare the number of repetitions from 10 to 50 in 5-step increments. From
Fig. 12, confidence intervals gradually become tight as the number of repetitions
increases. The line representing the difference between the top and bottom bounds
also shows a gradual downward trend. However, when the number of repetitions
is small, e.g., from 20 to 25 repetitions, the bounds of the confidence interval may
have slight fluctuations. It is reasonable that the distribution with a small number
of performance data may not be stable. Overall, performing more repetitions for
functions may achieve a tight confidence interval for the median, which increases
confidence in claiming the obtained results are close to the population distribution.

Leveraging the observation about tight confidence intervals for the median, we
further explore how many repetitions may be required to achieve a sufficiently
narrow confidence interval for serverless function performance. This interval is a
desired interval representing satisfactory performance, where the empirical median
differs from the observed true median by no more than the r error margin at a
given confidence level, e.g., 95%. In other words, when the confidence interval
for the median obtained from results at a certain repetition drops within the r
error margin of the corresponding observed true median performance, the desired
confidence interval is obtained to stop running the serverless function, and the
current number of repetitions is regarded as the appropriate repetition for the
serverless function. We show the results for r = 0.5% and 1% in Fig. 13. When
r = 0.5%, in cold starts, 98.61% (71/72) of the serverless functions require being
executed at least 50 times to get the desired confidence interval, while warm starts
have 81.94% (59/72) of the serverless functions. After we relax r to 1%, there
are still 70.83% (51/72) serverless functions that need to be executed repeatedly
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Fig. 13 (RQ3) The percentage of serverless functions that take at least 50 times to achieve
a desired confidence interval about response latency, within 0.5% and 1% error demands.

at least 50 times in cold starts. There are 59.72% (43/72) serverless functions
in warm starts. However, according to the aforementioned Fig. 5, only 28.95% of
the research papers that report experiment repetitions execute serverless functions
more than 50 times. Overall, these results indicate that serverless functions require
far more repetitions than the ones commonly used in most surveyed papers.

Finding 3: When a small number of repetitions, as commonly adopted in
the collected papers, are executed, up to 61.11% of serverless functions exhibit
unreliable performance results. This underscores the significant consequences
of neglecting the performance variance of serverless functions. Additionally,
up to 98.61% of serverless functions require a minimum of 50 executions to
achieve the desired performance, but only 28.95% of the collected research pa-
pers, which report experiment repetitions, use repetition counts exceeding 50.
These findings highlight the need for significantly more repetitions in server-
less function experimentation than what is commonly employed in the existing
literature.

7 Implications

Implications for researchers. 1) Reproducibility. The research community
has increasingly emphasized the importance of reproducibility and replicability
in studies [24,28,31,68,48,23,85,25]. Our study uncovers substantial performance
variance in serverless functions, affecting research reproducibility and further de-
ployment of cloud services. Insufficient documentation of performance measure-
ment methods, including repetitions, hampers replication and result validation
by other researchers. To enhance reproducibility in serverless computing, an open
and explicit methodology is crucial. Researchers should clearly outline their perfor-
mance measurement approach, including repetitions and rationale. 2) Reliability.
Our study highlights concerns about research reliability in serverless computing
due to insufficient consideration of performance variance. Inadequate repetitions
and justification can diminish result reliability, risking erroneous conclusions. This
can lead to misguided decisions and resource wastage in academia and industry. To
address this, researchers can provide well-justified repetitions and comprehensive
results, e.g., median, coefficient of variance, percentiles, confidence intervals, and
distribution. Serverless functions exhibit two types of starts: cold and warm starts,



20 Jinfeng Wen et al.

with more pronounced performance variance in warm starts. Researchers can tailor
experimental designs, including repetitions, for each start type to capture specific
characteristics effectively. 3) Tailored performance testing. Our evaluation of
RQ3 shows that while 50 repetitions are commonly used in the serverless com-
puting community, they are insufficient for achieving the desired performance for
98.61% of serverless functions, due to significant performance variance, as shown
in RQ2. In general, using more repetitions increases the accuracy and reliability of
performance results by accounting for various potential impacts of the serverless
platform. However, simply increasing repetitions for all serverless functions may
not always be an effective solution because each function may require a different
number of repetitions. This emphasizes the need for tailored performance test-
ing in serverless computing, designed to ensure accurate and reliable performance
measurement for serverless computing-based applications. Performance is a crit-
ical property of applications [70,87,44,45], and performance testing has been a
standard procedure for acquiring reliable performance of these applications [41,
40]. It involves iterative executions of the application-under-test with predefined
inputs until a stopping criterion is met, thus mitigating the variance effect [43,
41,40]. Given the significant performance variance of serverless functions, there is
research space to develop dedicated performance testing techniques and tailor the
stopping criterion for this context. Furthermore, different from traditional cloud
applications, serverless functions generally run for a short duration in millisec-
onds [57,55]. Thus, there is a need to use a finer performance accuracy analysis
as the stopping criterion in serverless computing. Such approaches allow for ef-
ficient, targeted, and context-aware performance evaluation, regardless of when
performance data for each function is captured or whether performance data ex-
periences regular variances, thus avoiding the inefficiencies of simply increasing
repetitions for all functions.

Implications for software developers. 1) Mitigation strategies. Given the
substantial performance variance observed in serverless computing, it is essen-
tial for software developers to adopt strategies to mitigate this issue, especially
when aiming for consistent user experiences. From our analysis of RQ2, the design
of serverless function code may influence the magnitude of performance variance.
Therefore, code optimization emerges as a potential mitigation strategy. This find-
ing is consistent with various reports [18–20] and existing studies [57,75], which
highlight the influence of coding practices on serverless function performance. For
instance, optimizing the usage of cloud storage services is crucial, as access pat-
terns to cloud storage can affect performance [19]. Furthermore, removing unused
dependencies from serverless functions can reduce unnecessary overhead, improv-
ing performance consistency [19,57]. These examples underscore the potential of
adopting efficient coding practices to mitigate performance variance in serverless
functions. 2) Difference between start types. In the development of serverless
computing-based applications, software developers can carefully consider the dis-
tinct performance characteristics associated with both cold and warm starts. Our
findings demonstrate that the response latency variance is more pronounced dur-
ing warm starts than cold starts. To provide users with a seamless and consistent
experience, software developers should ensure that these distinct characteristics
do not impact the user experience under different start conditions.

Implications for cloud providers. From our results, all the serverless platforms
we study provide significant performance variance for serverless functions. Thus,
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cloud providers offering serverless environments should promise consistent quality
of service when delivering the services by means of serverless computing. As high-
lighted in Finding 2, the performance of serverless functions can vary by as much
as 338.76%, with an average variance of 42.28%. To ensure consistent quality of
service, cloud providers could monitor performance changes of the serverless func-
tion as it is executed. If the magnitude of this change exceeds a specific threshold
(e.g., average variance), cloud providers need to identify the function instance serv-
ing the current serverless function and conduct a detailed analysis of its resource
usage to detect any abnormalities.

8 Threats to validity

Selection of relevant papers. Our empirical study involves analyzing research
papers related to serverless computing. Given the difficulty of collecting all such
papers, we select a representative set for analysis. This selection process may pose
a threat to the validity of our results. To mitigate this threat, we specifically
gathered 110 research papers published in 77 top-tier conferences across different
research communities. These top-tier conferences are known for including papers
that have substantial impact and widespread recognition. The widespread recog-
nition of these conferences underscores their status as trusted sources for analysis.
This, in turn, enhances the representativeness of our data sources. However, we
acknowledge that adding research papers from other journals or conferences would
provide a more comprehensive analysis. In future work, we plan to expand more
papers to further enhance the scope of our investigation.

Manual examination of papers. In RQ1, we manually label the three types of
reporting information of each collected paper. This may pose a potential threat
to the validity of our summarized results. To minimize this threat, the first two
authors independently read the full text of the papers to determine specific infor-
mation. Then we calculate the inter-rater agreement during the labeling process,
and the obtained agreement values indicate a perfect agreement level and reliable
labeling procedures. Additionally, to resolve conflicts, an experienced arbitrator,
who has ten years of cloud computing experience, is involved in discussing and
reaching an agreement.

Root cause of performance variance. In RQ2, we do not delve into the root
cause of performance variance. The primary goal of our work is to raise awareness
within the serverless computing community about the well-known performance
variance problem in SE. Conducting a root cause analysis is beyond the scope
of our study for several reasons. First, the serverless platforms commonly used
by developers, such as AWS Lambda and Google Cloud Functions, are public
and commercial services. While these platforms significantly reduce the manage-
ment burden for developers, they also present challenges, as they operate as black
boxes with opaque and uncontrollable policies. This lack of transparency makes
it difficult to understand the underlying mechanisms that influence performance
variance, complicating efforts to diagnose function performance issues. Second, the
complexity of large-scale server management inherent to these serverless platforms
further hinders the identification of specific root causes for performance variance.
In future work, we plan to conduct a root cause analysis and connect the identified
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causes to the findings in literature, once serverless platforms provide more detailed
information about their underlying runtime.
Source of spatial variability. Our study investigates the magnitude of perfor-
mance variance in serverless functions across different platforms. In the current
experiment, we focused on maintaining consistency in the service regions of the
platforms used to ensure comparison fairness among different platforms. We ac-
knowledge that spatial variability could be an important source influencing per-
formance. In future work, we plan to extend our study to explore the impact
of executing serverless functions across different service regions on performance
variance.

9 Related Work

Serverless computing. The research community has exhibited an increasing
interest in serverless computing, as evidenced by the growing body of literature in
this field [81]. A systematic review of serverless computing research [81] has been
conducted, revealing a prominent focus on the performance of serverless computing
in the existing literature.

Considerable research efforts have been dedicated to predicting and optimiz-
ing the performance of serverless computing. For performance prediction, pre-
vious studies [32,56] have utilized historical data, e.g., memory size or resource
consumption, to predict serverless function performance. For performance opti-
mization, Liu et al. [57] employed static program analysis techniques to optimize
serverless function code and enhance its performance. Qi et al. [66] presented a
shared-memory framework and evaluated its performance improvement effective-
ness on various serverless functions. For these studies, ignoring the performance
variance problem can lead to inaccurate performance predictions and suboptimal
optimization outcomes.

Additionally, there have been empirical studies that focus on characterizing the
performance of serverless computing. For example, Wang et al. [79] characterized
serverless platform performance, examining scalability, cold start, etc. While they
acknowledged the variability in latency during instance preparation of cold starts
across multiple runs, they did not systematically investigate performance variance,
as it was not the primary focus of their study. Wen et al. [83] performed a measure-
ment study to evaluate the performance of commodity serverless platforms using
different serverless functions. Similarly, Eismann et al. [33] explored the stability
of performance measurements on serverless platforms, specifically investigating
various load or concurrency configurations. Different from these empirical studies,
our objective is to examine the awareness of researchers about the performance
variance problem and characterize the magnitude of this variance in serverless
computing.
Performance variance. Performance variance is a well-known problem in SE,
attracting extensive research efforts for analysis. As cloud computing offers ef-
ficient resource management, it has gained widespread adoption. For instance,
He et al. [42,40] executed cloud applications hosted in a traditional cloud comput-
ing paradigm, Infrastructure-as-a-Service [27]. They found that it is challenging
to obtain accurate performance. Laaber et al. [51] studied the impact of cloud
environments on result variability. For other systems, Pham et al. [65] quantified
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the variance of deep learning systems regarding models’ accuracy, varying by up
to 10.8%. Qian et al. [67] explored the variance of fairness metrics in deep learning
systems, identifying significant variance of up to 12.6%. Georges et al. [38] delved
into the performance variance of Java systems and highlighted the importance of
statistically rigorous data analysis.

Although the significance of performance variance has been acknowledged, cur-
rent serverless computing research still frequently overlooks this well-known prob-
lem. Moreover, the magnitude of performance variance in the new programming
model - serverless functions, remains unclear. While it is true that many practition-
ers and researchers may have been apprehensive about the performance variance of
serverless computing, there has not been solid scientific evidence of the magnitude
of such an issue thus far. In this paper, we provide a comprehensive study to shed
light on the oversight of performance variance in previous serverless computing
research work and characterize the magnitude of this variance, emphasizing the
significant consequences of disregarding this crucial aspect. Without this, all we
are left with is a “belief” rather than quantitative scientific evidence.

10 Conclusion

We conducted an empirical study to highlight the lack of awareness in serverless
computing research regarding the well-known performance variance problem in
software engineering. To this end, we first collected and analyzed 99 research pa-
pers related to serverless computing performance, showing that attention to this
performance variance is still in the infancy stage. Then, we conducted a mea-
surement study to illustrate the substantial magnitude of performance variance in
serverless computing. Specifically, we analyzed the end-to-end response latencies of
72 serverless functions collected from these papers obtained over multiple runs. We
observed a significant performance variance, with a maximum variance of 338.76%
(44.28% on average) among different runs. We further analyzed the reliability of
serverless function performance obtained by executing a low number of repeti-
tions, as commonly done in our collected papers. We found that 61.11% of the
serverless functions have unreliable performance. This underscores the significant
consequences of neglecting this critical aspect of performance variance. Moreover,
98.61% of the serverless functions required being executed at least 50 times to
achieve reliable performance, but only 28.95% of the collected papers that report
experiment repetitions execute serverless functions more than 50 times. This im-
plies that serverless functions require far more repetitions than the ones commonly
used in the literature.

11 Data Availability Statements

The detailed information for collected research papers and serverless functions are
available in a public GitHub repository [5]. Moreover, we provide the deployment
package and raw performance data of each serverless function, as well as code
scripts used in our study.



24 Jinfeng Wen et al.

Declarations

Funding and/or Conflicts of interests/Competing interests

This work is supported by the National Natural Science Foundation of China
under Grant No. 62032003. The authors declare that they have no conflict
of interests and competing interests.

References

1. https://www.gartner.com/smarterwithgartner/the-cios-guide-to-serverless-computing
(2024)

2. https://www.researchandmarkets.com/reports/4828585/serverless-architecture-market-
by-deployment (2024)

3. https://docs.aws.amazon.com/lambda/latest/dg/welcome.html (2024)
4. https://cloud.google.com/functions (2024)
5. https://github.com/JinfengWenWork/ServerlessPerformanceVariance (2024)
6. https://www.serverless.com/blog/2018-serverless-community-survey-huge-growth-usage

(2024)
7. https://www.datadoghq.com/state-of-serverless/ (2024)
8. https://csrankings.org (2024)
9. https://serverlessrepo.aws.amazon.com/applications (2024)

10. https://github.com/aws-samples (2024)
11. https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html

(2024)
12. https://docs.aws.amazon.com/lambda/latest/dg/configuration-timeout.html (2024)
13. https://cloud.google.com/functions/docs/configuring/memory (2024)
14. https://cloud.google.com/functions/docs/configuring/timeout (2024)
15. https://aws.amazon.com/s3/ (2024)
16. https://www.oreilly.com/library/view/hands-on-machine-learning/9781788393485/fd5b8a44-

e9d3-4c19-bebb-c2fa5a5ebfee.xhtml (2024)
17. https://pulmonarychronicles.com/index.php/pulmonarychronicles/article/view/805/1759

(2024)
18. https://appwrite.io/blog/post/serverless-functions-best-practices (2024)
19. https://www.serverless.com/guides/amazon-s3 (2024)
20. https://www.serverlessguru.com/blog/aws-serverless-development-coding-best-practices

(2024)
21. Adzic, G., Chatley, R.: Serverless computing: economic and architectural impact. In:

Proceedings of the 11th Joint Meeting on Foundations of Software Engineering, pp. 884–
889 (2017)

22. Akkus, I.E., Chen, R., Rimac, I., Stein, M., Satzke, K., Beck, A., Aditya, P., Hilt, V.: Sand:
Towards high-performance serverless computing. In: Proceedings of the 2018 USENIX
Annual Technical Conference, pp. 923–935 (2018)

23. Amiri, A., Zdun, U., Van Hoorn, A.: Modeling and empirical validation of reliability and
performance trade-offs of dynamic routing in service-and cloud-based architectures. IEEE
Transactions on Services Computing 15(6), 3372–3386 (2022)

24. Anda, B.C., Sjøberg, D.I., Mockus, A.: Variability and reproducibility in software engi-
neering: A study of four companies that developed the same system. IEEE Transactions
on Software Engineering 35(3), 407–429 (2008)

25. Ardagna, C.A., Bellandi, V., Bezzi, M., Ceravolo, P., Damiani, E., Hebert, C.: Model-
based big data analytics-as-a-service: take big data to the next level. IEEE Transactions
on Services Computing 14(2), 516–529 (2018)

26. Bermbach, D., Bader, J., Hasenburg, J., Pfandzelter, T., Thamsen, L.: Auctionwhisk:
Using an auction-inspired approach for function placement in serverless fog platforms.
Software: Practice and Experience 52(5), 1143–1169 (2022)

27. Bhardwaj, S., Jain, L., Jain, S.: Cloud computing: A study of infrastructure as a service
(iaas). International Journal of engineering and information Technology 2(1), 60–63 (2010)



Unveiling Overlooked Performance Variance in Serverless Computing 25

28. Cavezza, D.G., Pietrantuono, R., Alonso, J., Russo, S., Trivedi, K.S.: Reproducibility of
environment-dependent software failures: An experience report. In: Proceedings of the
2014 IEEE 25th International Symposium on Software Reliability Engineering, pp. 267–
276. IEEE (2014)

29. Cohen, J.: A coefficient of agreement for nominal scales. Educational and psychological
measurement 20(1), 37–46 (1960)

30. Copik, M., Kwasniewski, G., Besta, M., Podstawski, M., Hoefler, T.: Sebs: A serverless
benchmark suite for function-as-a-service computing. In: Proceedings of the 22nd Inter-
national Middleware Conference, p. 64–78 (2021)

31. Demir, N., Große-Kampmann, M., Urban, T., Wressnegger, C., Holz, T., Pohlmann, N.:
Reproducibility and replicability of web measurement studies. In: WWW ’22: The ACM
Web Conference 2022, pp. 533–544 (2022)

32. Eismann, S., Bui, L., Grohmann, J., Abad, C., Herbst, N., Kounev, S.: Sizeless: Predict-
ing the optimal size of serverless functions. In: Proceedings of the 22nd International
Middleware Conference, pp. 248–259 (2021)

33. Eismann, S., Costa, D.E., Liao, L., Bezemer, C.P., Shang, W., van Hoorn, A., Kounev, S.:
A case study on the stability of performance tests for serverless applications. Journal of
Systems and Software 189, 111294 (2022)

34. Eismann, S., Scheuner, J., Eyk, E.V., Schwinger, M., Grohmann, J., Herbst, N., Abad, C.,
Iosup, A.: The state of serverless applications: collection, characterization, and community
consensus. IEEE Transactions on Software Engineering 48(10), 4152–4166 (2021)

35. Eskandani, N., Salvaneschi, G.: The wonderless dataset for serverless computing. In:
Proceedings of the 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories, pp. 565–569. IEEE (2021)

36. Fouladi, S., Wahby, R.S., Shacklett, B., Balasubramaniam, K.V., Zeng, W., Bhalerao, R.,
Sivaraman, A., Porter, G., Winstein, K.: Encoding, fast and slow: low-latency video pro-
cessing using thousands of tiny threads. In: Proceedings of the 14th USENIX Symposium
on Networked Systems Design and Implementation, pp. 363–376 (2017)

37. Fuerst, A., Sharma, P.: Locality-aware load-balancing for serverless clusters. In: Proceed-
ings of the 31st International Symposium on High-Performance Parallel and Distributed
Computing, pp. 227–239 (2022)

38. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance evaluation.
ACM SIGPLAN Notices 42(10), 57–76 (2007)

39. Guizzo, G., Sarro, F., Harman, M.: Cost measures matter for mutation testing study va-
lidity. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 1127–1139
(2020)

40. He, S., Liu, T., Lama, P., Lee, J., Kim, I.K., Wang, W.: Performance testing for cloud
computing with dependent data bootstrapping. In: Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering, pp. 666–678 (2021)

41. He, S., Liu, T., Lama, P., Lee, J., Kim, I.K., Wang, W.: Performance testing for cloud
computing with dependent data bootstrapping. In: Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2021, pp. 666–678
(2021)

42. He, S., Manns, G., Saunders, J., Wang, W., Pollock, L., Soffa, M.L.: A statistics-based
performance testing methodology for cloud applications. In: Proceedings of the 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pp. 188–199 (2019)

43. He, S., Manns, G., Saunders, J., Wang, W., Pollock, L.L., Soffa, M.L.: A statistics-based
performance testing methodology for cloud applications. In: Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/SIGSOFT FSE 2019, pp. 188–199 (2019)

44. Hounsel, A., Borgolte, K., Schmitt, P., Holland, J., Feamster, N.: Comparing the effects
of dns, dot, and doh on web performance. In: Proceedings of the Web Conference, pp.
562–572 (2020)

45. Jayathilaka, H., Krintz, C., Wolski, R.: Performance monitoring and root cause analysis
for cloud-hosted web applications. In: Proceedings of the International Conference on
World Wide Web, pp. 469–478 (2017)

46. Jiang, J., Gan, S., Liu, Y., Wang, F., Alonso, G., Klimovic, A., Singla, A., Wu, W., Zhang,
C.: Towards demystifying serverless machine learning training. In: Proceedings of the 2021
International Conference on Management of Data, pp. 857–871 (2021)



26 Jinfeng Wen et al.

47. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.C., Khandelwal, A., Pu, Q., Shankar,
V., Carreira, J., Krauth, K., Yadwadkar, N., Gonzalez, J.E., Popa, R.A., Stoica, I., Patter-
son, D.A.: Cloud programming simplified: A berkeley view on serverless computing. arXiv
preprint arXiv:1902.03383 (2019)

48. Jueckstock, J., Sarker, S., Snyder, P., Beggs, A., Papadopoulos, P., Varvello, M., Livshits,
B., Kapravelos, A.: Towards realistic and reproducible web crawl measurements. In: Pro-
ceedings of the Web Conference, pp. 80–91 (2021)

49. Kim, J., Lee, K.: Functionbench: A suite of workloads for serverless cloud function service.
In: Proceedings of the IEEE 12th International Conference on Cloud Computing, pp.
502–504. IEEE (2019)

50. Klimovic, A., Wang, Y., Stuedi, P., Trivedi, A., Pfefferle, J., Kozyrakis, C.: Pocket: Elastic
ephemeral storage for serverless analytics. In: Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation, pp. 427–444 (2018)

51. Laaber, C., Scheuner, J., Leitner, P.: Software microbenchmarking in the cloud. how bad
is it really? Empirical Software Engineering 24(4), 2469–2508 (2019)

52. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data.
Biometrics 33(1), 159–174 (1977)

53. Le Boudec, J.Y.: Performance evaluation of computer and communication systems, vol. 2.
Epfl Press Lausanne (2010)

54. Lenarduzzi, V., Panichella, A.: Serverless testing: Tool vendors’ and experts’ points of
view. IEEE Software 38(1), 54–60 (2020)

55. Li, Y., Lin, Y., Wang, Y., Ye, K., Xu, C.Z.: Serverless computing: state-of-the-art, chal-
lenges and opportunities. IEEE Transactions on Services Computing 16(2), 1522–1539
(2023)

56. Lin, C., Khazaei, H.: Modeling and optimization of performance and cost of serverless
applications. IEEE Transactions on Parallel and Distributed Systems 32(3), 615–632
(2020)

57. Liu, X., Wen, J., Chen, Z., Li, D., Chen, J., Liu, Y., Wang, H., Jin, X.: Faaslight: gen-
eral application-level cold-start latency optimization for function-as-a-service in serverless
computing. ACM Transactions on Software Engineering and Methodology (2023)

58. Mahgoub, A., Yi, E.B., Shankar, K., Elnikety, S., Chaterji, S., Bagchi, S.: Orion and the
three rights: Sizing, bundling, and prewarming for serverless dags. In: Proceedings of the
16th USENIX Symposium on Operating Systems Design and Implementation, pp. 303–320
(2022)

59. Maissen, P., Felber, P., Kropf, P., Schiavoni, V.: Faasdom: A benchmark suite for serverless
computing. In: Proceedings of the 14th ACM International Conference on Distributed and
Event-based Systems, pp. 73–84 (2020)

60. Maricq, A., Duplyakin, D., Jimenez, I., Maltzahn, C., Stutsman, R., Ricci, R.: Taming
performance variability. In: Proceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation, pp. 409–425 (2018)
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