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Abstract

Code generation, the automatic creation of
source code from natural language descrip-
tions, has garnered significant attention due
to its potential to streamline software devel-
opment. Inspired by research that links task-
personality alignment with improved develop-
ment outcomes, we conduct an empirical study
on personality-guided code generation using
large language models (LLMs). Specifically,
we investigate how emulating personality traits
appropriate to the coding tasks affects LLM
performance. We extensively evaluate this
approach using seven widely adopted LLMs
across four representative datasets. Our results
show that personality guidance significantly
enhances code generation accuracy, with im-
proved pass rates in 23 out of 28 LLM-dataset
combinations. Notably, in 11 cases, the im-
provement exceeds 5%, and in 5 instances, it
surpasses 10%, with the highest gain reach-
ing 12.9%. Additionally, personality guidance
can be easily integrated with other prompt-
ing strategies to further boost performance.
We open-source our code and data at https:
//github.com/IanWalls/Persona-Code.

1 Introduction

Code generation, which aims to automatically pro-
duce source code from natural language descrip-
tions, has attracted significant attention from both
academia and industry due to its potential to stream-
line software development (Jiang et al., 2024). The
emergence of large language models (LLMs) has
advanced this field by enabling the effective gen-
eration of complete, executable code (Chen et al.,
2021; Karmakar and Robbes, 2021). Additionally,
specialized LLMs, such as CodeLlama (Rozière
et al., 2023) and DeepSeek-Coder (DeepSeek-AI
et al., 2024), have further refined these capabilities
by focusing specifically on programming tasks.

† Corresponding authors.

Previous research has observed that software de-
velopment outcomes improve when individuals are
assigned tasks that match their personality types
(Capretz et al., 2015). Furthermore, personality
diversity within teams has been shown to correlate
with higher-quality software deliverables (Pieterse
et al., 2018; Capretz and Ahmed, 2010).

In the code generation literature, LLMs are fre-
quently tasked with role-playing as programmers
to generate code (Jiang et al., 2024). However, it
is still unclear whether assigning these “program-
mers” with appropriate personalities and increasing
personality diversity across tasks could further en-
hance code generation accuracy.

To fill this knowledge gap, we present an empir-
ical study on personality-guided code generation
using LLMs. Specifically, we first use GPT-4o, an
advanced general-purpose LLM, to generate a pro-
grammer personality tailored to each coding task.
Next, we assign various LLMs to emulate the roles
of programmers with these generated personalities
and evaluate whether this enhances their code gen-
eration accuracy.

We conduct a comprehensive evaluation of
personality-guided code generation using seven
widely-used LLMs and four well-recognized
datasets. These LLMs, developed by leading
vendors such as OpenAI, Meta, Alibaba, and
DeepSeek, are extensively employed for code gen-
eration in both research and real-world applications
(Hou et al., 2024; Fan et al., 2023; OpenAI, 2024b;
AI, 2024). For personality characterization, we use
the Myers-Briggs Type Indicator (MBTI) frame-
work (Myers, 2003), which is widely applied in
project management to align tasks with individ-
ual personality types and improve team dynamics
(Capretz and Ahmed, 2010).

Our results demonstrate that personality guidance
significantly enhances code generation accuracy,
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with pass rates improving in 23 out of 28 LLM-
dataset combinations. In 11 cases, the improvement
exceeds 5%, and in 5 instances, it surpasses 10%,
with the highest gain reaching 12.9%.

Additionally, several factors appear to influence
the effectiveness of personality-guided code gen-
eration, including LLM performance, dataset dif-
ficulty, and personality diversity. Specifically,
moderate-performance LLMs benefit more from
personality guidance compared to very strong or
very weak models. Similarly, larger improvements
are observed on datasets of moderate difficulty, as
opposed to very easy or very difficult ones. Fur-
thermore, greater personality diversity enhances
the effectiveness of this approach, aligning with
previous findings that diverse personality profiles
in development teams are associated with higher-
quality software outcomes (Pieterse et al., 2018;
Capretz and Ahmed, 2010).

Moreover, personality-guided code generation can
be easily integrated with other prompting strate-
gies. For instance, when combined with Chain of
Thought (Wei et al., 2022), a widely-used prompt-
ing strategy in the code generation literature (Jiang
et al., 2024), we observe additional improvements
in accuracy, with the highest gain reaching 13.8%.

2 Related Work

This section summarizes existing work highly rele-
vant to this paper.

2.1 LLM for Code Generation

The emergence of LLMs such as ChatGPT has pro-
foundly transformed the landscape of automated
code generation, making LLM-driven code gen-
eration a highly active area in both industry and
the Natural Language Processing and Software En-
gineering communities (Jiang et al., 2024). On
one hand, researchers have explored the effective-
ness of general-purpose LLMs such as ChatGPT
(OpenAI, 2022), GPT-4 (Achiam et al., 2023), and
Llama (Dubey et al., 2024) for code generation.
On the other hand, industry vendors have devel-
oped specialized LLMs designed to optimize code-
related tasks, such as DeepSeek-Coder (DeepSeek-
AI et al., 2024) and CodeLlama (Rozière et al.,
2023). In this paper, to comprehensively evaluate
the effectiveness of personality-guided code genera-
tion, we include both widely-used general-purpose
LLMs and code-specific LLMs in our evaluation.

2.2 Prompt Engineering for Code Generation

Prompt engineering is an important strategy for
improving the performance of LLM-based code
generation (Fan et al., 2023; Huang et al., 2024).
It is widely recognized that LLMs can role-play to
enhance performance in real-world tasks (Li et al.,
2023; Chen et al., 2023; Qian et al., 2024), and
in the code generation literature, LLMs are often
prompted to act as programmers when generating
code (Jiang et al., 2024; Liu et al., 2024b). In ad-
dition, common prompting strategies such as few-
shot learning (Zheng et al., 2023) and Chain of
Thought (Wei et al., 2022) are also widely adopted
in code generation. In this paper, we extend the
common practice of asking LLMs to act as pro-
grammers by equipping them with personalities
tailored to the specific coding task. Additionally,
we explore the integration of personality-guided
code generation with established prompting strate-
gies to further enhance performance.

2.3 Personality of LLM

Several studies have investigated the personality
traits exhibited by LLMs (Song et al., 2023; Caron
and Srivastava, 2022; Serapio-García et al., 2023;
Huang et al., 2023). For example, Huang et al.
(Huang et al., 2023) used trait theory, a psycho-
logical framework, to analyze the behavioral pat-
terns of LLMs, finding that ChatGPT consistently
exhibits an ENFJ personality. Building on the in-
sight from prior research that diverse personality
profiles within development teams are linked to
higher-quality software outcomes (Pieterse et al.,
2018; Capretz and Ahmed, 2010), we explore the
impact of assigning diverse personalities to LLMs
when they tackle different coding tasks, aiming
to ensure personality diversity and potentially en-
hance code generation accuracy.

3 Personality-Guided Code Generation

This section presents our LLM-based pipeline for
personality-guided code generation. As illustrated
in Figure 1, the pipeline consists of two key compo-
nents: personality generation and code generation.
The personality generation component is respon-
sible for creating a programmer’s personality suit-
able for addressing a given coding task. The code
generation component then uses this generated per-
sonality to produce the code for the task. In the
following, we define the coding task and provide a
detailed description of each component.



Figure 1: Workflow of personality-guided code generation

Task Definition: We focus on function-level code
generation tasks, which are among the most widely
studied in the literature (Zheng et al., 2023). These
tasks typically provide a task description and re-
quire the generation of function code to solve the
given problem. For each task, a test suite is pro-
vided, containing a collection of test cases. Each
test case consists of a test input and its expected out-
put. The generated code is considered to “pass” if
it successfully passes the entire test suite, meaning
it produces the correct output for all test cases.

Personality Generation: For a given coding task,
we prompt GPT-4o, an advanced LLM for general
text understanding, to generate an appropriate per-
sonality type most suited for solving the task. We
adopt the Myers-Briggs Type Indicator (MBTI),
a widely recognized personality framework that
classifies individuals into 16 distinct types based
on four dichotomies: Extraversion/Introversion,
Sensing/Intuition, Thinking/Feeling, and Judg-
ing/Perceiving (Myers, 2003). MBTI is popular
for its accessibility and ease of interpretation, of-
ten used in project management to align tasks with
individual personality types and enhance team dy-
namics (Capretz and Ahmed, 2010). In our ap-
proach, GPT-4o generates both the MBTI type and
a detailed description tailored to the coding task.

Code Generation: Once the corresponding MBTI
personality of a given task is generated, we move
on to code generation. Our approach is applicable
to various LLMs capable of generating coding. We
prompt the LLM to take on the role of a program-
mer with the specified MBTI personality, providing

a detailed description of that personality, and then
it generates the code to solve the task. As previ-
ously mentioned, the generated code is considered
a “pass” if it successfully passes all the test cases
for the given coding task.

4 Experimental Setup

This section outlines the experimental setup used
to evaluate personality-guided code generation.

4.1 Research Questions (RQs)

We aim to answer the following five RQs to evalu-
ate personality-guided code generation.

RQ1 (Effectiveness): How effective is personality-
guided code generation in enhancing generation
accuracy?

RQ2 (Influencing factors): What potential factors
influence the effectiveness of personality-guided
code generation?

RQ3 (Combination with other strategies): Can
personality-guided code generation be combined
with other prompting strategies to further improve
generation accuracy?

RQ4 (Prompt design): How does including the
detailed personality description during code gener-
ation affect the accuracy of the generated code?

RQ5 (Personality modeling): How do different
personality modeling methods impact the effective-
ness of our approach?



4.2 Datasets
We evaluate personality-guided code generation
using four widely recognized datasets: MBPP San-
itized (Austin et al., 2021), MBPP+ (Liu et al.,
2024a), HumanEval+ (Liu et al., 2024a), and APPS
(Hendrycks et al., 2021). In the following, we pro-
vide a brief description of each dataset.

• MBPP Sanitized includes 427 crowd-sourced
Python problems designed for entry-level program-
mers, each with a task description, code solution,
and several automated test cases.

• MBPP+ improves upon MBPP by fixing ill-
formed problems and incorrect implementations,
while expanding the test suite by 35 times for more
robust evaluation.

• HumanEval+ offers 164 manually curated
Python problems, each featuring a function signa-
ture, docstring, code body, and multiple unit tests
to detect errors that LLMs might miss.

• APPS presents a comprehensive benchmark of
10K Python problems across varying difficulty lev-
els. Given the large size of the dataset, we ran-
domly sample 500 problems from the interview-
level set to balance evaluation depth with computa-
tional efficiency.

4.3 LLMs Used for Code Generation
We adopt seven LLMs for evaluation, consisting
of four general-purpose LLMs and three specifi-
cally designed for code-related tasks. The general
LLMs include GPT-4o (OpenAI, 2024a), GPT-4o
mini (OpenAI, 2024b), Llama3.1 (Dubey et al.,
2024), and Qwen-Long (Yang et al., 2024), while
the code-specific LLMs include DeepSeek-Coder
(DeepSeek-AI et al., 2024), Codestral (AI, 2024),
and CodeLlama (Rozière et al., 2023).

Table 1 lists the information of these LLMs. These
LLMs are developed by leading vendors such as
OpenAI, Meta, Alibaba, and DeepSeek. All of
them are widely used for code generation in re-
search and practical applications (Hou et al., 2024;
Fan et al., 2023; OpenAI, 2024b; AI, 2024).

4.4 Evaluation Metric
We evaluate code generation accuracy by calcu-
lating the pass rate across all tasks in the dataset.
An LLM is considered to pass a coding task if the
code it generates successfully passes all test cases
for that task. Considering the non-determinism of

LLM Size Institution Date
GPT-4o - OpenAI 2024-05
GPT-4o mini - OpenAI 2024-07
Llama3.1 70B Meta 2024-07
Qwen-Long - Alibaba 2024-05
DeepSeek-Coder V2 236B DeepSeek 2024-06
Codestral 22B Mistral AI 2024-05
CodeLlama 13B Meta 2023-08

Table 1: LLMs used for code generation

LLMs in code generation(Ouyang et al., 2025), to
ensure the reliability of our results, we run each
LLM on each dataset three times and report the
average pass rate as the final outcome. Specifically,
the pass rate P of an LLM on a dataset is calculated
as:

P =
1

3

3∑
i=1

ci
cnt

,

where cnt represents the total number of tasks in
the dataset, and ci is the number of tasks success-
fully passed by the LLM in the ith run.

5 Results

This section answers our research questions with
the experimental results.

5.1 RQ1: Effectiveness
Table 2 presents the comparison of pass rate
for LLMs with and without personality guidance
across different datasets. Specifically, for each
LLM on each dataset, we evaluate two approaches:
directly prompting the LLM to generate code as
a programmer (the “Direct” row) and using the
personality-guided method (the “MBTI” row). We
report the pass rates for both approaches on each
dataset, along with the change in performance in-
troduced by personality guidance.

Overall, the personality-guided approach improves
the pass rate of code generation in 23 out of 28
combinations of LLMs and datasets. In 11 com-
binations, the improvement exceeds 5%, and in 5
combinations, it surpasses 10%. Notably, the pass
rate of GPT-4o mini on the MBPP Sanitized dataset
increases by 12.9%.

Additionally, we observe that personality-guided
code generation enhances the pass rate for all
LLMs considered, with average improvements
ranging from 0.6% to 6.5% across all datasets.
Specifically, the average pass rates of Llama3.1,
Qwen-Long, and Codestral improve by 5.3%, 6.5%,
and 5.3%, respectively.



LLM MBPP
Sanitized MBPP+ HumanEval+ APPS Average

Change

GPT-4o
Direct 78.2% 71.2% 84.8% 46.2%

↑ 1.2%MBTI 84.3% 72.7% 82.9% 45.2%
Change ↑ 6.1% ↑ 1.5% ↓ 1.9% ↓ 1.0%

GPT-4o mini
Direct 69.3% 69.4% 80.5% 34.6%

↑ 4.9%MBTI 82.2% 71.7% 82.3% 37.2%
Change ↑ 12.9% ↑ 2.3% ↑ 1.8% ↑ 2.6%

Llama3.1
Direct 69.8% 66.7% 72.0% 18.4%

↑ 5.3%MBTI 81.0% 69.2% 72.6% 25.2%
Change ↑ 11.2% ↑ 2.5% ↑ 0.6% ↑ 6.8%

Qwen-Long
Direct 68.4% 67.7% 76.8% 10.2%

↑ 6.5%MBTI 80.8% 71.2% 78.7% 18.2%
Change ↑ 12.4% ↑ 3.5% ↑ 1.9% ↑ 8.0%

DeepSeek-Coder V2
Direct 74.9% 71.4% 80.5% 39.4%

↑ 0.6%MBTI 85.7% 72.2% 76.2% 34.4%
Change ↑ 10.8% ↑ 0.8% ↓ 4.3% ↓ 5.0%

Codestral
Direct 64.2% 61.2% 75.6% 15.8%

↑ 5.3%MBTI 73.8% 64.9% 76.8% 22.6%
Change ↑ 9.6% ↑ 3.7% ↑ 1.2% ↑ 6.8%

CodeLlama
Direct 43.3% 42.4% 32.9% 1.4%

↑ 3.9%MBTI 46.8% 52.4% 29.9% 6.4%
Change ↑ 3.5% ↑ 10.0% ↓ 3.0% ↑ 5.0%

Table 2: Comparison of pass rates for LLMs with and without personality guidance across different datasets

Ans. to RQ1: Personality-guided code gen-
eration significantly enhances generation ac-
curacy, improving pass rates in 23 out of 28
LLM-dataset combinations. In 11 cases, the
improvement exceeds 5%, and in 5 cases, it
surpasses 10%, with GPT-4o mini showing a
12.9% gain on the MBPP Sanitized dataset.

5.2 RQ2: Influencing Factors

Furthermore, we explore the potential factors influ-
encing the effectiveness of personality-guided code
generation, examining them from both the model
and dataset perspectives.

5.2.1 Model Perspective Analysis
Table 2 shows that only GPT-4o, DeepSeek-Coder
V2, and CodeLlama exhibit slight decreases in pass
rates in one or two cases. Additionally, in the “Di-
rect” mode, GPT-4o and DeepSeek-Coder consis-
tently achieve the highest pass rates among all the
LLMs, while CodeLlama has the lowest.

Based on these observations, we conclude that
LLMs with moderate baseline performance may
benefit more from personality guidance compared
to those with either very strong or very weak base-
line performance. This is reasonable, as models
with excellent performance may already be near

Uniform MBTI ENFJ ENFP ENTJ ENTP
Pass rate 67.9% 67.9% 66.7% 65.7%

Uniform MBTI ESFJ ESFP ESTJ ESTP
Pass rate 67.9% 67.4% 67.9% 67.6%

Uniform MBTI INFJ INFP INTJ INTP
Pass rate 67.4% 67.4% 66.6% 68.2%

Uniform MBTI ISFJ ISFP ISTJ ISTP
Pass rate 67.1% 68.4% 66.6% 67.4%

Direct: 68.4% Diverse MBTI: 80.8%

Table 3: Pass rates for Qwen-Long on the MBPP Sani-
tized dataset when using uniform MBTI personalities,
compared to direct code generation (Direct) and our
diverse personality-guided approach (Diverse MBTI)

their potential, while those with low performance
may require more fundamental improvements be-
yond personality guidance.

5.2.2 Dataset Perspective Analysis
From Table 2, we observe that pass rate decreases
occur only in the HumanEval+ and APPS datasets.
Notably, HumanEval+ is the easiest dataset, as five
LLMs achieve a pass rate higher than 75%. In
contrast, APPS is the most challenging, with no
LLM achieving a pass rate above 40%.

These observations suggest that the difficulty
level of the dataset influences the effectiveness
of personality-guided code generation. It is rea-



(a) MBPP Sanitized (b) MBPP+ (c) HumanEval+ (d) APPS

Figure 2: Distribution of MBTI types generated by GPT-4o for each dataset

sonable that on easier tasks, where models already
perform well (as seen with HumanEval+), personal-
ity guidance may offer limited improvement, or in
some cases, a slight decrease. On highly challeng-
ing tasks like APPS, where baseline performance
is lower, there may be more room for improvement,
but the complexity of the task might limit the po-
tential gains. Fortunately, the personality-guided
approach achieves more than a 5% improvement in
pass rates for four out of seven LLMs.

Furthermore, we analyze the diversity of person-
ality distributions across each dataset. Figure 2
presents the MBTI personality types assigned by
GPT-4o for each dataset. We observe that Hu-
manEval+ and APPS exhibit the least diversity,
with 78.0% and 90.6% of tasks assigned the INTJ
personality, respectively. This suggests that person-
ality diversity may be a potential factor influencing
the effectiveness of personality-guided code gener-
ation. The more diverse the assigned personalities,
the more effective this approach tends to be.

To further demonstrate the impact of personality
diversity, we set up an additional experiment to
investigate the effect of assigning a uniform MBTI
personality to all tasks. We select Qwen-Long as
the test model because it exhibits the highest aver-
age improvement from personality guidance. Addi-
tionally, we use the MBPP Sanitized dataset, where
Qwen-Long shows the greatest improvement. The
significant improvement on this dataset provides
a clear baseline, allowing us to better observe the
impact of reducing personality diversity.

Since the MBTI framework includes 16 person-
ality types, we consider 16 uniform personality
approaches. For each approach, Qwen-Long is
prompted to take on the role of a uniform MBTI
personality across all coding tasks. Table 3 presents
the results. The code generation accuracy varied

slightly across the uniform personalities, with the
highest pass rate for ISFP (68.4%) and the low-
est for ENTP (65.7%), both close to the direct
prompting rate (68.4%). In contrast, our diverse
personality-guided approach, which assigns suit-
able MBTI types for each task, achieves a signifi-
cantly higher pass rate of 80.8%.

Figure 3: Venn diagram illustrating the tasks solved by
INTJ versus ISTJ types

Moreover, while INTJ dominates in Figure 2, per-
sonality diversity remains essential. To assess the
impact of different MBTI types on code generation
performance, we create a Venn diagram at Figure
3 illustrating the tasks solved by INTJ versus ISTJ
types. A closer analysis of the data in Table 3 re-
veals that 62.1% of tasks can be solved by either
INTJ or ISTJ, while 4.5% are uniquely solvable by
INTJ and another 4.5% by ISTJ. This highlights the
complementary strengths of different personality
types and the importance of diversity in addressing
a broader range of tasks.

Ans. to RQ2: The LLM’s performance, dataset
difficulty, and personality diversity are poten-
tial factors influencing the effectiveness of
personality-guided code generation. LLMs with
moderate performance benefit more than those



with either very strong or very weak perfor-
mance. Similarly, improvements are greater
on datasets of moderate difficulty compared to
those that are very easy or very difficult. Addi-
tionally, greater personality diversity tends to
enhance the effectiveness of personality-guided
code generation.

5.3 RQ3: Combination with Other Strategies
This RQ investigates whether the effectiveness of
personality-guided code generation can be further
enhanced by combining it with existing prompting
strategies. Specifically, we consider two widely
used techniques: few-shot learning and Chain of
Thought (CoT), both of which are popular methods
for code generation (Jiang et al., 2024). Few-shot
learning provides examples to guide the model’s
response, helping it generalize from limited data,
while CoT encourages the model to generate in-
termediate reasoning steps, improving complex
problem-solving accuracy.

For few-shot learning, we use a three-shot ap-
proach, a widely adopted setting in the code gen-
eration literature (Zheng et al., 2023; Zhang et al.,
2023); for CoT, we prompt the LLM to think step
by step (Wei et al., 2022). We select the MBPP San-
itized dataset for this experiment, as it shows the
most significant improvement with our personality-
guided approach, making it an ideal candidate to
explore potential further gains.

Table 4 presents the results. First, we find that
personality-guided approach (the “Personality” col-
umn) consistently outperforms both three-shot
learning and CoT strategies across all seven LLMs.

Next, we compare our approach to its combination
with existing strategies. Three-shot + Personal-
ity outperforms the personality-guided approach in
only three of the seven LLMs, while CoT + Per-
sonality achieves better results in five of the seven
LLMs, with improvements ranging from 3.8% to
12.9%. Thus, combining CoT and personality guid-
ance is a a promising solution, yielding improve-
ments of 6.3% to 13.8% over direct prompting,
depending on the LLM used.

Ans. to RQ3: Personality-guided code gener-
ation consistently outperforms both three-shot
learning and Chain of Thought strategies across
all seven LLMs. Additionally, combining Chain

of Thought with personality guidance further
enhances code generation accuracy, with im-
provements ranging from 6.3% to 13.8%, de-
pending on the LLM used.

5.4 RQ4: Prompt Design

In Section 3, we describe that during the code gen-
eration process, we provide both the MBTI type
and its detailed description. This is based on the
assumption that a more detailed personality de-
scription may help the LLM better role-play, poten-
tially improving performance. However, existing
research suggests that longer prompts can nega-
tively affect LLM performance on the same task
(Levy et al., 2024).

To address this, in this RQ, we evaluate whether
providing a detailed description alongside the
MBTI type yields better results than using a shorter
prompt that only indicates the MBTI type (e.g.,
INTJ). As with RQ3, we select the MBPP Sani-
tized dataset for this experiment.

Table 5 presents the results. We find that using the
full MBTI description (the “Full Prompt” column)
consistently achieves higher pass rates than using
only the MBTI type (the “Short Prompt” column)
across all seven LLMs. On average, the full MBTI
description improves the pass rate by 3.94%.

Although using only the MBTI type underperforms
compared to the full description, it still outperforms
the direct prompt in six out of seven LLMs, high-
lighting the effectiveness of personality guidance.

Furthermore, we experiment with using a template
of 16 general MBTI descriptions (generated by
GPT-4) in our prompt, instead of having LLMs gen-
erate them each time for every coding task. Here,
we use the MBPP Sanitized dataset and Qwen-
Long, as it shows the highest average improvement
from personality guidance. The results indicate that
using the general template results in a pass rate of
65.5%, significantly lower than the 80.8% achieved
by our default approach.

Ans. to RQ4: Using the full MBTI descrip-
tion (i.e., the default setting in our approach)
consistently outperforms using only the MBTI
type across all seven LLMs, with an average
performance improvement of 3.94%.

5.5 RQ5: Personality Modeling



LLM Personality Three-shot Three-shot
+Personality

CoT CoT+
Personality

GPT-4o 84.3% 77.3% 86.7% 77.0% 85.7%
GPT-4o mini 82.2% 69.6% 82.2% 71.9% 81.5%
Llama3.1 74.9% 67.7% 78.9% 67.4% 79.9%
Qwen-Long 80.8% 66.7% 76.6% 69.6% 82.2%
DeepSeek-Coder V2 85.7% 76.1% 83.8% 72.4% 83.8%
Coderstral 73.8% 65.3% 72.8% 66.0% 74.5%
CodeLlama 46.8% 46.6% 47.1% 30.4% 49.6%

Table 4: Comparison of pass rates achieved by our approach, existing prompting strategies, and their combination

LLM Direct Full
Prompt

Short
Prompt

GPT-4o 78.2% 84.3% 82.9%
GPT-4o mini 69.3% 82.2% 80.1%
Llama3.1 69.8% 81.0% 72.4%
Qwen-Long 68.4% 80.8% 73.3%
DeepSeek-Coder 74.9% 85.7% 83.1%
Coderstral 64.2% 73.8% 72.1%
CodeLlama 43.3% 46.8% 43.1%

Table 5: Comparison of pass rates between Direct
prompting, our approach using the full MBTI descrip-
tion (Full Prompt), and using only the MBTI type (Short
Prompt)

LLM MBTI Big Five
GPT-4o 84.3% 82.9%
GPT-4o mini 82.2% 69.0%
Llama3.1 81.0% 72.1%
Qwen-Long 80.8% 71.4%
DeepSeek-Coder 85.7% 72.8%
Coderstral 73.8% 63.4%
CodeLlama 46.8% 42.4%

Table 6: Comparison of pass rates between using MBTI
and Big Five Personality

This RQ examines how the choice of personality
modeling methods influences the effectiveness of
our approach. To this end, we compare our default
approach (i.e., using MBTI) with the Big Five Per-
sonality model (John et al., 1991), another widely
used personality modeling framework. The Big
Five Personality model includes five dimensions:
openness, conscientiousness, extroversion, agree-
ableness, and neuroticism.

We use the same experimental setup and prompts
as those used for MBTI prompting, with the only
change being the personality model, which is
switched to the Big Five Personality. As in RQ3
and RQ4, we select the MBPP Sanitized dataset
for this experiment. The comparison results are
shown in Table 6. Our findings indicate that MBTI-
based personality prompting outperforms Big Five
Personality prompting across all evaluated LLMs.

This result suggests that MBTI is more suitable
for personality modeling in our framework. This
can be attributed to the different perspectives em-
phasized by the two modeling methods. Among
the five dimensions of the Big Five Personality
model, only conscientiousness is strongly linked
to coding performance. In contrast, the MBTI of-
fers a structured framework for modeling cognitive
preferences, making it particularly well-suited for
code generation. Each MBTI dimension reflects
distinct cognitive approaches: for example, Sens-
ing emphasizes detail-oriented problem-solving for
debugging, Intuition fosters abstract thinking for
algorithm design, Thinking ensures logical preci-
sion, and Feeling takes values into account for user-
centric decisions.

Code generation uniquely requires logical pre-
cision, abstract reasoning, and context-sensitive
problem-solving—traits that align well with MBTI
dimensions. Embedding these cognitive traits into
LLMs allows for task-specific alignment, much
like matching tasks to human cognitive strengths,
providing a theoretical basis for the enhanced ef-
fectiveness of code generation.

Ans. to RQ5: MBTI is better suited for per-
sonality modeling in our framework than the
Big Five Personality Model. Across all evalu-
ated LLMs, using MBTI results in higher code
generation accuracy compared to the Big Five.

6 Discussion

We further discuss the implications based on our
findings: (1) Our study demonstrates that intro-
ducing personality traits into LLMs significantly
enhances code generation accuracy. It offers practi-
cal solutions for developers to improve LLMs for
better code generation, and suggests that LLM per-
formance is not purely computational but can be im-
proved by mimicking human cognitive processes,



transforming LLMs into more nuanced, context-
aware problem solvers. (2) Our results emphasize
the importance of personality diversity in improv-
ing task-specific performance, highlighting its po-
tential to address a broader range of challenges
effectively. (3) The observed synergy between
personality guidance and strategies like Chain of
Thought underscores its modularity, showing that
personality guidance can integrate seamlessly with
other techniques to enhance LLM reasoning and
problem-solving.

7 Conclusion

This paper presents a large-scale empirical study
on personality-guided code generation using LLMs.
While existing research typically involves LLMs
role-playing as programmers to generate code, this
study investigates whether assigning these “pro-
grammers” with appropriate personalities can fur-
ther improve code generation accuracy. To explore
this, we conduct an extensive evaluation using four
widely-adopted datasets and seven advanced LLMs
developed by leading vendors. Our results show
that personality guidance significantly boosts code
generation accuracy, with pass rates improving in
23 out of 28 LLM-dataset combinations. Notably,
in 11 cases, the improvement exceeds 5%, and in 5
instances, it surpasses 10%, with the highest gain
reaching 12.9%.

8 Limitations

As an empirical study, this paper has several lim-
itations. First, the personality traits examined are
limited to the MBTI framework. While MBTI is
widely used, relying solely on it may not capture
the full complexity of personality traits and their
potential impact on LLM performance. Second,
although we evaluated seven LLMs, including both
general-purpose and code-task-specific models, the
generalizability of our findings to other LLMs re-
quires further investigation. Third, our study fo-
cuses on function-level code generation across four
datasets, a common area in the literature. In fu-
ture work, we plan to extend our evaluation to
more complex code generation tasks to broaden
the scope of our findings. Fourth, since we do
not have ground-truth personality labels for each
task, we evaluate the predictive accuracy of GPT-
4o’s generated personalities indirectly through their
impact on code generation accuracy. Thus we can-
not explicitly calculate the theoretical upper bound

score of personality guided code generation.
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A Prompt and Personality Example

The prompts used in MBTI prompting are listed in
Figure 1. The personality recommendation exam-
ple is listed in Figure 4. The few-shot prompting
and CoT prompting structures are listed in Figure 5.

B Impact of Personality-Generation LLM

This section tries to answer the question that if we
use other LLMs to generate personality, how would
this impact the effectiveness of personality-guided
code generation?

In Section 3, we describe that GPT-4o is used for
personality generation. This RQ evaluates this set-
ting by comparing it to a setting where the code-
generation LLM is also used for personality gener-
ation. For example, when Qwen-Long is used for
code generation, it also generates its own person-
ality for each task. CodeLlama is excluded from
the comparison because it lacks the capability to
generate appropriate personality. As with RQ3 and
RQ4, we use the MBPP Sanitized dataset for this
experiment.

LLM Direct Self GPT-4o
GPT-4o 78.3% 84.3% -
GPT-4o mini 69.3% 82.7% 82.2%
Llama3.1 69.8% 74.9% 81.0%
Qwen-Long 68.4% 74.5% 80.8%
DeepSeek-Coder 74.9% 84.8% 85.7%
Codestral 64.2% 70.7% 73.8%
CodeLlama 43.3% - 53.2%

Table 7: Comparison of pass rates between using each
LLM individually for personality generation (Column
“Self”) and using GPT-4o consistently for personality
generation

LLM Direct S/N Only Personality
GPT4o 78.2% 78.5% 84.3%
GPT4o mini 69.3% 70.3% 82.2%
llama 3.1 69.8% 72.2% 81.0%
Qwen 68.4% 74.2% 80.8%
Deepseek 74.9% 74.2% 85.7%
Codestral 64.2% 57.6% 73.8%
Codellama 43.3% 43.3% 46.8%
Avg. Change - 0.3% 9.5%

Table 8: Ablation experiment results of considering only
the sensing/intuition dimension

Table 7 shows the comparison results. We find that
using GPT-4o consistently for personality gener-
ation (the “GPT-4o” column) outperforms using
each LLM individually (the “Self” column) in four
out of five LLMs. For GPT-4o mini, using it for
both personality and code generation results in a
slightly higher pass rate (0.5%) than using GPT-4o
for personality generation. For the remaining four
LLMs, the average improvement of using GPT-4o
over the code-generation LLM is 4.1%. Addition-
ally, given that LLMs designed for code-specific
tasks, such as CodeLlama, may struggle to gen-
erate personalities based on problem descriptions,
we recommend using GPT-4o as the default LLM
for personality generation, as demonstrated in our
methodology.

C Single Dimension Ablation Experiment

The distribution of MBTI types generated by GPT-
4o for each dataset is primarily concentrated around
two types: INTJ and ISTJ. Thus we conduct the
ablation experiment to investigate whether consid-
ering only the sensing/intuition dimension suffice.

Using the representative MBPP Sanitized dataset,
we prompted the LLM to adopt the role of a pro-
grammer with the specified S/N property for each
task. The results, shown in the table below, reveal



Figure 4: Personality example recommended by GPT-4o

Figure 5: Few-shot and CoT prompt structures

that using only the S/N property improves code
generation accuracy for 4 out of 7 LLMs, with an
average pass rate increase of 0.3%. By comparison,
prompts incorporating the full MBTI properties
achieve a higher average pass rate improvement of

9.5%. This result reveals the adequacy of using
MBTI modeling in its entirety rather than solely
one dimension.

D Pass@5 and Pass@10 Results



LLM Direct Personality

Pass@1 Pass@5 Pass@10 Pass@1 Pass@5 Pass@10

GPT-4o 78.2% 80.1% 82.0% 84.3% 91.6% 93.9%
GPT-4o mini 69.3% 74.7% 77.8% 82.2% 86.4% 92.0%
Llama3.1 69.8% 74.0% 76.6% 81.0% 85.5% 92.3%
Coderstral 64.2% 73.8% 79.2% 73.8% 85.0% 92.7%
CodeLlama 43.3% 46.6% 47.1% 46.8% 49.6% 51.2%

Table 9: Comparison of pass@k achieved by Direct and Personality methods on MBPP Sanitized dataset

LLM Unit Price GPU Time Total Cost
GPT4o $5 - $1.75
GPT4o mini $0.3 - $0.105
llama 3.1 - 11.5h $13.8
Qwen $0.28 - $0.098
Deepseek $0.28 - $0.098
Codestral $0.5 - $0.175
Codellama - 1.5h $1.8

Table 10: Resource consumption of different LLMs on
one experiment round, including direct prompting, per-
sonality suggestion, and personality-guided code gener-
ation. The unit price is for 1 million token outputs, and
the GPU time is based on A800, which is $1.2 for one
hour of calculation.

Following former code generation work(Chen et al.,
2021, 2022), we add Pass@k as a complement to
our evaluation metrics. Specifically, given a task,
a LLM generates k programs. The task is solved
if any generated programs pass all test cases. We
compute the percentage of solved tasks in total
requirements as Pass@k. The formula is:

Pass@k =
1

N

N∑
i=1

1∗(Correcti ∈ Top-k(Choicesi))

We choose k ∈ {1, 5, 10}, and we select MBPP
Sanitized dataset for this experiment. Since the
APIs of Qwen-long and Deepseek Coder V2 do not
support generating top k options simultaneously,
we only measure the Pass@k of the rest five mod-
els. The results are listed in Table 9. The results of
Pass@5 and Pass@10 are the same as the conclu-
sions about MBPP Sanitized in RQ1, which help
strengthen the robustness of the findings.

E Resource Consumption Report

Regarding computational costs, using the repre-
sentative MBPP Sanitized dataset (427 tasks), one
experiment round, including direct prompting, per-
sonality suggestion, and personality-guided code
generation, consumes 0.35M tokens, costing about

$1.75 with GPT-4o ($0.004 per task). The costs are
significantly lower for other LLMs. The resource
consumption of different models is listed in Table
10. The results reveals that the overall cost of our
method is rather efficient. For llama 3.1 and codel-
lama are deployed on a computing cluster with 4
A800 GPUs, thus the cost is more than API calls.
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