
LLM-Powered Test Case Generation for Detecting Bugs in
Plausible Programs

Kaibo Liu1, Zhenpeng Chen2,*, Yiyang Liu1, Jie M. Zhang3, Mark Harman4,
Yudong Han1, Yun Ma1, Yihong Dong1, Ge Li1,*, Gang Huang1,5

1Peking University, 2Nanyang Technological University,
3King’s College London, 4University College London

5National Key Laboratory of Data Space Technology and System
{liukb,hanyd,mayun,lige,hg}@pku.edu.cn,zhenpeng.chen@ntu.edu.sg

{ptr1479,dongyh}@stu.pku.edu.cn,jie.zhang@kcl.ac.uk,mark.harman@ucl.ac.uk

Abstract
Detecting tricky bugs in plausible programs,
those that pass existing test suites yet still con-
tain bugs, remains a significant challenge in
software testing. To address this problem, we
propose TrickCatcher, an LLM-powered ap-
proach to generating test cases for uncovering
bugs in plausible programs. TrickCatcher op-
erates in three stages: First, it uses an LLM
to generate program variants based on the pro-
gram under test (PUT) and its specification.
Second, it employs an LLM to construct an
input generator from the specification for pro-
ducing test inputs. Finally, these inputs are exe-
cuted on both the PUT and its program variants
to detect inconsistencies in their outputs. We
evaluate TrickCatcher on two datasets, Tricky-
Bugs and EvalPlus, which include 366 human-
written and 151 AI-generated plausible pro-
grams with tricky bugs. TrickCatcher achieves
recall, precision, and F1 scores that are 1.80×,
2.65×, and 1.66× those of the state-of-the-art
baselines, respectively. Code and data used are
available at https://github.com/RinCloud/
TrickCatcher.

1 Introduction

Validating that programs meet a given specification
that defines their intended functionality is critical,
with software testing serving as the primary ap-
proach to achieving this goal. Central to software
testing lies in the use of a test suite, a collection of
test cases designed to validate the program under
test (PUT). Each test case consists of a test input,
sampled from the input space of the PUT, and a test
oracle, which specifies the expected output based
on the program’s specification.

Programs that pass all test cases are considered
plausible programs (Liu et al., 2024b; Chen et al.,
2024a), but plausibility does not equate to correct-
ness. Such plausible programs may still harbor sub-
tle bugs (Liu et al., 2023b; Tambon et al., 2024; Gu

*Corresponding authors

Specification
PROBLEMDESCRIPTION:

Give three numbers A, B and C, determine whether (A,B,C) is a permutation of (5,7,5).
INPUT CONSTRAINTS:
1≤A,B,C ≤10

Existing Test Suite
INPUT OUTPUT
5 7 7 No
5 5 7 Yes
5 6 7 No
7 5 5 Yes

L = list(map(int,input().split()))
L.sort()
numbers = [5,5,7]
print('YES' if L==numbers else 'NO')

Correct Program

L = list(map(int,input().split()))
print('YES' if L.sum()==17 else 'NO')

Bug-identifying
Test Case

INPUT OUTPUT
5 4 8 No

PASS
PASS

Buggy Plausible Program
PASS
FAIL

Figure 1: A motivating example.

et al., 2024), often logical corner cases, that escape
detection by test suites. We refer to these elusive
bugs as tricky bugs. For example, Figure 1 shows a
real-world plausible program from an online judge
platform1 that passes an existing test suite yet con-
ceals a tricky bug. A correct program should check
whether the set of the three input numbers is {5, 7,
5}, while the buggy plausible program only checks
if the sum of the three numbers is 17.

In fact, tricky bugs are surprisingly common. A
recent study (Liu et al., 2023b) identified 3,440
such bugs in human-written programs deemed cor-
rect by Online Judge platforms, underscoring their
prevalence even in scenarios where code has been
thoroughly reviewed and tested. Despite their
significant impact, existing research has largely
overlooked the development of testing approaches
specifically designed to uncover tricky bugs in plau-
sible programs, leaving a critical gap in current
testing practices.

To fill the gap, we propose TrickCatcher, an
LLM-powered test case generation approach for
detecting tricky bugs in plausible programs. Trick-
Catcher combines LLMs and differential testing to
accurately generate test inputs and test oracles. It
consists of three steps: program variant generation,

1https://atcoder.jp/contests/abc042/tasks/
abc042_a

https://github.com/RinCloud/TrickCatcher
https://github.com/RinCloud/TrickCatcher
https://atcoder.jp/contests/abc042/tasks/abc042_a
https://atcoder.jp/contests/abc042/tasks/abc042_a

test input generation, and differential testing. In the
first two steps, we use LLMs to generate various
program variants and test inputs of the PUT. In the
third step, we continually feed generated test inputs
to both the PUT and program variants, searching
for inconsistencies in program outputs.

A straightforward approach is to directly use
the specification as input for LLMs to generate
program variants and test inputs. However, our
preliminary experiments reveal two major limita-
tions of this naive approach: ❶ Low correctness
of program variants. While LLMs can generate
correct programs for simple tasks based on specifi-
cations (Chen et al., 2021), their performance dete-
riorates with complex tasks (e.g., competition-level
programs). The resulting variants often contain
errors, reducing the effectiveness of differential
testing. ❷ Low correctness of test inputs. Although
LLMs can generate valid test inputs for simple for-
mats (e.g., two integers), they struggle with inputs
requiring constraints (e.g., a square matrix with
monotonically increasing rows). Our experiments
show that when test inputs are generated directly
from specified input constraints, 40.10% of the gen-
erated test inputs are invalid. Invalid inputs fail to
expose bugs, as they result in undefined program
behavior, and worse, they can cause false positives,
incorrectly marking a working program as buggy.

To tackle these challenges, we propose the fol-
lowing three solutions in TrickCatcher:
❶ PUT-guided program variant generation. In-
stead of relying solely on specifications, Trick-
Catcher provides the PUT alongside the specifi-
cation in the LLM prompt. The LLM is tasked
with analyzing the PUT and generating repaired
program variants if necessary. These variants are
then filtered using existing test cases to exclude
those that fail. By leveraging the PUT as a foun-
dation, TrickCatcher steers the LLM toward gen-
erating meaningful modifications rather than cre-
ating implementations from scratch, significantly
improving the quality of the program variants.
❷ Generator-based input generation. Instead of
directly generating test inputs from specifications,
TrickCatcher instructs the LLM to create an input
generator (e.g., a Python script) that adheres to
specified constraints and then uses the generator
to generate test inputs. This approach separates
logical reasoning from input generation, allowing
TrickCatcher to overcome the reasoning limitations
of LLMs. As a result, it significantly improves the
validity of the generated inputs, achieving a higher

proportion of valid test cases.
❸ Diversity-driven differential testing. Recogniz-
ing that program variants can inherit similar bugs
from the PUT, TrickCatcher departs from the tradi-
tional majority-voting principle, which assumes the
most frequent output to be correct. Instead, it prior-
itizes diversity in test outputs to construct test ora-
cles. This counterintuitive approach enhances the
ability to detect subtle discrepancies and uncover
tricky bugs that majority voting might overlook.

We evaluate TrickCatcher on two datasets, Trick-
yBugs (Liu et al., 2024b) and EvalPlus (Liu et al.,
2023a), which contain 366 human-written and
151 AI-generated plausible programs with tricky
bugs, respectively. TrickyBugs includes both C++
and Python programs, while EvalPlus focuses on
Python. TrickCatcher is compared against three
representative baselines, and the results demon-
strate its superior performance in recall, precision,
and F1 score, achieving up to 1.80×, 2.65×, and
1.66× of the best baseline, respectively. In partic-
ular, TrickCatcher achieves F1 scores of 41.31%,
42.35%, and 51.34% on TrickyBugs (C++), Trick-
yBugs (Python), and EvalPlus, significantly outper-
forming the best baseline’s F1 scores of 24.95%,
36.20%, and 35.76%. An ablation study further
confirms that each component of TrickCatcher con-
tributes meaningfully to its overall performance.

2 Related Work

Traditional test case generation. Traditional
test case generation methods primarily rely on
search-based (McMinn, 2004, 2011) and symbolic
execution-based approaches (Baldoni et al., 2018),
with popular tools such as EvoSuite (Fraser and Ar-
curi, 2011), Pynguin (Lukasczyk and Fraser, 2022),
and KLEE (Cadar et al., 2008) exemplifying these
approaches. However, these traditional approaches
cannot automatically parse program specifications,
which are often written in natural language and
crucial for bug detection. In contrast, TrickCatcher
leverages LLMs to interpret and utilize program
specifications effectively.
LLM-based test case generation. Recently,
LLMs have been widely adopted in test case gener-
ation approaches (Liu et al., 2024a), such as Chat-
Tester (Yuan et al., 2024), TestPilot (Schäfer et al.,
2024), ChatUnitTest (Chen et al., 2024b), and Sym-
Prompt (Ryan et al., 2024). However, these ap-
proaches differ from TrickCatcher as they primar-
ily focus on improving test coverage rather than

detecting bugs. In terms of bug detection, Differen-
tial Prompting (DP) (Li et al., 2023) represents the
state-of-the-art in LLM-based test case generation.
As a differential testing approach, DP also gen-
erates program variants to identify potential bugs.
The key differences between DP and TrickCatcher
are as follows: (1) TrickCatcher focuses on plausi-
ble programs, which enables it to consider the exist-
ing test suite when generating inputs, whereas DP,
which is not designed for plausible programs, does
not; (2) TrickCatcher uses both the PUT and its
specification for program variant generation, while
DP relies solely on the inferred specification; (3)
TrickCatcher employs LLMs to generate input gen-
erators, which are then used to produce test inputs,
in contrast to DP, which directly generates inputs
from the specification; and (4) TrickCatcher intro-
duces diversity-driven differential testing, whereas
DP uses majority voting, a traditional approach in
differential testing, for test oracle construction. We
have implemented a variant of DP to make it appli-
cable to plausible programs and compared it with
TrickCatcher. Moreover, we thoroughly evaluate
these designs of TrickCatcher in Section 6.3.

3 Problem Definition

In this section, we define the problem of generating
test cases to detect bugs in plausible programs.

Given a program specification S, it defines an
intended mapping f from the input space I to the
output space O. For any input in ∈ I , the correct
output (test oracle) is out = f(in). The goal of
bug-identifying test case generation is to generate
an input int along with its corresponding correct
output f(int), forming the test case (int, f(int)),
such that the program under test (PUT) produces
an incorrect output, i.e., fPUT (int) ̸= f(int).

If a program P0 passes all test cases in a test suite
T0, we call P0 a plausible program (relative to T0).
However, if P0 still contains a bug, we refer to it as
a buggy plausible program (Chen et al., 2024a; Gu
et al., 2024), and the bugs in P0 are termed tricky
bugs (Liu et al., 2023b, 2024b).

The objective of this paper is to generate test
cases for a plausible program P0 based on its spec-
ification S. A failed test case is considered a po-
tential bug identifier as it reveals a discrepancy
between the program’s output and the expected
output (i.e., fPUT (ini) ̸= f(ini)). However, not
every failed test case necessarily indicates a bug in
the program, as failures can also result from errors

in the test case itself.
For a test case (in, out) to be valid, it must meet

the following two conditions: (1) Validity of the
test input: The input in must belong to the valid
input space I . (2) Correctness of the test oracle:
The output out must satisfy out = f(in), where f
is the mapping specified by S.

If a test case (in, out) fails, and both conditions
are satisfied, the test case is a True Positive (TP),
indicating the presence of a bug in the PUT. If the
test case fails to meet one or both conditions, it
results in a false alarm, which is categorized as a
False Positive (FP).

4 Our Approach: TrickCatcher

Figure 2 provides an overview of TrickCatcher. It
takes the program specification, the PUT, and the
existing test suite as inputs, and outputs a set of test
cases designed to detect bugs in the PUT. The work-
flow of TrickCatcher consists of three key steps:
PUT-guided program variant generation, generator-
based test input generation, and diversity-driven
differential testing. The first two steps use LLMs to
generate multiple program variants and test inputs
for the PUT, while the third step iteratively feeds
these test inputs into both the PUT and its program
variants, searching for inconsistencies in the out-
puts and constructing potential bug-identifying test
cases. Each step is explained in detail below.

4.1 Program Variant Generation

The first step of TrickCatcher involves generating
program variants of the PUT. Both the program
specification and the PUT are provided to the LLM,
which is prompted to assess whether the PUT con-
tains any bugs based on the specification. If the
LLM detects a potential bug, it is tasked with repair-
ing the program and generating a corrected version.
The prompt used is illustrated in Figure 3.

The key advantage of PUT-guided program gen-
eration is its ability to leverage both the program
specification and the PUT. Since the PUT is a plau-
sible program, it already exhibits a certain level of
correctness, particularly for the input space covered
by the existing test suite. By generating variants
based on the PUT, the LLM is more likely to pro-
duce high-quality variants with a reduced risk of
introducing new bugs compared to generating vari-
ants directly from the specification alone.

To improve the correctness of the program vari-
ants, TrickCatcher filters out any variants that fail

Diversity-Driven Differential Testing

① generating
program variants

Existing Test Suite

INPUT OUTPUT

5 7 7 No

5 5 7 Yes

5 6 7 No

7 5 5 Yes

L = list(map(int,input().split()))
print('YES' if L.sum()==17 else 'NO')

② filtering

③ generating
input generator

for i in range(100):
with open(f'test{i}.in') as file:

a,b,c=randint(1,10),randint(1,10),randint(1,10)
file.write(f'{a} {b} {c}') ④ running

generator

PUT-Guided Program Variant Generation

Generator-Based Test Input Generation

L = list(map(int,input().split()))
print('YES' if L.sort()==[5,5,7] else 'NO')

L = list(map(int,input().split()))
print('YES' if L.sort()==[5,7,5] else 'NO')

L = list(map(int,input().split()))
print('YES' if L.sum()==17 else 'NO')

L = list(map(int,input().split()))
print('YES' if L.sum()<=17 else 'NO')

L = list(map(int,input().split()))
print('YES' if L.sum()>16 else 'NO')

'YES'
L = list(map(int,input().split()))
print('YES' if L.sort()==[5,5,7] else 'NO')
L = list(map(int,input().split()))
print('YES' if L.sort()==[5,5,7] else 'NO')
L = list(map(int,input().split()))
print('YES' if L.sort()==[5,5,7] else 'NO')
L = list(map(int,input().split()))
print('YES' if L.sort()==[5,5,7] else 'NO')
L = list(map(int,input().split()))
print('YES' if L.sort()==[5,5,7] else 'NO')

L = list(map(int,input().split()))
print('YES' if L.sort()==[5,5,7] else 'NO')
L = list(map(int,input().split()))
print('YES' if L.sort()==[5,5,7] else 'NO')
L = list(map(int,input().split()))
print('YES' if L.sort()==[5,5,7] else 'NO')
L = list(map(int,input().split()))
print('YES' if L.sort()==[5,5,7] else 'NO')

'YES'

'NO'

'YES'

'YES'
PROBLEMDESCRIPTION:
Give three numbers A, B and C, determine
whether (A,B,C) is a permutation of (5,7,5).
INPUT CONSTRAINTS:
1≤A,B,C ≤10

Specification

Program Under Test

LLM

LLM

Program Variants

Input Generator

Program Variants (filtered)

Test Inputs

Test Input

Test
Oracle

Program Variants

Program Under Test

Figure 2: Overview of TrickCatcher.

INSTRCUTION:
You are a professional coding competition participant, skilled at identifying bugs
and logic flaws in code.
You will receive a description of a coding problem, and a piece of code
attempting to solve the problem.
Your task is to find whether there is any bug or logic flaw in the code, if any,
please repair the code.
Please reply with ONLY the COMPLETE REPAIRED CODE (rather than code
fragments) without any other content.

PROBLEM DESCRIPTION:
{The specification of the coding task}

CODE:
{Source code of PUT}

Figure 3: Prompt for generating program variants.

the existing test suite. This filtering step makes
effective use of the information provided by the
test suite, ensuring that only high-quality program
variants are retained for the subsequent steps of
differential testing.

4.2 Test Input Generation

INSTRCUTION:
The following is a description of a coding problem, please write an input
generator for this problem (DO NOT generate outputs).
The generated inputs should meet the input constraints of the problem
description.
Please reply with ONLY the code without any other content.

You can use the Python library {library name} if necessary, here are some
examples of how to use the library, which may be helpful:
{Few-shot examples to use the library}

PROBLEM DESCRIPTION:
{The specification of the coding task}

Figure 4: Prompt for generating test input generator.

The second step of TrickCatcher involves gener-
ating test inputs. The main challenge here is ensur-
ing that the generated test inputs are valid, meaning
that they satisfy the required input constraints.

Directly generating test inputs based on the spec-
ification using LLMs often results in invalid inputs,
as LLMs have limited reasoning capabilities, partic-
ularly when the specified constraints are complex.
To address this challenge, we adopt a two-step ap-
proach: first, we prompt the LLM to summarize the
constraints and translate them into code. Then, we
use the generated code to produce valid test inputs.

Specifically, TrickCatcher proposes generator-
based input generation. The LLM is tasked with
creating a test input generator, which is then exe-
cuted to produce the inputs. In our approach, the
generator is specified as a Python script, as shown
in the prompt in Figure 4. To enhance the genera-
tor’s capabilities, we can provide the LLM with a
library of functions through few-shot learning ex-
amples, enabling it to efficiently learn how to use
the library. We choose the Python library CYaRon
in our experiment, and the library can be easily
replaced by adjusting the few-shot examples.

Algorithm 1 Diversity-driven differential testing
INPUT: PUT, Set of program variants P , Set of
generated inputs I
OUTPUT: Test cases

1: testCases ← ∅
2: for input ∈ I do
3: diff ← ∅
4: output0 ← fPUT (input)
5: for P ∈ P do
6: output ← fP (input)
7: if output ̸= output0 then
8: Add output to diff
9: end if

10: end for
11: if diff ̸= ∅ then
12: oracle ← most frequent element in diff
13: test ← (input , oracle)
14: Add test to testCases
15: end if
16: end for
17: return testCases

4.3 Differential Testing

The third step of TrickCatcher involves construct-
ing a test oracle through differential testing. As
shown in Figure 2, TrickCatcher feeds the gener-
ated test inputs to both the PUT and the generated
program variants, searching for inconsistencies in
their outputs.

The algorithm is detailed in Algorithm 1. Trick-
Catcher introduces diversity-driven differential test-
ing: if a program variant produces an output dif-

ferent from the PUT’s output, we take the variant’s
output as the test oracle (the correct output). If
multiple outputs differ from the PUT’s, the most
frequent output is selected as the oracle. If all out-
puts match the PUT, the input is discarded, and the
next input is tested.

This approach is counterintuitive, as develop-
ers typically rely on majority voting in differential
testing (Liu et al., 2023b). The rationale behind
our algorithm is that while the LLM may correctly
replicate parts of the PUT, it can also be misled by
the PUT. As a result, program variants may inherit
the same bugs as the PUT. Our experiments show
that it is common for some variants to produce the
same erroneous output as the PUT. Thus, we place
greater trust in program variants that differ from
the PUT’s output.

5 Evaluation

5.1 Research Questions (RQs)

We aim to comprehensively evaluate TrickCatcher
by answering the following RQs.
RQ1: How effective are the test cases generated
by TrickCatcher in detecting bugs in plausible pro-
grams?
RQ2: How many false positives does TrickCatcher
generate when applied to correct programs?
RQ3: How do the different components contribute
to the final performance of TrickCatcher?
RQ4: How does the number of program variants
impact the effectiveness of TrickCatcher?
RQ5: How does the difficulty of coding tasks im-
pact the effectiveness of TrickCatcher?

5.2 Datasets

We evaluate TrickCatcher using two datasets: Trick-
yBugs (Liu et al., 2024b), which tests its ability to
detect bugs in human-written plausible programs,
and EvalPlus (Liu et al., 2023a), which assesses its
effectiveness on AI-generated plausible programs.2

In total, we use 366 human-written and 151 AI-
generated plausible programs as PUTs. Below are
brief descriptions of the two datasets:
• TrickyBugs contains hundreds of coding tasks
from an online judge platform, with plausible pro-
grams submitted by real participants. Although
these programs pass the existing test suite, they
contain bugs, and the dataset provides additional

2The two datasets are under the MIT and Apache 2.0 li-
censes, respectively.

test cases to detect them. We use 251 C++ and 115
Python plausible programs from this dataset.
• EvalPlus is a code generation benchmark includ-
ing 164 Python coding tasks, each with base and
extra test cases. We filter programs from EvalPlus’s
pre-generated LLM code samples3 to obtain buggy
plausible programs that pass the base test cases
but fail the extra ones. The final set includes 151
coding tasks, each with an AI-generated plausible
program.

5.3 Evaluation Metrics
We have defined TP and FP in Section 3. To dis-
tinguish between TPs and FPs, we need to know
the correct outputs and validity of the generated
test inputs. For correct outputs, both datasets pro-
vide canonical programs, and we use the outputs
from these canonical programs as the reference for
correctness. To validate the test inputs, we use the
provided Python checkers for the EvalPlus dataset,
while for the TrickyBugs dataset, we manually ver-
ify the input validity.

We further define precision, recall, and F1-score:
• Precision is defined as #TP

#TP+#FP . It determines
the practicality of test generation approaches (Liu
et al., 2023c). The higher the precision, the fewer
false positive test cases developers need to check
before confirming a true bug.
• Recall is defined as #TP

#TP+#FN . Note that for
buggy PUTs, all negatives are false negatives; for
correct PUTs, all negatives are true negatives.
• F1 score is defined as 2×Precision×Recall

Precision+Recall . Since
recall and precision often exhibit an inverse rela-
tionship, the F1-score provides a harmonic mean
to balance them, making it a widely used metric.

To ensure the reliability of our results, we con-
duct multiple runs of our experiments and calcu-
late the average metric values across these runs.
Detailed information on the repetition methods is
provided in the Appendix B.

5.4 Baselines
We use three representative methods as baselines
to compare with TrickCatcher (TC).
• DirectChat (CHAT): It provides the LLM with the
PUT and the specification, then asks it to generate
bug-identifying test cases directly.
• Differential Prompting Plus (DPP): As de-
scribed in Section 2, Differential Prompting (Li
et al., 2023) is a state-of-the-art test case generation

3https://github.com/evalplus/evalplus/
releases/tag/v0.1.0

https://github.com/evalplus/evalplus/releases/tag/v0.1.0
https://github.com/evalplus/evalplus/releases/tag/v0.1.0

Table 1: (RQ1) Effectiveness of different methods in detecting bugs in plausible programs. k denotes the number of
generated program variants. R, P, and F denote recall, precision, and F1 score. Bold numbers indicate the best F1
scores. Overall, TrickCatcher shows the best effectiveness in detecting bugs in both human-written and AI-generated
plausible programs.

k
TrickyBugs (C++) TrickyBugs (Python) EvalPlus

R P F R P F R P F

CHAT - 3.78 6.31 4.27 3.77 8.85 5.29 1.21 8.28 2.12

APR - 16.46 34.58 22.30 10.20 36.64 15.96 41.39 49.97 45.28

DPP

2 20.96 26.37 23.35 32.54 40.79 36.20 23.36 53.54 32.52
4 19.46 32.22 24.27 28.72 46.32 35.46 23.01 61.16 33.45
6 17.68 41.60 24.81 26.17 53.03 35.05 22.80 72.71 34.71
8 16.31 53.09 24.95 24.41 62.02 35.03 22.55 80.51 35.23
10 15.50 60.80 24.71 23.22 70.26 34.90 22.29 90.36 35.76

TrickCatcher

2 25.06 69.91 36.90 23.74 78.95 36.51 32.78 85.09 47.33
4 27.74 69.69 39.68 27.17 77.81 40.28 35.35 84.41 49.83
6 28.65 69.45 40.57 28.69 77.81 41.92 36.32 83.85 50.69
8 29.19 69.34 41.09 29.09 77.81 42.35 36.90 83.38 51.16
10 29.38 69.57 41.31 29.09 77.81 42.35 37.14 83.14 51.34

Improvement
Average 55.73% ↑ 62.54% ↑ 63.44% ↑ 2.01% ↑ 43.23% ↑ 15.16% ↑ 56.56% ↑ 17.19% ↑ 45.83% ↑
Best vs. Best 80.13% ↑ 31.04% ↑ 65.57% ↑ 10.61% ↓ 90.76% ↑ 16.99% ↑ 66.62% ↑ 7.99% ↓ 43.57% ↑
Worst vs. Worst 19.56% ↑ 165.11% ↑ 58.03% ↑ 2.24% ↑ 12.37% ↑ 4.61% ↑ 40.33% ↑ 58.93% ↑ 45.50% ↑

approach. While it is not designed or evaluated for
detecting bugs in plausible programs, we recognize
its potential in this area and use it as a baseline. The
original method requires inferring the specification
from the PUT; however, for a fair comparison, we
use the ground truth specification instead. Thus,
this modified version of Differential Prompting is
referred to as Differential Prompting Plus (DPP).
• Automated Program Repair (APR). We intro-
duce an additional baseline, which is an automated
program repair (APR) method. This method pro-
vides the LLM with the PUT and specification, ask-
ing it to generate repair patches. In this scenario,
correct patches are true positives, incorrect plausi-
ble patches are false positives, and other patches
are negatives. This baseline corresponds to the
first step of TrickCatcher, and we include it to
show that TrickCatcher ’s bug detection capabil-
ity is not solely dependent on the LLM-generated
repair patches.

5.5 Implementation

We use gpt-3.5-turbo-0125 as the LLM for im-
plementing TrickCatcher and the baselines, striking
a balance between performance and cost to conduct
our extensive evaluation within budget constraints.

6 Results

6.1 RQ1: Performance on Buggy Plausible
Programs

Table 1 shows the effectiveness of TrickCatcher and
baselines in generating bug-identifying test cases

for TrickyBugs and EvalPlus datasets. The last
three rows highlight the improvements of Trick-
Catcher compared to the best baseline, DPP. To
ensure a comprehensive comparison, we use three
distinct methods: “Average”, “Best vs. Best”, and
“Worst vs. Worst.” The “Average” comparison com-
putes the mean value across all different k values.
“Best vs. Best” uses the k values with the best F1
scores for comparison. For example, DPP achieves
its best F1 score (24.95) on TrickyBugs (C++) at
k = 8, while TrickCatcher reaches its best F1 score
(41.31) at k = 10; we then compute the improve-
ment of TrickCatcher (k = 10) over DPP (k = 8).
“Worst vs. Worst” follows a similar approach but
chooses the k values with the worst F1 scores.

The evaluation results demonstrate Trick-
Catcher’s superior performance in recall, precision,
and F1 score, achieving up to 1.80×, 2.65×, and
1.66× of DPP, respectively. Furthermore, Trick-
Catcher achieves the highest F1 score across all
datasets. Specifically, TrickCatcher achieves F1
scores of 41.31%, 42.35%, and 51.34% on Tricky-
Bugs (C++), TrickyBugs (Python), and EvalPlus,
respectively, significantly outperforming DPP’s F1
scores of 24.95%, 36.20%, and 35.76%.

Ans. to RQ1: TrickCatcher shows the best
effectiveness in detecting bugs in both human-
written and AI-generated plausible programs.
The recall, precision, and F1 score achieved
by TrickCatcher are 1.80×, 2.65×, and 1.66×
those of the state-of-the-art baseline.

Table 2: (RQ3) Results of ablation study. “PG”, “IG”, and “DT” represent different ways to perform program variant
generation, input generation, and differential testing, respectively. “R”, “P”, and “F” represent recall, precision, and
F1 score, respectively.

Pattern PG IG DT
k=2 k=4 k=6 k=8 k=10

R P F R P F R P F R P F R P F

1 Basic Basic Basic .21 .26 .23 .19 .32 .24 .18 .42 .25 .16 .53 .25 .16 .61 .25

2 Filtered Basic Basic .20 .27 .23 .19 .34 .24 .17 .45 .25 .16 .50 .25 .16 .48 .24

3 Filtered Basic Ours .23 .60 .33 .22 .59 .32 .22 .59 .32 .22 .59 .32 .22 .59 .32

4 Ours Basic Ours .22 .48 .30 .24 .47 .32 .24 .47 .32 .25 .47 .32 .25 .47 .32

5 Filtered Ours Ours .26 .76 .38 .26 .76 .38 .26 .76 .38 .26 .76 .38 .26 .76 .38

6 Ours Ours Ours .25 .70 .37 .28 .70 .40 .29 .69 .41 .29 .69 .41 .29 .70 .41

6.2 RQ2: Performance on Correct Programs

We further evaluate TrickCatcher and baseline
methods on correct programs (i.e., canonical pro-
grams provided by the datasets) to assess whether
they introduce false positives (FPs). We categorize
the FPs into two types: incorrect oracles and invalid
inputs. Since APR does not generate test cases, it
is excluded from this RQ. Given that EvalPlus pro-
vides official checkers for input validity, we focus
on this dataset for RQ2.

Figure 5 presents the results. The total number
of FPs generated by TrickCatcher is significantly
lower (up to 16×) compared to DPP and CHAT. No-
tably, TrickCatcher produces no FP due to invalid
inputs, demonstrating that its generator-based in-
put generation method can effectively ensure valid
inputs. In contrast, most FPs from DPP are due to
invalid inputs. Additionally, the majority of FPs
from CHAT are caused by incorrect oracles, high-
lighting that LLMs struggle to directly generate
accurate test oracles for given test inputs.

Ans. to RQ2: TrickCatcher generates up to
16× fewer false positives for correct programs
compared to state-of-the-art methods.

6.3 RQ3: Ablation Study

We conduct an ablation study to evaluate the contri-
butions of different components to TrickCatcher’s
performance. Due to the page limit, we focus on
TrickyBugs(C++) dataset.

Table 2 presents the results of the ablation study.
In the table, “PG”, “IG”, and “DT” refer to dif-
ferent ways for program variant generation, input
generation, and differential testing, respectively.
• For program generation, “Basic” generates pro-

TC
(k=2)

TC
(k=4)

TC
(k=6)

TC
(k=8)

TC
(k=10)

DPP
(k=2)

DPP
(k=4)

DPP
(k=6)

DPP
(k=8)

DPP
(k=10)

CHAT

Method Name

0

5

10

15

20

25

30

35

40

Av
er

ag
e

nu
m

be
r o

f f
al

se
 p

os
iti

ve
s

2.57 3.41 4.12 4.69 5.00

14.01

27.13

6.72

26.58

4.05

26.63

2.62

26.52

1.67

26.33 29.47

1.83

Incorrect Oracle
Invalid Input

Figure 5: (RQ2) False positives generated by each ap-
proach for correct programs. Lower values indicate bet-
ter performance. TrickCatcher generates significantly
fewer false positives compared to the other methods.

gram variants solely based on the specification and
does not filter them using the existing test suite.
The “Filtered” approach also generates variants
in the same way as “Basic” but then filters them
using the existing test suite. “Ours” refers to Trick-
Catcher’s PUT-guided program generation.
• For input generation, the “Basic” approach
directly uses the LLM to generates test inputs
based on the specification, while “Ours” employs
TrickCatcher’s generator-based input generation
method.
• For differential testing, “Basic” follows the ma-
jority voting rule for determining the test oracle.
“Ours” implements TrickCatcher’s diversity-driven
differential testing.

Pattern 6 in the table represents the complete
TrickCatcher approach.

The results demonstrate the great contribution
of each component of TrickCatcher: PUT-guided
program generation (by comparing Patterns 3, 5,
and 6), generator-based generation (by comparing

2 3 4 5 6 7 8 9 10
Program Variants (k)

30
40
50
60
70
80
90

100
110

DPP #TP
DPP #FP
TC #TP
TC #FP

2 3 4 5 6 7 8 9 10
Program Variants (k)

0.3

0.4

0.5

0.6

0.7
DPP precision
DPP F1 score
TC precision
TC F1 score

Figure 6: (RQ4) Impact of the number of generated
program variants k. TrickCatcher consistently maintains
stable precision and F1 scores.

Patterns 4 and 6), and diversity-driven differential
testing (by comparing Patterns 2 and 3).

Ans. to RQ3: Each component of Trick-
Catcher (i.e., PUT-guided program generation,
generator-based test generation, and diversity-
driven differential testing) contributes to its fi-
nal performance.

6.4 RQ4: Impact of Program Variant Number
To better understand how the number of program
variants k impacts the effectiveness of TrickCatcher
and DPP, We analyze the number of FPs, the num-
ber of TPs, precision, and F1 score as k changes
for the TrickyBugs (C++) dataset.

Figure 6 shows the results. We can observe that
TrickCatcher’s TP, FP, precision, and F1 score are
superior to DPP in most cases. For precision and
F1 score, TrickCatcher, even in the worst case,
outperforms DPP in the best case. Furthermore, the
performance of DPP fluctuates significantly with
changing k, while the performance of TrickCatcher
remains consistently stable and excellent, further
demonstrating the practicality of TrickCatcher.

ALL TC DPP0
500

1000
1500
2000
2500
3000
3500
4000

Di
ffi

clt
y

TrickyBugs (C++)

ALL TC DPP0
500

1000
1500
2000
2500
3000
3500
4000

TrickyBugs (Python)

Figure 7: (RQ5) The distribution of the difficulty of all
tasks and the tasks where TC and DPP perform well.

low high
Difficulty

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Passing rate on base tests
TC
DPP

low high
Difficulty

0.0

0.2

0.4

0.6

0.8

1.0
Passing rate on extra tests

TC
DPP

Figure 8: (RQ5) Average passing rate of the generated
program variants on base test cases and extra test cases.
The data is grouped by difficulty, “low” represents the
lower 50%, and “high” represents the higher 50%.

Ans. to RQ4: The performance of Trick-
Catcher remains consistently stable and high
with different numbers of program variants.

6.5 RQ5: Impact of Task Difficulty

We further explore the impact of the difficulty of
coding tasks on the effectiveness of TrickCatcher.
Since the TrcikyBugs dataset provides difficulty
information, we focus on it here.

Figure 7 shows the results. “ALL” is the diffi-
culty distribution of all tasks in the dataset. The
next two box plots represent the difficulty distribu-
tion of the tasks where the corresponding method
performs well (defined as achieving a precision
greater than 0.5). We can find that when the dif-
ficulty of the coding task is low, the performance
of the two methods is similar (see the right figure).
However, for more difficult coding tasks, Trick-
Catcher outperforms DPP (see the left figure). Fig-
ure 8 shows another interesting result that more pro-
gram variants generated by TrickCatcher pass the
base tests, and this difference is more pronounced
in high-difficulty tasks. This difference suggests
that TrickCatcher introduces fewer new bugs when

generating program variants, thereby improving
the final performance.

Ans. to RQ5: TrickCatcher demonstrates a
more significant improvement over DPP on the
PUTs for more difficult coding tasks.

7 Discussion

7.1 Usefulness of Buggy Program Variants
Here we discuss an interesting finding that buggy
program variants can also contribute to gener-
ating true positive test cases. We refer to the vari-
ants that have produced the correct oracle for any
true positive test case as useful variants. During
our evaluation, we find that 23.2% (TrickyBugs)
and 15.0% (EvalPlus) of the useful variants are ac-
tually buggy (A program variant is buggy if it has
ever produced any wrong output that is different
from the canonical solution).

The performance comparison between TC and
APR in Table 1 also supports the conclusion that
buggy variants can be useful, as TrickCatcher
achieves better recall than APR in most cases.

The findings imply that there is a certain logical
complementarity between these buggy variants and
the buggy PUT. So, even if a variant is not entirely
correct, it may still contribute to generating a bug-
identifying test case. This observation aligns with
the points we made in Section 5.4 that the ability
of TrickCatcher to detect bugs is not solely derived
from LLM-based program repair, TrickCatcher can
also leverage buggy variants to generate correct test
oracles.

7.2 Method Generalization Capability
We also use another model, deepseek-v3, for ex-
periments on EvalPlus dataset to verify the general-
ization capability of TrickCatcher. The evaluation
results are shown in Table 3.

Table 3: Evaluation results (EvalPlus) with different
language models.

Model Recall Precision F1 score

deepseek-v3(k=5) 44.26 90.94 59.54
deepseek-v3(k=10) 44.01 90.43 59.21
gpt3.5-turbo(k=5) 35.97 84.12 50.39
gpt3.5-turbo(k=10) 37.14 83.14 51.34

The experimental results demonstrate the gen-
eralization capability of TrickCatcher, and we can

also find that the stronger the underlying model,
the better the performance.

8 Conclusion

We propose TrickCatcher, an LLM-powered test
case generation approach for detecting bugs in
plausible programs. We evaluate TrickCatcher
on both human-written and AI-generated plausi-
ble programs. The results show that TrickCatcher
achieves up to 1.80×, 2.65×, and 1.66× the recall,
precision, and F1 score of the state-of-the-art base-
line, respectively. Additionally, the ablation study
demonstrates that each component of TrickCatcher
contributes to its performance.

Limitations

The first limitation is that, due to budget constraints,
we use two models, gpt-3.5-turbo and deepseek-v3,
for evaluation. However, we believe that utilizing
more advanced LLMs could further enhance the
performance of TrickCatcher. The second limita-
tion is the inherent uncertainty in the behavior of
LLMs. To mitigate this, we performed multiple rep-
etitions and averaged the results to ensure a more
reliable evaluation. The third limitation concerns
the risk of data leakage. However, the TrickyBugs
dataset we used was released after gpt-3.5-turbo-
0125, and EvalPlus explicitly prohibits its use for
training LLMs. Moreover, the poor performance
of the three LLM-based baselines further suggests
that data leakage is not a main concern in our eval-
uation.

Acknowledgements

This research is supported by the National Key
R&D Program under Grant No.2023YFB4503801,
the National Natural Science Foundation of
China under Grant No.62192733, 62192730, and
the Major Program (JD) of Hubei Province
(No.2023BAA024). Jie M. Zhang is supported by
the ITEA Genius and ITEA GreenCode projects,
funded by InnovateUK.

References
Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia,

Camil Demetrescu, and Irene Finocchi. 2018. A
survey of symbolic execution techniques. ACM Com-
puting Surveys, 51(3):1–39.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler.
2008. KLEE: unassisted and automatic generation of

high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX Symposium on Op-
erating Systems Design and Implementation, pages
209–224.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Mouxiang Chen, Zhongxin Liu, He Tao, Yusu Hong,
David Lo, Xin Xia, and Jianling Sun. 2024a. B4:
Towards optimal assessment of plausible code solu-
tions with plausible tests. In Proceedings of the 39th
IEEE/ACM International Conference on Automated
Software Engineering, pages 1693–1705.

Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han,
Shuiguang Deng, and Jianwei Yin. 2024b. Chatu-
nitest: A framework for llm-based test generation.
In Companion Proceedings of the 32nd ACM Inter-
national Conference on the Foundations of Software
Engineering, pages 572–576.

Gordon Fraser and Andrea Arcuri. 2011. Evosuite: Au-
tomatic test suite generation for object-oriented soft-
ware. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on
Foundations of software engineering, pages 416–419.

Alex Gu, Wen-Ding Li, Naman Jain, Theo Olausson, Ce-
line Lee, Koushik Sen, and Armando Solar-Lezama.
2024. The counterfeit conundrum: Can code lan-
guage models grasp the nuances of their incorrect
generations? In Findings of the Association for Com-
putational Linguistics ACL 2024, pages 74–117.

Tsz-On Li, Wenxi Zong, Yibo Wang, Haoye Tian,
Ying Wang, Shing-Chi Cheung, and Jeff Kramer.
2023. Nuances are the key: Unlocking ChatGPT
to find failure-inducing tests with differential prompt-
ing. In Proceedings of the 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, pages 14–26.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023a. Is your code generated by Chat-
GPT really correct? Rigorous evaluation of large lan-
guage models for code generation. In Proceedings of
the Thirty-seventh Conference on Neural Information
Processing Systems.

Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng,
Zhenpeng Chen, Lingming Zhang, and Yiling Lou.
2024a. Large language model-based agents for soft-
ware engineering: A survey. CoRR, abs/2409.02977.

Kaibo Liu, Yudong Han, , Yiyang Liu, Jie M. Zhang,
Zhenpeng Chen, Federica Sarro, Gang Huang, and
Yun Ma. 2024b. TrickyBugs: A dataset of corner-
case bugs in plausible programs. In Proceedings of
the 21st International Conference on Mining Soft-
ware Repositories, pages 113–117.

Kaibo Liu, Yudong Han, Jie M. Zhang, Zhenpeng Chen,
Federica Sarro, Mark Harman, Gang Huang, and Yun
Ma. 2023b. Who judges the judge: An empirical
study on online judge tests. In Proceedings of the
32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, page 334–346.

Zhongxin Liu, Kui Liu, Xin Xia, and Xiaohu Yang.
2023c. Towards more realistic evaluation for neural
test oracle generation. In Proceedings of the 32nd
ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, page 589–600.

Stephan Lukasczyk and Gordon Fraser. 2022. Pyn-
guin: Automated unit test generation for python. In
Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion
Proceedings, pages 168–172.

Phil McMinn. 2004. Search-based software test data
generation: A survey. Software Testing, Verification
& Reliability, 14(2):105–156.

Phil McMinn. 2011. Search-based software testing:
Past, present and future. In Proceedings of the 2011
IEEE Fourth International Conference on Software
Testing, Verification and Validation Workshops, pages
153–163.

Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi
Wang, Xiaofei Ma, Murali Krishna Ramanathan, and
Baishakhi Ray. 2024. Code-aware prompting: A
study of coverage-guided test generation in regres-
sion setting using LLM. Proceedings of the ACM on
Software Engineering, 1(FSE):951–971.

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank
Tip. 2024. An empirical evaluation of using large
language models for automated unit test genera-
tion. IEEE Transactions on Software Engineering,
50(1):85–105.

Florian Tambon, Amin Nikanjam, Le An, Foutse
Khomh, and Giuliano Antoniol. 2024. Silent bugs
in deep learning frameworks: An empirical study of
Keras and TensorFlow. Empirical Software Engineer-
ing, 29(1):10.

Zhiqiang Yuan, Mingwei Liu, Shiji Ding, Kaixin Wang,
Yixuan Chen, Xin Peng, and Yiling Lou. 2024. Evalu-
ating and improving ChatGPT for unit test generation.
Proceedings of the ACM on Software Engineering,
1(FSE):1703–1726.

A Category of Test Cases

Based on the problem definition in Section 3, we
define a comprehensive category of test cases:

❶ Test cases that correctly identify a bug (Tc).
For any t = (in, out) ∈ Tc, we have f(in) = out
and PUT (in) ̸= out. This is exactly the test case
we want, which effectively identifies a bug in PUT.

❷ Test cases with right test oracles but do not
identify any bug (Tr). For any t = (in, out) ∈ Tr,

we have f(in) = out and PUT (in) = out. Test
cases of this kind are trivial, neither positively nor
negatively significant for bug identification.

❸ Test cases with wrong test oracles (Tw). For
any t = (in, out) ∈ Tw, we have f(in) ̸= out.
These test cases are erroneous. They may lead
to false negative, where PUT (in) = out but
PUT (in) ̸= f(in). They may also lead to false
positive, where PUT (in) ̸= out but PUT (in) =
f(in). False positives are more detrimental than
false negatives because false positives can under-
mine the credibility and practicality of the entire
method.

❹ Test cases with invalid input (Terr). For any
t = (in, out) ∈ Terr, we have in /∈ input space I .
These test cases are erroneous. For any invalid
test input, no test oracle exists, and all program
behaviors are undefined. These test cases might
also lead to false positives.

Any test case should fall into one of the above
four categories.

For convenience, we define two additional types
of test cases: We define passed test cases (Tp). For
any t = (in, out) ∈ Tp, we have PUT (in) = out.
A passed test case t could belong to Tr, Tw, or
Terr. Then we define failed test cases (Tf). For
any t = (in, out) ∈ Tf , we have PUT (in) ̸= out.
A failed test case t could belong to Tc, Tw, or Terr.

We focus on identifying functional bugs within
plausible programs; therefore, we do not con-
sider other program behaviors such as timeouts or
crashes, which fall outside the scope of our study.

B Experiment Repetition

To make our evaluation results more reliable, we
repeat the experiments multiple times to reduce the
impact of randomness from LLMs.

For CHAT, each response of the LLM is a test
case. We repeatedly sample 100 test cases and
compute the average number of TPs and FPs.

For APR, each response of the LLM is a patch.
We repeatedly sample 10 patches and compute an
average number of TPs and FPs.

For DPP and TC, the randomness comes from
program generation and input generation. We first
repeatedly sample 100 inputs and 10 program vari-
ants, then keep only the filtered program variants
(if the method in the first step is TC or filtered).
Next, we use a combinatorial approach to conduct
extensive repeated experiments. For example, we
have 10 filtered program variants for a PUT and set

the parameter k (number of generated programs) as
4. Furthermore, we randomly select 4 out of the 10
program variants each round, resulting in a total of
C4
10 = 210 rounds of results. For each round, we

first compute the average number of TPs and FPs
among the 100 generated inputs, getting an average
precision and recall for this round. We average the
results of the 210 rounds to obtain the final result.

	Introduction
	Related Work
	Problem Definition
	Our Approach: TrickCatcher
	Program Variant Generation
	Test Input Generation
	Differential Testing

	Evaluation
	Research Questions (RQs)
	Datasets
	Evaluation Metrics
	Baselines
	Implementation

	Results
	RQ1: Performance on Buggy Plausible Programs
	RQ2: Performance on Correct Programs
	RQ3: Ablation Study
	RQ4: Impact of Program Variant Number
	RQ5: Impact of Task Difficulty

	Discussion
	Usefulness of Buggy Program Variants
	Method Generalization Capability

	Conclusion
	Category of Test Cases
	Experiment Repetition

